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Abstract: The probabilistic analysis of possible piping rupture or significant loss of coolant accident 

(LOCA) is a complex problem as it involves many mechanisms and generates low to extremely low 

probabilities of events. This topic is of particular interest in the nuclear industry and a conjoint effort 

between the US NRC and EPRI over the last 10 years has led to the development of the Extremely 

Low Probability of Rupture (xLPR) code to assess probability of rupture in nuclear piping systems. 

The current codes for determining the probability of rupture for events occurring at these very low 

values can take days, or even weeks, to run. In this paper we provide the technical basis for the an 

adaptive sampling scheme that can reduce the computational time needed for the standard Monte 

Carlo sampling methods to propagate uncertainty by a factor of 50 to 1,000. A theoretical problem is 

first presented to explain the method. Afterward the adaptive method is applied to the precursor 

analysis for time to first leakage.  
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1 INTRODUCTION 

As structures age in the United States and throughout the world we know that the probability 

of failure increases. This is by definition since if the failure probability does not change then 

the structure is not aging. During the design phase, especially several decades ago, aging 

problems were not specifically addressed. Yet if the risk of failure is part of the design or 

assessment to license then as the structure ages this risk increases. For structures in which the 

consequence of failure is relatively low, e.g. inconvenience or low costs to replace, aging can 

be addressed in a relatively simple cost-benefit analysis. However for those structures in 

which there are very high consequences, e.g. loss of life, or they are extremely expensive to 

replace, e.g. a new bridge, it is critical to be able to assess the probability of failure, and its 

associated uncertainty, accurately and in a timely manner. 

While there are many industries in which aging is a significant and growing problem, e.g. 

aircraft both in DoD and commercially, shipping, gas transmission pipelines, and offshore oil 

structures, this paper will focus on the primary water piping failures in nuclear power plants 

as the primary example of assessing this risk issue. This is not meant to imply that nuclear 

power plants have any more issues with aging than any other but to demonstrate how risk 

assessments can be more efficient when realistic physical models are used in an industry 

which has performed risk and uncertainty analyses for decades. 

The focus of this paper is to discuss the development of a new method of sampling that 

focuses on areas of interest automatically, not to perform a review of simulation and 

uncertainty analysis techniques. In fact a good review of uncertainty analysis methods has 

been previously published [1]. This paper instead focuses on three methods that have been 

previously used for nuclear power plant analyses: (1) Monte Carlo; (2) Latin Hypercube 

Sampling (LHS); and (3) Discrete Probability Distribution (DPD). This paper assumes the 

reader is familiar with Monte Carlo and a companion paper discusses this sampling method, 

as well as importance sampling by the variance reduction technique. LHS and DPD methods 

are discussed since they are less widely used than Monte Carlo so that the reader has a basis 
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for understanding the new methodology. After these discussions the methods are applied to an 

analytic problem for which Monte Carlo is efficient and detailed comparisons to all methods 

can be made. 

While there are a variety of simulation methods for performing risk analysis we focus on four: 

(1) Monte Carlo 

(2) Latin Hypercube Sampling (LHS) 

(3) Discrete Probability Distributions (DPD) 

(4) Adaptive Sampling Method Using Golden Rule Clustering (GRC) 

The next section describes the theory followed by a discussion of the application to an 

analytic problem. 

2 SIMULATION METHODS STUDIED 

2.1. Monte Carlo Analysis 

The basic principles of Monte Carlo analysis are have been well known for some time, e.g. 

[2]. Given a set of inputs {x1, x2, …, xN} that are uncertain and described by a Probability 

Density Function (PDF) denoted as f(xi) we construct the Cumulative distribution function by 

integrating f(xi)  
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To perform a Monte Carlo analysis we select a random number, denoted R, between 0 and 1 

and invert the CDF to obtain a value for each xi. 
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Figure 1 shows one such sampling for both the normal and lognormal distributions. In this 

example R = 0.5. Note that the value which would be selected for the normal case is 19.824 

while for the lognormal case it is 18.421. These values for the xi are input to the physics 

model or equation and a response is calculated, denoted Y1. The entire process is repeated to 

generate a set of responses YK. These responses are then representative of the distribution of 

the responses that would be generated if an infinite number of samples were taken. How 

representative they are depends upon the value of K. The larger the value the more accurate 

the representation. 

