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Abstract: The Integrated Human Event Analysis System (IDHEAS), a human reliability analysis 
method developed by the US Nuclear Regulatory Commission, provides a hierarchical structure to 
analyze and assess the reliability of human actions.  The method is based on cognitive science and is 
capable of incorporating human performance data to support the estimation of human error 
probabilities.  IDHEAS models human performance in five macrocognitive functions: Detection, 
Understanding, Decision-making, Action execution, and Teamwork. IDHEAS defines a set of 
cognitive failure modes for each function to describe the various ways of failing to perform the 
function.  IDHEAS analyzes an event in progressively more detailed levels: event scenario, human 
actions, critical tasks of the actions, macrocognitive functions and cognitive failure modes of the tasks, 
and performance influencing factors. This structure provides an intrinsic interface to integrate various 
sources of human error data for human error probability estimation.  We reviewed numeric data of 
human errors in the literature and synthesized the data in the IDHEAS structure.  This paper presents 
the hierarchical structure along with the demonstration of using empirical and experimental human 
error data of various resources in the structure.  The data, once sufficiently populated, can provide a 
basis for estimating human error probabilities. 
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1.  INTRODUCTION 
Probabilistic risk assessment (PRA) results and insights support risk-informed regulatory 
decision making. The U. S. Nuclear Regulatory Commission continues to improve the 
robustness of PRA, including human reliability analysis (HRA) through many activities. 
Improving HRA has been a focus of the NRC’s research activities.  To date, there have been 
about fifty HRA methods developed worldwide to estimate human error probabilities (HEPs).  
Method-to-method variability and analyst-to-analyst variability in the estimates of human 
error probabilities (HEPs) have been observed in applying these methods [1].  This variability 
in HRA quality could affect risk-informed decisions.    

Existing HRA methods were built on behavioral observations of human performance and 
cognitive science.  Without explicitly modeling the intrinsic cognitive mechanisms underlying 
human errors, an HRA method may result in different interpretations of the same observed 
phenomena and poor understanding of the causes of human errors.  As such, HRA 
methodologies should be enhanced to incorporate the advances in cognitive and behavioral 
science in the past decades. Furthermore, the use of empirical data for HEP estimation has 
been limited due to the lack of data and discrepancies between the formats of available data 
and HRA methods.  Lack of a strong data basis in the methods challenge method validity and 
introduce additional variabilities in HEP estimation.  
 
To tackle these variability issues, the staff in the U. S. Nuclear Regulatory Commission began 
development of an enhanced HRA method, referred to as the Integrated Human Event 
Analysis System (IDHEAS).  The method was to integrate the strengths in existing HRA 
methods, enhance the cognitive basis for HRA, and build the capability for using human error 
data to improve HEP estimation.  Since 2012, we have developed an IDHEAS suite that 
includes the following: 
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• The cognitive basis for HRA.  The cognitive basis synthesizes the fundamentals of human 
cognition into a structure that supports HRA method development and HRA practices.  The 
cognitive basis is documented in NUREG-2114, “Cognitive Basis for HRA.”  [2]  

• The IDHEAS general methodology (IDHEAS-G) that is independent of specific HRA 
applications and applicable to a wide range of nuclear HRA applications.  The methodology 
incorporates state-of-art cognitive and behavioral sciences and integrates the strengths of 
existing HRA methods. IDHEAS-G lays out the fundamentals to develop application-specific 
HRA methods in the IDHEAS suite.  IDHEAS-G is being documented in NUREG-2198 for 
publication in 2019 [3]. 

•  IDHEAS internal, at-power application. This is a HRA method in the context of internal 
nuclear power plant events. The work is a collaboration between the US Nuclear Regulatory 
Commission and the Electrical Power Research Institute (EPRI) and is documented in 
NUREG-2199, Vol. 1 “An Integrated Human Event Analysis System (IDHEAS) for Nuclear 
Power Plant Internal At-Power Event Application.”  [4] 

IDHEAS-G includes two parts: a cognition model and its implementation in HRA. This paper 
introduces IDHEAS-G and demonstrates using IDHEAS-G to integrate human error data from various 
sources to inform HEP estimates.   

