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Abstract: Surrogate models (SMs) describe a category of methods to approximate the response of a 
computer model based on a number of training runs. SMs allow analysts to more rapidly determine the 
impact of uncertainties on the system figures of merit of interest than sampling uncertainties on full 
computer models (FCM), as SMs are less complex than the models they are trained to approximate. 
However, it can prove challenging to make the determinations of which SM structure to use. A 
procedure is presented for demonstrating the applicability of different SMs for a given FCM and their 
convergence using a limited amount of training data. 
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1.  INTRODUCTION 
 
Surrogate models (SMs) are a category of methods to approximate the response of a computer model 
based on a number of training runs. SMs allow to more rapidly determine the impact of probabilities 
and uncertainties on the system figures of merit of interest than sampling uncertainties on many full 
computer models (FCMs), as SMs are less complex than the models they are trained to approximate. 
This paper illustrates a method to mechanistically determine the SM with the least bias among several 
possible SMs for seismic dynamic probabilistic risk/safety analysis (PRA/PSA). Section 1.1. provides 
a short background, Section 1.2. describes previous work on done by The Ohio State University 
(OSU) on this topic generating the seismic stick models used in this paper and exploring the use of 
SMs to approximate the full response.  Section 1.3 lists outstanding research issues being addressed 
and presents the paper organization.   
 
1.1. Background 
 
The U.S. Department of Energy has established the Light Water Reactor Sustainability Program in 
order to maintain the existing nuclear reactor fleet beyond the original licenses of the plants. The Risk 
Informed Safety Margin Characterization (RISMC) pathway was developed as part this program to 
develop advanced methods to quantify risk in the operation of nuclear power plants (NPPs). 
 
The OSU has recently completed a project under the RISMC pathway for the development of 
framework and tools to perform a systematically-integrated and verifiable internal/external events 
PRA/PSA, with a focus on investigation of common cause failures and consideration of the dynamic 
nature of seismic events. The uncertainty quantification work conducted within the project has been 
performed using the Idaho National Laboratory-developed Multiscale Object-Oriented Simulation 
Environment (MOOSE)[1]. 
 
The SM generation and sampling was performed using the Risk Analysis Virtual ENvironment 
(RAVEN) code [2] produced by Idaho National Laboratory. The RAVEN code is developed within 
the RISMC pathway and has capability to construct a wide variety of different SMs, each with its own 
set of tuning parameters. Because of the large number of options for SMs to use in an analysis, it is 
difficult to determine what form of which SM is the most accurate for a given scenario.   
 
1.2.  Previous Work 
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One component of the OSU project was the development of analysis tools for the uncertainty 
quantification of seismic computer models. SMs have been selected as a method of performing 
advanced uncertainty quantification due to the long run times of FCMs and various SM options have 
been examined through a number of case studies to date. 
 
For each case study, a FCM was constructed to identify the probabilities of failure for two essentially 
identical nonstructural components (NSCs) located on different levels of a nuclear plant’s auxiliary 
building, using uncertainty distributions for the mass and stiffness of the structure at each level [3]. 
SMs were trained on several runs of the FCM and used to predict the response of the overall system 
[4]. From this study, it was determined that the probabilities of failure predicted by the SMs could 
match the probabilities of failure from the FCMs while using fewer training points than the FCM used. 
However, the choice of the SM had a large effect on the difference between the SM and the FCM. 
 
A followup study [5] was conducted to investigate the applicability of different SM construction 
algorithms to predict phenomena that were previously found to have a substantial effect on the 
predicted seismic response. This study used a set of common SM algorithms, selected without any 
prior knowledge of their applicability for the case under consideration. Two sets of data from the FCM 
were used to train the SMs, which then predicted the NSC failure probability on both floors of a 2-
story auxiliary building. One set of training data was a low-fidelity set, consisting of 500 samples. The 
other set was a high-fidelity set and had 20,000 samples, and the relative error of each SM was 
calculated for both sets of training data. 
 