Monte Carlo is almost always the method of choice for simulation studies when the response 

calculation is fast. However, when there are limitations on the number of samples that can be 

generated then alternative methods need to be examined. 

2.2. Latin Hypercube Sampling 

The issue of sampling for low probability events has been a topic of intense scrutiny over the 

years. Many strategies have been employed but it is not the purpose of this discussion to 

provide a survey of these methods but rather it is the purpose to focus on one of these 

methods that has been used extensively in Probabilistic Risk Assessment (PRA): Latin 

Hypercube Sampling (LHS). 
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Figure 1 Monte Carlo Sampling Illustration 

The purpose of LHS is to provide a “dense” sampling of the random inputs or processes to a 

physical model. The definition of dense is only applicable to the input space and in fact can be 

quite sparse when viewed from the response space as we shall see in the following discussion. 

The LHS is constructed by dividing the input response distribution into N equal probability 

intervals. This is done for each of the inputs. The first interval for the first variable is then 

randomly paired with an interval from the second variable, leading to a couplet of (x1, xI) 

where I is the selected random interval for variable 2. If there is a third interval then this 

couplet is randomly paired with an interval from the third variable leading to a triplet, (x1, xI, 

xJ) where J is the random interval selected for the third variable. If there are M random 

variables then this process is repeated M-1 times leading to an M-tuplet (x1, xI, xJ, …, xK). To 

obtain the actual value of xL we would generate a random value according to the PDF of the 

variable selected from interval L. This M-tuplet then is the input that generates a single 

response. To obtain the next set of inputs the same process is repeated except that if a value 

has been previously selected it cannot be selected again. Thus a sampling without replacement 

scheme is used. This implies that there will be exactly N response generated. Thus for M 

variables there are N
M

 possible combinations of the inputs. There the LHS design will sample 

N
1-M

 fraction of the response space. 

2.3. Discrete Space Sampling 

In the LHS sampling when an interval is selected it is sampled within the interval of the 

sample. An alternative method for generating the response CDF is to limit our calculations to 

points in the discrete space. In this case we define a Discrete Probability Density (DPD) 

function for each of the inputs [3]. Thus, if the PDF is divided into ���� intervals 

Φ� = �	
�,�, ��,�
, 	
�,�, ��,�
,⋯ , 	
�,�, ��,����
� 

Φ� = �	
�,�, ��,�
, 	
�,�, ��,�
,⋯ , 	
�,� , ��,����
� 

The response DPD is constructed by taking all possible combinations of the input DPD’s. 

Thus, for two random variables: 
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We know the resulting DPD is a Probability Density Function since 

are the two conditions which must be satisfied in order for a function to be a PDF. A simple 

example of a three point discretization of the normal distribution is used to illustrate. 

In general, to obtain the full response DPD ����
�", where �# is the number of random 

variables, evaluations of the function ⨂ must be performed. For most engineering 

applications there are dozens, or even hundreds of random variables. Thus, if we have 10 bins 

and 20 random variables we would need to perform 10�% evaluations to obtain the full PDF. 

If if a single function evaluation only took a microsecond to generate a full PDF would 

require over 3,000,000 years. However, 10�% discrete points can be treated via Monte Carlo 

sampling as described in [4]. In Figure 3 we a DPD sample compared to a LHS sample when 

only 3 intervals, or bins, are used. It is important to note that the DPD will never change while 

the LHS points will change each time a new design is generated. The real benefit of DPD is 

when we wish to sample portions of the distribution more frequently. Because LHS uses the 

same sampling strategy as Monte Carlo there are no known a priori frequencies, or weights, 

with the LHS scheme. When the DPD method is used we know exactly how frequently these 

points occur and can generate responses that are not of equal probability. This method is 

discussed next. 