2.  RESULTS 

2.1 IDHEAS-G Cognition Model 
The cognition model includes a macrocognition model that describes the brain process of success or 
failure of a task, and a performance influencing factor (PIF) model that describes how various factors 
affect the success or failure of tasks.    

The Macrocognitive Model 
The macrocognitive model elucidates the cognitive process of human performance in applied work 
domains where human tasks are complex and often involve multiple individuals or teams.  The model 
is described as follows: 

• Macrocognition consists of five functions: Detection, Understanding, Decisionmaking, Action 
Execution, and Teamwork. The first four functions may be performed by an individual, a 
group or a team, and the Teamwork function is performed by multiple groups or teams.  

• Any human task is achieved through these functions; complex tasks typically involve all five 
functions; 

• Each macrocognitive function is processed through a series of basic cognitive elements; 
failure of a cognitive element leads to the failure of the macrocognitive function; 

• Each element is reliably achieved through one or more cognitive mechanisms; errors may 
occur in a cognitive element if the cognitive mechanisms are challenged; 

• PIFs affect cognitive mechanisms.  

Table 1 shows the basic cognitive elements for the macrocognitive functions. The cognitive 
mechanisms are not presented due to the space limit of the paper.  
 

Table 1: Macrocognitive Functions and Their Basic Elements 
Detection Understanding Decisionmaking Action 

execution 
Teamwork 

D1- Initiate 
detection - 
Establish mental 
model  and 
criteria 
D2 – Identify 
and attend to 

U1 - Assess/select 
data 
U-2 Select / adapt 
/ develop the 
mental model 
U-3 Integrate data 
with mental model 

DM1 – Manage 
the goals    
DM2 – Adapt a 
decision model  
DM3 –  Acquire 
/ select 
information  

E1 - Assess 
action plan 
E2 -  Develop / 
modify action 
scripts  
E3 - 
Synchronize, 

T1 - Establish or 
adapt teamwork 
infrastructure  
T2 - Manage 
information  
T3 - Maintain 
common ground  
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sources of 
information 
D3- Perceive, 
recognize, and 
classify 
information   
D4-Verify the  
information 
acquired 
D5- 
Communicate 
the acquired 
information 

to maintain 
situational 
awareness, 
diagnose 
problems, and 
resolve conflicts in 
information 
U-4 Verify, revise, 
and iterate the 
understanding  
U-5 Communicate 
the understanding  

DM4 - Make 
judgment or 
plans   
DM5 - Simulate 
the decision  
DM6 -
Communicate 
and authorize 
the decision 

supervise, and 
coordinate 
action 
implementation 
E4 -  Implement 
action scripts 
E5 -  Verify and 
adjust actions 

T4 - Manage 
resources 
T5 - Plan inter-team 
collaborative 
activities  
T6 - Implement 
decisions/commands  
T7 - Verify, modify, 
and control the 
implementation 

 

The Performance Influence Factor Model 
PIFs affect cognitive mechanisms and increase the likelihood of macrocognitive function failure. We 
developed a PIF model that is independent of HRA applications and links to cognitive mechanisms.  
The model systematically organizes PIFs to minimize inter-dependency or overlapping of the factors. 
The PIF structure has four layers: 

1) PIF category:   PIFs are classified into three categories, corresponding to characteristics of 
systems, tasks, and personnel. 

2) PIFs:  Each category has high-level PIFs describing specific aspects of the systems, tasks, or 
personnel.  Table 2 shows the PIFs within the three categories. 

Table 2: Performance influencing factors in IDHEAS-G 
System-related PIFs Task-related PIFs Personnel-related PIFs 

o Availability and reliability 
of systems and instrument & 
control  

o Environmental factors  

o Work location accessibility 
and  habitability  

o Tools and equipment 

o Information availability and 
reliability 

o Scenario familiarity  

o Multi-tasking, interruptions 
and distractions 

o Cognitive complexity 

o Mental fatigue and stress 

o Physical demands 

o Human-system interface 
(HSI) 

o Staffing 

o Training 

o Procedures / guidelines / 
instructions 

o Teamwork factors  

o Work process 

 
3) PIF attributes:  These are the specific traits of a performance influencing factor.  A PIF 

attribute represents a poor PIF state that challenges cognitive mechanisms and increases the 
likelihood of errors in cognitive processes.  Table 3 shows some example attributes of the PIF 
Information availability and reliability. 
 