1.3 Overview of the Proposed Approach 
 
The followup case study led a procedure to determine the SM with the least model bias. It found that 
the relative error of a SM trained using Latin hypecube samples (LHSs) of the original FCM was 
similar regardless of the number of training points used. Therefore, by using a small number of 
training runs, a choice about the fitness of different SMs can be made. As different SMs may need 
different sampling strategies, being able to make a decision about SM selection sooner can reduce 
simulation time.  
 
In general, the accuracy of a SM is gauged by comparing its results to the results obtained from the 
FCM whose runs could be quite time consuming.  This paper presents a method to determine the 
applicability of different SMs without the need for such a comparison. The results of analysis are split 
into two different sets of information: the Full Set (FS) and the Analyst Set (AS). In FS, runs with the 
FCM are performed to determine the probability of failure of NSCs. Using the FS data, each of the 
candidate SMs is trained and then sampled for comparisons (Section 3.3). The results from the FCM 
and SMs are compared to identify the most accurate SM with the fewest training runs (Section 3.3). 
  
The AS represents a more limited state of knowledge that more closely corresponds to the 
methodology that would be used in an industrial setting, where it is not feasible to perform a FS 
analysis. In this case, a reduced amount of information is gathered. First, a small number of training 
runs are used to train many candidate SMs. These candidate SMs are sampled with high fidelity to 
determine their error relative to the probability of failure obtained using the AS (Section 3.2). The 
candidate models which show a large error are removed from consideration and the number of training 
runs used is increased. This process is repeated until a single candidate SM is identified as having 
converged to the least error among all candidate SMs.  
 
Section 2 describes the details of the methodology. Section 3 presents the results of the FCM and SM 
analyses and the results are discussed in Section 4. 
 
2.  METHODOLOGY 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

In this section, the computer models used in the analysis are described in Section 2.1, the 
mathematical descriptions of the SMs analyzed are given in Section 2.2 and the analysis steps 
performed are presented in Section 2.3. 
 
2.1.  Scenario Description 
 
The seismic model consists of two essentially-identical NSCs belonging to independent trains of a 
safety-related system. These NSCs are located on different stories of the auxiliary building of a NPP. 
Figure 1 shows the structure of the auxiliary building and a representative stick model tuned to provide 
the same response as the three dimensional structure. 
 

 
Fig.1. Simplified stick model is shown in the middle for seismic analysis of the structure and 

NSCs [3]. 
 
The stick model representation has a total of four parameters: m1 and m2, respectively, are the masses 
of the first and second floors of the structure, and k1 and k2, respectively, are the stiffnesses of each 
floor, which depend on the building materials and floor layout. This stick model was subjected to a set 
of ground motions (GMs) and the peak accelerations of both NSCs were recorded. 
 
Simultaneously, failure accelerations for NSCs were taken from publicly-available failure data for DC 
battery racks installed at Zion Nuclear Power Plant [6]. The failure data were fitted to a log-normal 
distribution and sampled alongside each analysis of the stick model to determine the success or failure 
of the NSCs (see Table 1). For this analysis, both NSCs were treated as fully-identical and one failure 
acceleration was applied to the NSCs on both floors. 
 

Table 1.  Distribution parameters for analyses of stick model [3]. 
 Distribution Mean St. Dev. 

Each floor mass m1 and m2 
(ton) 

Normal 25 2.5 

Floor stiffness k1 and k2 
(kN/m) 

Normal 150,000 15,000 

Failure acceleration (g) Log-normal 1.01 0.69 

 
2.2.  SM Implementation 
 
Consider a time-dependent model that can be represented by a set of differential equations with t 
denoting time, to the initial time, as shown in Eq.(1): 
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In Eq.(1), H  is a non-linear function of all the input and output parameters ( )tθ , in general.  
 
For many models which are used in practice, the time necessary to calculate the final state of a system 
can be prohibitive, especially when running a model many times to explore uncertainties. One solution 
which has been used to reduce the number of times it is necessary to sample a complex model for 
uncertainty quantification is the implementation of SMs. SMs use a small number of initial runs as 
training data to predict the response throughout the remainder of the uncertainty space, as described in 
Eq.(2) 
 

( ) ( ).00 θθ H≈Θ      (2) 
 
where Θ represents the SM, and is designed to estimate the output of the model H   for the same set of 
initial parameters.  As this relationship no longer requires solving the full set of differential equations 
in Eq.(1), these SMs can be processed several orders of magnitude more quickly.  
 