2.4. Adaptive Sampling in the DPD Space 

Of course it is not always (and in fact may rarely be) the case that the area of most interest is 

in the tails of a distribution. For example, in probabilistic fracture mechanics analysis, low 

values of the initial crack length are not the most likely situation to lead to pipe rupture. On 

the other hand low values of yield and ultimate strength can lead to pipe rupture. And in many 

important studies, mid-range values of the weld residual stress at the inner diameter of the 

pipe are most important. Therefore, when one is faced with an analysis in which we are 

unsure of which combinations may lead to a failure of consequence the question becomes: 

how does one approach this analysis? 
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Figure 2. Three Point DPD Calculations 
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Figure 3 DPD Sampling Compared to LHS 

 

To discuss this topic we introduce a theoretical fractured response surface. Figure 5 shows 

this is a case in which the response can assume several different peak values depending upon 

the combination of input values. Sampling from this input space to identify those regions in 

which there is a large response can be problematic. While LHS will cover a significant 

portion of the input space it covers a relatively small portion of the response space. The DPD 

method will cover the same portion of the response space but at the cost of requiring 5-10 

times the number of evaluations. However, since the DPD method does not require equal 

probability intervals it is possible to rearrange the input PDF so that is sampled in areas of 

greatest interest. The question is: how does one know where the areas of greatest interest are a 

priori? 

One method is to specify a value of the response above which we are interested.
*
 In this case 

we save the input values and return to the DPD definition. Now we focus the PDF on the 

saved value for each input. Around this value we contract the DPD and expand it farther away 

from the current input value. We illustrate one method for these calculations although there 

many other methods could be used. 

2.5. Golden Rule Clustering 

We employ Fibonacci series for no reason other than its relationship to the golden rectangle 

and a desire to be mathematically elegant. We know that the golden rectangle ratio is

2

51+
=ϕ and that the N

th
 Fibonacci number is given by 
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We now define the clustering exponent as γ. We now define intervals which are spaced 

according to the Golden Rule Clustering (GRC) concept. For the individual inputs we define 

z0 as 
&,' for the I
th

 variable and the K
th

 simulation. Then the total interval to the left and tight 

of z0 is 
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We now calculate two normalization factors SLeft and SRight. These are given by 
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Equation 2 

The variable γ controls the concentration at the pivot point. The new intervals for the 

clustering about the point z0 are 
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For a value of γ equal to 1.0 this will lead to significant clustering about the input point z0. 

This is because the Fibanocci series grows in magnitude very quickly. However by changing 

the value of γ away from zero we obtain more control of how tightly the PDF is clustered 

about the input (design) point. 

2.6. Gamma Modification to Golden Rule Clustering 

We first begin by examining the response space shown in Figure 4. In this response space the 

peaks of the three different points are roughly equal. We first show in Figure 5 the result of a 

1,000 Monte Carlo simulation. Because it is difficult to see all of the points with the peaks 

and valleys we show a top down view, i.e. a projection of the results onto the X-Y plane, in 

Figure 6. As we see in these figures the 5,000 simulation does not find the “red” peak values. 

This is not unexpected since this is an area where the probability of the result if less than 1 in 

1,000. 

We now examine the impact of the GRC-γ methodology. One of the critical parameters for 

this method is the value of γ since this will define the amount of concentration of the PDF 

around the point of interest. To illustrate the adaptive approach a value of 1.0 is selected for γ. 

These results are shown in Figure 7. Because the response must be above a “trigger” value 

before the GRC method is employed
*
 there are still some sample points in areas that are not 
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of interest but once an area of interest is found the method becomes very efficient at sampling 

near the peak values.  

 

 
  

Figure 4  Figure 5 Monte Carlo 1,000 Simulations 

 

 
 

Figure 6 Projection of Monte Carlo 1,000 

Simulations 

Figure 7 GRC 1,000 simulations in red compared to 

Monte Carlo 1,000 simulations in black 

Of course if we wish to not spend as much time in areas of little interest we can set γ to a 

negative number. In Figure 8 we show the DPD after the GRC +1.0γ application which we 

call the attractor method. In Figure 9 we show the GRC -1.0γ application, labelled the repulsar 

method. 

In Figure 8 and Figure 9 the point indicated by the red circle, filled with yellow, is the pivot 

point, i.e. the point at which the contraction, or expansion, is made using Equation 1 and 

Equation 2. 