Table 3: Example Attributes of the PIF “Information Availability and Reliability” 
Nominal state of Information availability and reliability:  Information is needed for personnel to 
perform tasks.  Information is expected to be complete, reliable, unambiguous, and available timely 
to personnel.   
• Inadequate updates of information (e.g., a party receives information but fails to inform another 

party). 
• Information of different sources is not synchronized.  
• Conflicts in information 
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- There are multiple alternative explanations for the pattern of symptoms observed 
- Available information contradicts with each other or does not support a coherent 

understanding of the situation 
- Information does not match procedures/guidance.   

• Sources or meanings of information are unfamiliar to personnel 
• Information is ambiguous.  

- Pieces of Information change over time at different paces thus they become uncertain by the 
time personnel use them together  

• Incomplete information, e.g., primary sources of information are not available while secondary 
sources of information are not readily perceived 

• Information is misleading or wrong 
- Sensors or indicators may be unreliable or misleading (e.g., damaged or degraded while 

appearing to be working, false alarms in design, out-of-range, inherently unreliable sources, 
conflicting data indicating a false situation, or flaw in system state indication) 

- Information is masked 
 

4) Every PIF attribute challenges one or several cognitive mechanisms.  IDHEAS-G provides 
links between PIF attributes and cognitive mechanisms synthesized and inferred from the 
literature. 

The PIF model consolidates the state-of-knowledge about PIFs.  A specific HRA application may only 
involve a subset of PIFs in the model, and various applications may involve different subsets of PIFs 
and attributes.  On the other hand, the subsets of PIFs for various HRA applications share a common 
structure, which would increase method-to-method consistency and allow comparisons of HRA results 
from different HRA methods. 

2.2 Implementation of IDHEAS-G Cognition Model in HRA 

Overview IDHEAS-G Process 
 

Figure 1: An Overview of IDEHAS-G Process for HRA 
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IDHEAS-G implements the cognition model in the general HRA process, which includes qualitative 
analysis and HEP quantification. Figure 1 shows the overview of the process. It begins with an event 
and progressively analyzes more detailed elements of the event: event scenarios, human actions 
(referred to as human actions, i.e., HFEs, in PRA) in the scenarios, critical tasks in the human actions, 
macrocognitive functions, cognitive failure modes (CFMs) of the critical tasks, the states of PIFs, and 
HEPs.   The analysis of these elements are carried out through six steps:  

Step 1 - Scenario analysis: Analyze the event and develop the operational narrative for the event 
scenarios  

Step 2 - Identification and definition of human actions: Identify the key human actions pertinent to 
the mission of the event and define the human actions 

Step 3 - Task analysis: Analyze tasks required for the human action and characterize the critical 
tasks for HEP quantification 

Step 4 - Time uncertainty analysis: Analyze time uncertainties in the human action and quantify 
the HEP attributing to time uncertainties 

Step 5 - Cognition failure analysis: Identify cognition failure modes of every critical tasks in a 
human action and estimate the HEP attributing to failures of macrocognitive functions 
for the critical tasks) 

Step 6 - Dependency analysis: Analyze dependency between human actions and adjust the Pc and 
Pt of a human action based on its dependency with other human action. 

Quantification of Human Error Probabilities in IDHEAS-G 

This section describes HEP quantification in Step 5. IDHEAS-G states that the HEP of a human action 
consists of two parts: the error probability caused by variability and uncertainties in time available to 
perform the human action, and the error probability caused by failures of the macrocognitive functions 
under the assumption that the time available for performing the action is adequate.   Estimating the 
cognitive HEP includes three parts: 

1) identify applicable CFMs for every critical task 
2) assess PIF attributes relevant to the CFMs 
3) estimate HEPs of the CFMs  

Identify applicable CFMs for every critical task 
Based on the macrocognition model, we developed a basic set of cognitive failure modes in three 
levels of detail. The first level is failure of macrocognitive functions, the next level is failure of the 
basic cognitive elements for every macrocognitive function, and we further break each basic element 
failure mode into several detailed, behaviorally observable failure modes.  The layered structure of the 
CFMs is to provide flexibility in the level of detail of an HRA and to adapt to available human error 
data that serve as the basis for HEP estimation. Table 4 shows the full set of the CFMs. An 
application-specific IDHEAS method may only include a subset of these CFMs. A critical task may 
have one or several applicable CFMs. 
 