Since SMs do not contain any information about the true structure of the system model, their accuracy 
varies depending on the underlying structure of the FCM [7]. The determination of this underlying 
structure is complex and presents a large additional burden on analysts attempting to take advantage of 
SMs. 
 
Some SMs return only binary success/fail results. These models, described as classifiers, operate in the 
uncertainty space transformed by a goal function, which defines success or failure. The goal function 
used in this paper, which is failure of NSCs that undergo acceleration greater than the failure 
acceleration for a given run, is shown in Eq.(3) 
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where CNSC represents the output of the model H   after being transformed into the binary 
success/failure domain for an NSC, aNSC is the acceleration of the NSC and fNSC is the failure 
acceleration obtained using Table 1. 
 
 For this study, several SMs were investigated including [8]: 
 
• K-Neighbors Regressor 

o K=1 (NNR) and K=5 (5NR) 
• K-Neighbors Classifier 

o K=1 (NNC) and K=5 (5NC) 
• Inverse Distance Weighting (IDW) 
• Linear Support Vector Classifier (L-SVC) 
• C-Support Vector Classifier (C-SVC) 
 
The K-Neighbors SM uses a set of training points as a library for further polling. After constructing 
this library of data points and their outputs, points within the uncertainty space can be chosen for 
sampling on the SM. For each of these sampling points, the K  nearest to the sampling point that are 
stored in the library are selected and their outputs are averaged, with the mean value of the selected 
points’ outputs given as the output of the SM. 
 
IDW [9] models also create a library of training data and polls their distances from a sampling point. 
However, IDW models base their estimate on all of the training points, applying weighting determined 
by the inverse of the distance from the sampling point to the training points, represented in Eq.(4): 
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In Eq.(4), sθ represents the initial state of the model parameters for the SM, while iθ  represents the 
state of model parameters for the ith training run.  
 
Both L-SVC and C-SVC models are classifiers; they only attempt to distinguish success from failure 
of a system. L-SVC models construct a hyperplane through the uncertainty space which bisects it into 
regions of success and failure. By maximizing the distance between the hyperplane and the nearest 
training points, and minimizing the intrusion of failures or successes into the inappropriate region, the 
separation between these regions can be maximized. 
 
C-SVC models also use a hyperplane to separate the uncertainty space, but can be generalized to 
nonlinear hypersurfaces. Conceptually this occurs by mapping the space to include an additional 
dimension. A hypersurface is drawn in this dimension and then transformed back to the original space, 
including the now nonlinear hypersurface. Practically, however, a kernel is used to replicate this 
nonlinear behavior without explicitly transforming the space. 
 
3.1.  SM Analysis 
 
In the study presented in this paper, we use RAVEN to generate the FS and AS. To generate each set 
of data, a number of training points are created by sampling the uncertain parameters listed in Table 1: 
m1, m2, k1 and k2. Sampling employs LHS to explore the uncertainty space and use these sampled 
values in a single run of the seismic model, generating the peak accelerations of NSCs at Floors 1 and 
2 (NSC1 and NSC2, respectively). 
 
In the AS, a limited number of training runs are performed (see Section 3.2). These results are then 
used to train the SMs listed in Table 2. Regressor SMs are trained on the input parameters of m1, m2, 
k1, and k2 and the output acceleration parameters for NSC1 and NSC2. The classifiers are trained using 
a success/fail parameter instead of the peak acceleration. As these SMs do incorporate the failure 
acceleration (see Table 1), the input parameters are expanded to include the sampled value of the 
failure acceleration along with m1, m2, k1, and k2. The outputs of the classifiers used for training are the 
success or failure of NSC1, NSC2, or their failure jointly (NSCJ). 
 

Table 2.  SMs used for analysis and their trained parameters of interest. 
 