While theoretical, hypothetical problems are useful in demonstrating the advantages and 

disadvantages of various methods it is also useful to assess how the methods work for actual 

engineering problems. This is done in the following section. 
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Figure 8 Variable DPD when γγγγ is +1.0: Attractor case 

 

Figure 9 Variable DPD when γγγγ is -1.0: Repulsor case 

3 EXTREMELY LOW PROBABILITY OF RUPTURE (XLPR) PROGRAM 

DESCRIPTION 

The xLPR program description is excerpted from reference [5]. 

“The Nuclear Regulatory Commission (NRC) Standard Review Plan (SRP) 3.6.3 

describes Leak-Before-Break (LBB) assessment procedures that can be used to 

demonstrate compliance with the 10CFR50 Appendix A, GDC-4 requirement that 

primary system pressure piping exhibit an extremely low probability of rupture. SRP 

3.6.3 does not allow for assessment of piping systems with active degradation 

mechanisms, such as Primary Water Stress Corrosion Cracking (PWSCC) which is 

currently occurring in systems that have been granted LBB exemptions.  

⋮ 
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A multi-year project has begun that will first focus on the development of a viable 

method and approach to address the effects of PWSCC as well as define the 

requirements necessary for a modular-based assessment tool. A prototype xLPR model 

and pilot study case is first being conducted leveraging existing fracture mechanics 

models and software coupled to both a commercial and open source code framework to 

determine the framework and architecture requirements appropriate for building a 

modular-based code with this complexity. The pilot study phase is focusing on PWSCC 

in pressurizer surge nozzles. Later development phases will broaden the scope of xLPR 

to all primary piping systems in pressurized and boiling water reactors (PWR and 

BWR), using an incremental approach that incorporates the design requirements and 

lessons learned from previous iterations.”  

This program was used to calculate the time at which a crack growing in a nuclear pipe first 

becomes a through wall crack (TWC), or the time to first leakage.
*
 In Figure 10 the results of 

a 1,000,000 Monte Carlo simulation is shown in red, while a 1,000 GRC simulation is shown 

in green. As this figure shows with 1,000 times less simulations the GRC method is giving a 

good estimate of the probability of the time to first leakage. 

We compare the results of a 1,000,000 simulation standard Monte Carlo analysis and a 1,000 

simulation GRC analysis in Figure 10 where the probability of the time to first leakage is 

calculated. With a three order of magnitude reduction in the number of simulations we are 

within 20% of the Monte Carlo analysis. In fact we obtain this reasonably accurate result in a 

number of simulations that is less than the number needed by the standard method to find the 

first instance of a TWC. 

We can continue to perform GRC calculations to determine when the method reaches within 

the error bands of the standard Monte Carlo simulation. What we find is that a 100 bin 2,500 

simulation GRC analysis obtains the 1,000,000 simulation Monte Carlo accuracy for a 

reduction of 400 in the computational time. These results are shown in Figure 11. 

4 SUMMARY 

This paper has presented an analysis methodology that can focus a complex computer 

simulation on areas of interest in order to calculate very low probability events and thus 

assess the risk. The method is fully automated so that the user does not have to do preliminary 

analysis to determine areas of focus for the sampling. However, as with any sampling method 

that focuses on specific, limited areas of interest in the input space not all variables can be 

included in the adaptive method. Sensitivity analyses and studies are used to identify those 

inputs which control the response variance. Such analyses are discussed in reference [6]. For a 

specific real world application of calculating the time to first leakage in a piping system it was 

found that the method can reduce the run times by a factor of 400 to 1,000. Because an 

individual simulation when the full stability analysis and leak rate codes are running take 

from 0.05 second to 2.5 seconds this allows a user to assess events whose probability of 

occurrence are 1 in 1,000,000 to reduce the rune time of the code from 14 hours (0.05 second 

runs) to 2 minutes (400 reduction in run times) or from 29 days (2.5 second run times) to 1.7 

hours. This allows an analyst, designer, or regulator to quickly and accurately assess 

engineered systems and their uncertainty. 
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Figure 10. Comparison of 1,000,000 Monte Carlo to GRC TWC Calculations 

 

 

Figure 11 Number of GRC TWC Calculations Needed to Obtain Monte Carlo Accuracy 
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