Table 4: The Basic Set of Cognitive Failure Modes in IDHEAS-G 
Failure of Detection 

Failure of the 
basic elements 

Detailed cognitive failure modes for Detection 

Fail to Initiate 
detection 

D1-1 Detection is not intended (e.g., skip steps of procedures for detection, no for 
detection) 
D1-2 Wrong mental model for detection (e.g., incorrect planning on when, how, or 
what to detect) 
D1-3 Fail to prioritize information to be detected 

Fail to identify 
and attend to 
sources of 
information 

D2-1 Unable to access the source of information  
D2-2 Attend to wrong source of information 

Incorrectly  
perceive 

D3-1 Key alarm not perceived 
D3-2 Key alarm incorrectly perceived  
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information   D3-3 Cues not perceived 
D3-4 Cues misperceived (e.g., information incorrectly perceived, fail to perceive 
weak signals, reading errors, incorrectly interpret, organize, or classify information 
etc.) 
D3-5 Fail to monitor parameters (e.g., information or parameters not monitored at 
proper frequency or for an adequate period of time, fail to monitor all the key 
parameters, and incorrectly perceiving the trend of a parameter) 

Incorrectly 
recognize 
information  

D4-1 Fail to recognize that primary cue is incorrect or misleading   
D4-2 Incorrectly verify the perceived information against the detection criteria 

Fail to 
communicate 
the acquired 
information 

D5-1 The detected information not retained or incorrectly retained (e.g., mark wrong 
items, wrong recording, and wrong data entry) 
D5-2 The detected information not communicated or miscommunicated 

 
Failure of Understanding 

Failure of the 
basic elements 

Detailed cognitive failure modes for Understanding 

Fail to Assess 
or select data 

U1-1 Incomplete data selected (e.g., critical data dismissed, critical data omitted) 
U1-2 Incorrect or inappropriate data selected (e.g., fail to recognize the applicable 
data range, and not recognize the information is outdated) 

Incorrect 
mental model  

U2-1 No mental model exists for understanding the situation 
U2-2 Incorrect mental model selected  
U2-3 Fail to adapt the mental model (e.g., fail to recognize and adapt mismatched 
procedures) 

Incorrect 
integration of 
data and 
mental model 

U3-1 Incorrectly assess situation ( e.g., situational awareness not maintained, and 
incorrect prediction of the system evolution or upcoming events) 
U3-2 Incorrectly diagnose problems (e.g., conflicts in data not resolved, under-
diagnosis, fail to use guidance outside main procedure steps for diagnosis) 

Fail to iterate 
the 
understanding 

U4-1 Premature termination of data collection (e.g., not seeking additional data to 
reconcile gaps, discrepancies, or conflicts,  or fail to revise the outcomes based on 
new data, mental models, or viewpoints 
U4-2 Fail to generate coherent team understanding (e.g., assessment or diagnosis not 
verified or confirmed by the team, and lack of confirmation and verification of the 
results). 

Fail to 
communicate 
the outcome 

U5-1 Outcomes of understanding miscommunicated or inadequately communicated  

 
Failure of Decisionmaking 

Failure of the 
basic elements 

Detailed cognitive failure modes for Decisionmaking 

Incorrect goals or 
priorities 

DM1-2 Unable to prioritize multiple conflicting goals  
DM1-1 Incorrect goal selected 

Inappropriate 
decision model 

DM2-1 Incorrect decision model or decision-making process (e.g., incorrect on 
who, how, or when to make decision, decision goal is not supported by the 
decision model or process). 
DM2-2 Incorrect decision criteria 

Information is 
under- 
represented  

DM3-1 Critical information not selected or only partially selected (e.g., biased, 
under-sampling of information) 
DM3-2 Selected information is not appropriate  or not applicable for the situation 
DM3-3 Misinterpret or misuse selected information 