SM Training parameter 

NNR Peak Acceleration 
5NR Peak Acceleration 
IDW Regressor Peak Acceleration 
NNC Success/Failure 
5NC Success/Failure 
IDW classifier Success/Failure 
L-SVC Success/Failure 
C-SVC Success/Failure 

 
 
The models in Table 2 are themselves sampled 10,000 times each and for each SM, the probabilities 
for failure for NSC1, NSC2, and NSCJ are calculated. The relative errors between each SM and the 
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highest-fidelity set of training runs within the AS are found. We repeat this process, using a larger 
number of training runs, until the most accurate SM reaches convergence. 
 
For the FS, 20,000 samples of the FCM are performed to determine the probability of failure of NSCs. 
The probabilities of failure for NSCs calculated by the FS are compared to the results from SMs 
trained using data from the AS and the most accurate SM is identified. 
 
 
3.  RESULTS 
 
In this section, the details of the seismic model, as found by the FS, are given in Section 3.1. The 
results of the AS are detailed in Section 3.2, and the comparison between the FS and the AS is 
provided in Section 3.3. 
 
3.1.  FS Analysis 
 
NSC accelerations from seismic events are an important failure mechanism because this represents a 
way for otherwise-isolated systems to suffer simultaneous failures, based on their physical proximity 
within the same NPP. In this analysis, both NSC1 and NSC2 are located in the same structure. 
Therefore their movements are correlated, and because the auxiliary building is not fully rigid, higher 
floors sway more than lower floors. This correlation leads to NSC2 generally having a greater peak 
acceleration than NSC1, as shown in Fig.2, which illustrates the peak accelerations experienced by 
both NSCs. In Fig.2, points shown in blue represent cases where NSC2 had a greater peak acceleration 
than NSC1.  The points shown in red represent cases where NSC1 had a greater peak acceleration. 
These red points are located in the lower-right section of Fig.2, and are most visible with a peak 
acceleration of NSC1 between 0.5 and 2g.  
  

 
Fig.2. Seismic accelerations of NSC1 and NSC2, based on the Full Set Analysis, capped at 5g for 
NSC1 and 8g for NSC2.  
 
The conditional failure probabilities for NSC1 and NSC2 are based on the peak accelerations located 
in Fig.2. For each run, the accelerations of NSC1and NSC2 are compared to the failure acceleration 
drawn from the uncertain distribution outlined in Table 1. If the experienced acceleration exceeds the 
failure acceleration, the NSC is considered to have failed. The failure probabilities are given in Table 
3. 
 

Table 3.  Conditional failure probabilities of NSCs based on the Full Set Analysis. 
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FP1 (NSC1 | GMS) FP2 (NSC2 | GMS) FPJ (NSC1 ∩ NSC2 | GMS) 

0.6109 0.7094 0.6109 
 

For simplicity in illustration, both NSCs are assumed to be identical. As such, a single sample of the 
failure acceleration limit applies to both NSCs. Given that the acceleration experienced by NSC2 in 
Fig.2 are almost uniformly greater than those experienced by NSC1, as shown by the dominance of 
blue points to red points, the joint failure probability is identical to the NSC2 failure probability, which 
implies that there were no instances during this simulation where NSC2 survived a seismic event that 
failed NSC1.  
 
Seismic behaviors are often difficult to predict because the responses of structures depend heavily on 
their resonance frequencies, which are driven in large parts by the masses and stiffnesses of different 
sections of the structure. As mass and stiffness are uncertain within this analysis, the resulting NSC 
successes and failures do not map cleanly into the uncertainty space, as Fig.3 shows. Instead the 
response appears to create several small pockets of success or failure. As many SMs, such as L-SVC 
models, attempt to divide the input space cleanly into regions of success and failure, these models will 
likely have great difficulty representing this problem, while more local SMs will be better able to 
reconstruct this output. 
 

 
Fig.3. Input values of the stick model and NSC response. Points in blue include success of either 
NSC, while points in red correspond to the joint failure of both NSCs. Note that both m1 and m2 

have been combined into the mean floor mass parameter and that the failure acceleration 
threshold is not shown. 