Incorrect 
judgment or 

DM4-1 Misinterpret procedure 
DM4-2 Choose inappropriate strategy or options 
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planning DM4-3 Incorrect or inadequate  planning or developing solutions ( e.g., plan 
wrong or infeasible responses, plan the right response actions at wrong times, not 
plan configuration changes when needed, plan wrong or infeasible configuration 
changes) 
DM4-5 Decide to interfere or override automatic or passive safety-critical systems 
that would lead to undesirable consequences  

Fail to simulate 
or evaluate the 
decision / 
strategy /plan 

DM5-1 Unable to simulate or evaluate the decision’s effects (e.g., fail to assess 
negative impacts or unable to evaluate the pros and cons) 
DM5-2 Incorrectly simulate or evaluate the decision (e.g., fail to evaluate the side 
effects or components, or fail to consider all key factors) 
DM5-3 Incorrect dynamic decision-making 

Fail to 
communicate or 
authorize the 
decision 

DM6-1 Decision is incorrectly communicated 
DM6-2 Decision not authorized  
DM6-3 Decision is delayed in authorization  

 
Failure of Action Execution 

Failure of the 
basic elements 

Detailed cognitive failure modes for Action Execution 

Fail to assess 
action plan 

E1-1 Action is not initiated 
E1-2 Incorrectly interpret  the action plan (e.g., wrong equipment / tool 
preparation, or coordination) 
E1-3  Wrong action criteria  
E1-4 Delayed implementation 
E1-5 Incorrectly add actions or action steps to manipulate safety systems outside 
action plans (e.g., error of commission) 

Fail to develop / 
modify action 
scripts 

E2-1 Incorrectly modify or develop action scripts for the action plan 
 

Failed to 
coordinate action 
implementation 

E3-1 Fail to coordinate the action implementation (e.g., fail to coordinate team 
members, errors in personnel allocation) 
E3-2  Fail to initiate action 
E3-3 Fail to perform status checking required for initiating actions 

Failed to take 
planned action 
 

E4-1 Fail to follow procedures (e.g., skip steps in procedures)  
E4-2 Fail to execute simple action 
E4-3 Fail to execute complex action (e.g., execute a complex action with 
incorrect timing or sequence, execute actions that do not meet the entry 
conditions) 
E4-3A Fail to execute control actions 
E4-3B Fail to execute skill-of-craft actions 
E4-3C Fail to execute long-lasting actions 
E4-4 Fail to execute physically demanding actions 
E4-5 Fail to execute fine-motor actions 

Fail to verify or 
adjust action 

E5-1 Fail to adjust action by monitoring, measuring, and assessing outcomes 
E5-2 Fail to complete the entire action scripts or procedures (e.g., omit steps after 
the action criteria are met) 
E5-3 Fail to record, report or communicate action status or outcomes 

 
Failure of Teamwork 

T1 Fail to establish or adapt the teamwork infrastructure  
T2 Fail to manage information   
T3 Fail to maintain common ground  
T4 Inappropriately manage resources  
T5 Fail to make inter-team decisions or generate commands  
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T6 Fail to implement decisions/commands  
T7 Fail to control the implementation  
 
Assess PIF attributes relevant to the CFMs 
PIF attributes challenge one or more cognitive mechanisms, which leads to errors in macrocognitive 
functions.  Each CFM represents one type of macrocognitive error.  Thus, a CFM is associated with a 
specific set of PIF attributes.  IDHEAS-G provides the links between PIF attributes, cognitive 
mechanisms, and CFMs. Table 5 presents several examples of relevant PIF attributes to CFMs. 
 

Table 5:  Example PIF Attributes for Two CFMs 
Example PIF attributes for CFM “U3 – Incorrectly integrate data and mental model for 
understanding” 
• Cognitive complexity - Cognitive complexity in Understanding 
• Scenario familiarity - Unfamiliar scenario 
• Work process – lack of or ineffective process reconciling different viewpoints in a team. 
• Procedures - Sequential presentation of guidelines requires the crew to go through several loops 

before finding the correct indications to diagnose the plant status. 
• Procedures - Multiple guidance documents are needed simultaneously. 

Example PIF attributes for CFM “E1 – Fail to assess action plan” 
• Reluctance to execute the action plan (e.g., adverse economic impact, and personnel injury) 
• Inadequate leadership to initiate assessment of action scripts 
• Unable to verify the plan because of inadequate communication (of the goals, negative impacts, 

deviations) with decision-makers 
• Inadequate training on verifying and evaluating action plans 
• Inappropriate crew assignment, e.g., under-staffing, lack of skills, and limited access to the action 

sites 
 
Estimate human error probabilities of CFMs 
The HEP of a CFM is determined by states of the relevant PIFs, that is,  

Pc = f(w1, w2, w3, w4, …)                                                (1) 

Where Pc is the HEP of a CFM, and w models the quantitative effects of a PIF state on the HEP. 
 
At present, there is no adequate data allowing calculation of the HEPs of all CFMs for any given 
combination of PIF states, nor have cognitive studies clearly elucidated the mathematic relation 
between PIFs and HEPs. We can only estimate HEPs from sparse human error data and knowledge 
available.  The estimation can be based on the simplest linear function as the following: 

Pc = P0 × (w1+ w2 + w3 + w4, …) × R,                                (2) 

Where P0 is the base HEP of a CFM when relevant PIF states are nominal; w is the weight of a PIF 
state representing the increment of the HEP caused by the PIF poor state compared to the nominal 
state; R is a numeric factor representing possible interaction between the PIFs, and R can be set to 1 if 
no interaction between PIFs is assumed.   
 
Note that IDHEAS-G does not provide numeric HEP values.  It provides a basic set of CFMs, a PIF 
model, and a simplification of the quantitative relation between PIF states and the HEP of a CFM.  
This structures allows for the synthesis of human error data from various sources, at various levels of 
details, and in various formats to inform HEP estimation. 

2.2 Use IDHEAS-G to Synthesize Human Error Data for HEP Estimation 
IDHEAS-G presents a basic set of CFMs, a PIF model, and a simple linear formula to combine the 
contributions of PIFs to the HEP of a CFM.  The basic set of CFMs represents failure modes at three 
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levels of granularity, i.e., failures of macrocognitive functions, failures of the basic elements in each 
function, and behaviourally observable failure modes.  Similarly, the PIF model represents PIFs in two 
levels of granularity: PIFs and attributes. The cognitive mechanisms can link CFMs and PIFs at any 
level of granularity. The structured data can inform expert judgment or Bayesian estimates of HEPs. 
The NRC staff recently synthesized a variety of sources of human error data to inform expert 
judgment of HEPs for nuclear power plant ex-control room actions. 
 
Next we use several example types of human error data to demonstrate how the data can be used to 
inform HEP estimation. The data sources include i) quantification of unsatisfied task performance in 
nuclear power plant operator simulator training (as collected in the Scenario Authoring, 
Characterization, and Debriefing Applications (SACADA) database by the US Nuclear Regulatory 
Commission); ii) human error rates in nuclear power plant operational tasks as well as tasks in other 
domains (such as aviation, assembly industry, offshore operation); iii) Human error rates of cognitive 
tasks in controlled experiments; iv) quantitative effects of PIFs in the literature.  These data play 
different roles in estimating HEPs.  
 

1) Baseline HEPs or HEPs with known states of PIFs 

Some sources of data present statistical human error rates of certain types of tasks with various 
contexts and scenarios. Such data can inform the baseline HEPs for the CFMs applicable to the tasks.  
Below are two examples: 

- Quantification of unsatisfied task performance in nuclear power plant operator simulator 
training, as collected in the Scenario Authoring, Characterization, and Debriefing Applications 
(SACADA) database by the US Nuclear Regulatory Commission [5].  The SACADA database 
was built with the same macrocognitive model as that in IDEHAS-G; SACADA collects 
operator unsatisfied task performance in different types of failures under various contexts; the 
types of failures can be mapped to the detailed level CFMs in IDHEAS-G, and the context can 
be mapped to IDHEAS-G PIF attributes. Thus, the SACADA database can inform baseline 
HEPs of IDHEAS-G CFMs and the quantitative effects of some PIF attributes.   