 
3.2.  AS Analysis 
 
AS consists of several sets of samples where LHS is used to generate training data. These start at 250 
training samples and increase to convergence, following the progression listed in Table 4. Using these 
training sets, the series of SMs are then constructed to either return the peak accelerations of both 
NSCs for those models which output peak acceleration, as described in Table 2, or the joint probability 
of failure PJ for classifier models, again described in Table 2. These results are included in Table 4. 
 
The failure probabilities for these SMs vary widely. To provide a baseline to determine suitable SMs, 
the probability of NSCJ failure from each SM is compared to the probability of failure calculated by 
that SM’s training data.  Using Eq.(5), the relative error of a SM is calculated and included in Table 4: 
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In Eq.(5), BPJ (i) is the probability of failure from training data consisting of i runs and APJ is the 
probability of failure from a SM trained on these data. 
  
From the data in Table 4, we see that the relative error of different SMs can be separated into several 
categories. Two SMs, the NNR and the IDW Classifier models, have small relative errors and match 
the seismic model well. Beyond that are the IDW Regressor and the 5NR models, which settle down 
to a consistent error that is unacceptably high. Worse than those are the NNC, 5NC and L-SVC 
models, which have relative errors that jump wildly based on the number of training runs. Finally, the 
C-SVC model quickly pegs itself to 100% relative error. This is illustrated in Fig.4. 
 

 
Fig.4. Relative errors for each SM. 

 
Using the relative errors in Fig. 4, it is clear that the NNR model best represents the training data. 
However, this is not sufficient to determine if the SMs have converged.  To determine if SMs have 
converged, it is necessary to use the failure probabilities directly. Based on the results illustrated in 
Fig.4, the NNC, 5NC, L-SVC and C-SVC models vary wildly or have such large persistent errors that 
little to no information about the failure rate of NSCJ can be extracted. Therefore, they were neglected 
for further analysis and the failure probabilities for the remaining SMs are illustrated in Fig.5. 
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Fig.5. Joint NSC failure probability for selected SMs. 

 
From Fig.5 it is possible to begin drawing conclusions about the convergence of these SMs. The NNR 
model appears to have converged by 5,000 training points, which is also true for the 5NR and IDW 
Regressor models. The IDW Classifier does not reach convergence within the scope of this analysis. 
From Fig.5, it is clear that the NNR SM still provides the best estimate of the seismic model results. 
 
 



 Table 4.  Conditional failure probabilities of NSCJ based on surrogate models and errors in failure probability based on the number of 
training runs, defined in Eq.5. 

 
 SURROGATE 

MODEL 
𝑩𝑷𝑱 IDW 

REGRESSOR 
NNR 5NR IDW 

CLASSIFIER 
NNC 5NC L-SVC C-SVC 

TRAINING 
RUNS 

  