- The analysis of human errors in maintenance operations of German nuclear power plants.      
Preischl and Hellmich [6, 7] studied human error rates of various basic tasks in maintenance 
operations. Below are some example human error rates they reported: 

o 1/490 for operating a circuit breaker in a switchgear cabinet under normal conditions; 
o 1/33 for connecting a cable between an external test facility and a control cabinet;  
o 1/36  for reassembly of component elements;  
o 1/7 for transporting fuel assemblies 

These error rates can inform base HEPs of the CFMs for action execution.  
 

2) Quantification of PIF effects 

Some data sources present the changes in human error rates when varying one or more PIF from 
nominal to a poor state.  Such data can inform PIF contribution factor W and interaction factor R in 
equation (2) above. Below are several examples:  

- NUREG/CR-5572 [8] estimated the effects of local control station design configurations on 
human performance and nuclear power plants. It estimated that the HEP = 2E-2 for ideal 
conditions and HEP = 0.57 for challenging conditions with poor human-system-interfaces and 
distributed work locations.  

- Prinzo et al [9] analyzed aircraft pilot communication errors and found that the error rate 
increased nonlinearly with the complexity of the message communicated. The error rate was 
around 4% for the information complexity index of 4 (i.e., the number of messages 
transmitted per communication), 30% for the index of 12, and greater than 50% for indices 
greater than 20.  

- Patten et al [10] studied the effect of task complexity and experience on driver performance. 
The PIF states of the tasks manipulated in the experiment were low experience vs high 
experience, and low complexity vs. high complexity. The mean error rates were 12%, 21%, 
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25%, and 32% respectively for the four combinations of PIF states: low complexity and high 
experience, low complexity and low experience, high complexity and low experience, high 
complexity and low experience.  The data in this experiment suggests nearly no interaction 
between the two PIFs.  
 

3) The significance of PIFs for certain types of tasks 

Studies in human error analysis and root causal analysis typically classify and rank the frequencies of 
various PIFs in reported human events. Some studies correlate PIFs with various types of human 
errors. Those studies only analyze the relative human error data without reporting how many times 
personnel performed the kind of tasks.   The data from such studies cannot directly inform HEPs, but 
they can inform which PIFs or attributes are more relevant to the CFMs of the reported human errors.  
Below are several examples:  

- Virovac et al [11] analyzed human errors in airplane maintenance and found that the prevalent 
factors with frequent occurrence in human errors are communication 16%, equipment and 
tools 12%, work environment 12%, and complexity 6.5%.  

- Kyriakidis et al [12] analyzed UK railway accidents caused by human errors and 
calculated proportions of PIFs in the accidents. They reported that the most frequent PIFs 
in the accidents were safety culture 19%, familiarity 15%, and distraction 13%. 

 
The above examples are just a few of a large body of human error data we have documented so far.  
We performed a meta-analysis of a subset of the documented data [13] and noticed that the error rate 
data were generally convergent across different studies. For example, most studies on dual-tasks 
showed that the error rate in dual-tasks was between 1 to 2 times higher than that in a single task.  We 
also observed the consistency between the results obtained in controlled cognitive experiments and 
those from complex scenario simulation. The observation suggests that human error rates measured 
from cognitive experiments could serve as a baseline reference for estimating HEPs in more complex, 
real life scenarios.  

3. DISCUSSION 
Assessment of PIF states 
The effect of a PIF on human error probabilities typically varies continuously from the nominal state 
to the extremely poor state of the PIF.  Our preliminary meta-analysis of human error data suggests 
that the effects of PIFs on human error rates follow a logarithmic function.  For simplification, most 
HRA methods typically model PIFs with binary states (e.g., good vs. poor) or several discrete states 
(e.g., low, medium, or high).  When modeling a PIF as a binary variable, the model needs to clearly 
define the meaning of the states.  Because the effects of PIFs on human error probabilities follow a 
logarithmic function, the “good” state of a PIF usually corresponds to the range within which the PIF 
has little effect on the human error probability. However, the “poor” state of a PIF can represent any 
place on the rising section of the logarithmic function.  As a result, the human error probability for the 
poor state can vary greatly if the state is not clearly specified.  Therefore, for modeling PIFs with 
binary or a few discrete states, the definitions of each state must be specified and used consistently in 
HRA,  
 
Some PIFs may affect human error probabilities significantly more than other factors.  For example, 
the factors “information reliability,” “cognitive complexity,” or “intermingled multitasking” can result 
in very high HEPs. Thus, human error probabilities are very sensitive to changes in the states of those 
PIFs.  Ideally, such high-impact PIFs should be modeled with continuous variables.   

Estimation of human error probabilities through a Bayesian approach 
A human error probability can be interpreted as the number of errors in performing a human action 
divided by the number of times the action is performed.  In the real world, there is not adequate data to 
precisely compute the human error probabilities of rare events.  As a common HRA practice, the 
human error probabilities of human failure modes in an HRA method have been estimated through a 
Bayesian approach, which characterizes what is known about the parameter in terms of a probability 
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distribution that measures the current state of belief in the possible values of the parameter.  A 
Bayesian approach can be implemented through Bayesian network computation, formal expert 
judgment, or the combination of both.  

• When numerical data is available in the form of the number of failures in a given number of 
demands, the human error probability distribution can be estimated through Bayesian 
computation.  NUREG-2122 [14] describes Bayesian estimation as, “Bayesian analysis is 
commonly used in the computation of the frequencies and failure probabilities in which an 
initial estimation about a parameter value (e.g., event probability) is modified based on actual 
occurrences of the event.  The parameter value may have a probability distribution associated 
with it.  Thus, the event probability to be determined is based on a belief, rather than on 
occurrence ratios.”   

• When numerical data is not available or is sparse, expert judgment is used to estimate the 
human error probability distribution.  The expert judgment approach relies on the knowledge of 
experts in the specific technical field who arrive at "best estimates" of the distribution of the 
probability of a parameter or basic event.  This approach is typically used when detailed 
analyses or evidence concerning the event are very limited or unavailable.  Such a situation is 
usual in studying rare events.  Ideally, this approach provides a mathematical probability 
distribution that represents the expert or "best available" knowledge about the probability of the 
parameter or basic event.  The process of obtaining these estimates typically is called "expert 
judgment elicitation," or simply "expert judgment" or "expert elicitation.”  The US Nuclear 
Regulatory Commission has developed several guidance documents on expert judgment and 
applied them in HEP estimation [4, 15, 16].  

If there are no known experiential data to evaluate the parameter, one must rely on expert elicitation to 
develop an uncertainty distribution about the parameter of interest (referred to as expert information).  
As new experiential or empirical data becomes available, the data can be used to verify or modify the 
expert information, or the experts can use the new data to update their judgment.  As additional 
information becomes available, the Bayesian approach provides a methodology to account for new 
information, without having to go back through the expert elicitation process again.  As the evidence 
becomes stronger and stronger, the influence of the expert elicitation becomes less and less, to the 
limit of that infinitely available information. 

Assessment of data/evidence 
In a Bayesian approach, regardless of the amount of data available (even massive amounts of data), 
engineering judgment is still needed to consider the applicability of the data, whether there are gaps in 
the data, and where there may be uncertainties in the data.  Regardless of whether Bayesian 
computation or expert elicitation is used, the data/evidence used for estimating human error 
probabilities should describe the human errors associated with the tasks or cognitive failure modes at 
the same level as those in the IDHEAS-G quantification model.  Because HRA data are rare, 
estimating human error probabilities often requires using available data from different sources.  First, 
the data need to be assessed to understand the tasks represented by the data and their applicability to 
the generic tasks and cognitive failure modes in IDHEAS-G.  In addition, the context of the data needs 
to be assessed to ensure that it is used appropriately for corresponding combinations of performance 
influencing factors.   

4. CONCLUSIONS 
IDHEAS-G is a general HRA methodology built on cognitive science and existing HRA technologies. 
It can be adapted to various HRA applications and can be used as a basis to develop application-
specific HRA methods.  Its layered structure allows for the synchronization of human error data of 
different formats and various levels of detail to inform HEP estimates. The NRC staff reviewed a large 
body of human error data from the literature and available human error databases, synchronized the 
data into the IDHEAS-G structure, and used the synchronized dataset to inform expert judgment of 
HEPs for nuclear power plant human actions outside the control rooms. The effort demonstrates the 
promising of data-informed and data-based human error probabilities in human reliability analysis.  
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