 
250 

𝐴𝑃𝐽  
0.5960 

0.7711 0.6134 0.7584 0.5751 0.2948 0.7583 0.1543 1 

𝐸𝑃𝐽 29.38% 2.919% 27.25% 3.507% 50.53% 27.23% 74.11% 67.79% 

 
500 

𝐴𝑃𝐽  
0.5900 

0.7608 0.6049 0.7506 0.5692 0.6909 0.6134 0.3754 1 

𝐸𝑃𝐽 28.95% 2.525% 27.22% 3.525% 17.10% 3.97% 36.37% 69.49% 

 
1000 

𝐴𝑃𝐽  
0.5790 

0.7713 0.6105 0.7635 0.526 0.4557 0.5896 0.0963 0 

𝐸𝑃𝐽 33.21% 5.440% 31.87% 9.154% 21.30% 1.83% 83.37% 100% 

 
2000 

𝐴𝑃𝐽  
0.6070 

0.7618 0.6126 0.7618 0.5579 0.5414 0.3825 0.1873 0 

𝐸𝑃𝐽 25.50% 0.922% 25.50% 8.09% 10.80% 36.99% 69.14% 100% 

 
3000 

𝐴𝑃𝐽  
0.6153 

0.7736 0.608 0.7617 0.5976 0.0098 0.2559 0.2272 0 

𝐸𝑃𝐽 25.72% 1.186% 23.79% 2.877% 98.41% 58.41% 63.07% 100% 

 
4000 

𝐴𝑃𝐽  
0.6018 

0.7799 0.6044 0.7646 0.5807 0.8162 0.7894 0.2101 0 

𝐸𝑃𝐽 29.59% 0.432% 27.05% 3.506% 35.63% 31.17% 65.09% 100% 

 
5000 

𝐴𝑃𝐽  
0.6102 

0.7767 0.6141 0.7574 0.5627 0.4823 0.4878 0.1100 0.0212 

𝐸𝑃𝐽 27.29% 0.639% 24.12% 7.78% 20.96% 20.05% 81.97% 96.53% 

 
6000 

𝐴𝑃𝐽  
0.6098 

0.7765 0.6149 0.7598 0.5774 0.0805 0.1934 0.2104 0 

𝐸𝑃𝐽 27.33% 0.836% 24.60% 5.31% 86.80% 68.28% 65.49% 100% 
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3.3.  FS Comparison With AS 
 
Since the FS data from Section 3.1 represent our most complete understanding of the system, they are 
used as the basis for comparison for SMs trained using the AS.     
 
In Table 3, NSCJ failure probability from the FS data is shown to be 0.6109. This result, constructed 
from a high-fidelity sample of the original seismic model, is the goal for the SMs to match. The errors 
of each SM using 6,000 training points (see Table 4) with respect to FPJ in Table 3 are listed in Table 
5. From these results it is clear that the most accurate SM was the NNR model, with a relative error of 
less than 1%.  (0.08% from Table 5) 
 
 To determine if the SMs are truly converged based on the number of training points, each SM was 
then trained using the 20,000 points that make up the FS. If a SM has converged with respect to the 
number of training points, the SM with 20,000 training points should give similar probabilities of 
failure as the SM results from Section 3.2. Table 5 includes the relative error of SMs trained with the 
FS. These results confirm that the NNR model had reached convergence after being trained on the AS 
with 6000 data points since the relative error is 0.57%. The IDW Regressor and 5NR models also 
converged (relative error 0.63% and 0.30%, respectively) using data from the AS, but reached 
predictions that had an unacceptably large error with respect to FPJ in Table 3 (27.9% and 24%, 
respectively). The IDW Classifier model was more accurate (4.57% error with respect to FPJ in Table 
3)  than either the IDW Regressor or 5NR models, but this model did not reach convergence within the 
AS data (see Fig.5) and was less accurate than the NNR model,  having 4.57% error with respect to 
FPJ in Table 3 compared to 0.08% corresponding error of NNR model. Based on the analysis in 
Section 3.2, the remaining models were not determined to have converged. 
 

Table 5. Relative error APJ (Section 3.2) of SM Trained with 6000 Runs  
Compared to IDW 

Regressor 
NNR 5NR IDW 

Classifier 
NNC 5NC L-SVC C-SVC 

 in Table 
3 

27.91% 0.08% 24.00% 4.57% 12.56% 16.65% 62.45% 88.71% 

SM trained 
using 20,000 
run FS data 

0.63% 0.57% 0.30% 0.96% 88.29% 72.86% 8.28% 100% 

         
 
4.  CONCLUSION 
 
SMs have seen use in several industrial applications, as they can reduce the number of runs an analysis 
needs to perform on a computer model. For nuclear applications, this is often of great importance 
because many nuclear models are characterized by long run times. However, the selection of an 
appropriate SM is a challenging task that can often require a thorough understanding of the system’s 
behavior. Instead, we performed an increasing amount of sampling on a wide variety of SMs, in order 
to find which models performed well in this system and gain an understanding of how many training 
runs were required for the SMs. 
 
We have found that for the system under consideration, the NNR model was able to best match the 
system (0.08% compared to the FPJ-see Table 5), reaching convergence within 5,000 training samples 
(see Fig.5), compared to the 20,000 required for the FS. The IDW Classifier was the second-most 
accurate model (4.57% error with respect to FPJ  by Table 5), but converged more slowly than the 
NNR (see Section 3.2). The other models considered in this analysis were quickly determined to have 
very little predictive capabilities. Further work remains in expanding this methodology to different 
computer models and seeking new strategies to further reduce the number of necessary training runs. 
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