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Abstract: Looking into aviation, nuclear power generation, oil & gas and chemical industries, one can 

notice their interaction between organisational factors, technological systems and humans – the so-called 

complex socio-technical systems. 

To prevent accidents from occurring, engineers carry out safety analyses, and to calculate the likelihood 

of some scenarios they have to know the failure rates. It is easy to understand that components’ failure 

rates are evaluated differently from human’s failure rate. This subject is called Human Reliability 

Analysis (HRA), and it should be analysed ideally through the cooperation between engineers, 

psychologists and sociologists. Bayesian network is a probabilistic methodology that allows these three 

professional groups to better communicate through its intuitive graphical representation of the 

conditional probabilities. 

This paper presents a Bayesian model of a dataset of major accidents from different industrial sectors, 

instead of using scenario simulators and expert elicitation.  

The steps required to construct a model are presented together with tools for the assessment of the 

conditional probability and the model validation. The proposed approach allows to calculate the Human 

Error Probabilities as outputs of the model. 

 

Keywords:  Human Reliability Analysis, Human Error Probability, Bayesian network, major accidents 

dataset. 

 
1.  INTRODUCTION 

 

To illustrate the industrial need for Human Reliability Analysis HRA and how research can contribute 

to the area providing more consistent Human Error Probabilities, this paper starts with the following 

example: Imagine a team is designing a new engineered system (e.g. a chemical industry) where an 

operator has to open an equipment door only after its internal pressure drops. The pressure during that 

equipment operation is high enough to cause a fatality, so the operator has to wait to open the equipment 

door at the right moment by observing a pressure gauge.  

 

During one of the QRA (quantitative risk assessment) meetings, after identifying the hazard, the team 

has to know if the risk level of this operation meets the risk criteria of their organisation (or the safety 

regulator). If not, they have to recommend additional safety barriers. 

 

To assess the overall risk level of this operation, one has to account for equipment and human failure. 

That is because, for an operator to open the equipment door at the wrong moment, one of the two 

following failures have to happen before: the operator failing to observe the pressure gauge or the 

pressure gauge displaying a false measure. 

 

The pressure gauge supplier has informed its failure rate. How does a team should assess the human 

failure rate? This number is usually called Human Error Probability (HEP), and there are different ways 

to obtain it. 
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1.1. State of the art for obtaining human error probabilities (HEP) 

 
A HEP must ideally be obtained by observing someone’s errors and knowing how many times he/she 

performs an action – correctly or not, which is described in the Equation (1) as the opportunities for 

error.  

 

𝐻𝑢𝑚𝑎𝑛𝐸𝑟𝑟𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑙𝑖𝑡𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑒𝑟𝑟𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠𝑓𝑜𝑟𝑒𝑟𝑟𝑜𝑟
                     (1) 

 

 

Ideally, these numbers should be extracted from real operations’ observation. However, this is a difficult 

task as one should observe all the operational phase of an industrial installation. Furthermore, even the 

errors that did not lead to recordable events should be accounted – such accidents or near-misses (i.e. 

events with the potential for undesirable consequences [1]). 

 

To tackle this problem, some methods were developed to quantify those HEPs, among two other 

objectives (i.e. identifying the errors and their consequences, and discuss ways of reducing the likelihood 

of errors or remediation of those errors in the system). These methods are called Human Reliability 

Analysis (HRA).  

 

HRA has started to be developed in the 1960’s and is enforced by different regulators around the world. 

There are at least thirty nine HRA methods developed, but few are recognised and accepted by the safety 

regulators [2], and fewer are used in practice by organisations. Quantitative HRA techniques generally 

fall into two categories: those using a database and those using expert opinion [3]. Although even “data-

based” methods tend to rely to some extent on expert opinion, the core data used is from the real 

operation or from simulators. 

 

As summarised in Figure 1, the data considered to have better quality pedigree, giving better HEP 

estimates, are the ones closer to the real operation. HEPs based on expert opinion alone is not advisable, 

as experts potentially bring uncertainty and bias to the HEPs estimates. Simulator’s data are not 

considered with the same quality as those from the real operation because, during simulation events, the 

operators are somewhat prepared to an event to happen, and possibly less concerned with production 

goals than reality [3]. Although research is being developed on creating correction factors to account 

these effects [3], [4], [5] e [6], simulators’ data are still not considered as noble as the derived data 

from the real operation. 
 

Figure 1. Data quality pedigree for calculating Human Error Probability 

 

 

 

 

𝐻𝑢𝑚𝑎𝑛𝐸𝑟𝑟𝑜𝑟𝑃𝑟𝑜𝑏𝑎𝑙𝑖𝑡𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑒𝑟𝑟𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠𝑓𝑜𝑟𝑒𝑟𝑟𝑜𝑟
 

 

 

 

For this reason, much research is being conducted using operationally derived data from the real 

operation, as near misses and accidents occurred in industrial installations [7], [8]. 

 
1.2. Bayesian network as a tool to gather data for HEPs 

 
The relationships between the parameters described in the methodology section of this paper were 

modelled into a Bayesian network (BN), known as a systematic way of learning from experience and 

incorporating new evidence (deterministic or probabilistic).  
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BNs can be defined as statistical models used to represent probability distributions, providing combined 

probability distribution associated with an event and exploiting information about the existing 

conditional dependencies [9]. BNs can be represented by acyclic graphs, where nodes are connected to 

each other by arcs (Figure 2). Child nodes must have a causality relationship with each parent node. 

Figure 2 is an example of a graphic representation for the conditional probability equations below 

(Equations 2 and 3). 

 
Figure 2 - Directed acyclic graphs typical of a Bayesian network 
 

 
P(C=c1 | A=a1,B=b1)                                                                                                         (2) 

P(C=c2 | A=a1,B=b1) = 1-P(C=c1 | A=a1,B=b1)                                                              (3) 

 

The number of combinations to consider to generate a child’s node conditional probability is two (a pair 

of combinations) to the power of the number of states of the parent nodes (2^states of the parent nodes). 

All these possible combinations are usually accounted into Conditional Probability Tables (CPT), as 

shown in Table 1. 

 

Table 1 – Example of Conditional Probability Table for the simplified BN of Figure 2 

 
A State 1 State 2 

B State 1 State 2 State 1 State 2 

State 1 

of C 

P(C=c1 | A=a1,B=b1)  

 

P(C=c1 | A=a1,B=b2)  

 

P(C=c1 | A=a2,B=b1)  

 

P(C=c1 | A=a2,B=b2) 

State 2 

of C 

P(C=c2 | A=a1,B=b1) 

Or 

1-P(C=c1 | A=a1,B=b1) 

P(C=c2 | A=a1,B=b2)  

Or 

1- P(C=c1 | A=a1,B=b2)  

P(C=c2 | A=a2,B=b1)  

Or 

1- P(C=c1 | A=a2,B=b1)  

P(C=c2 | A=a2,B=b2) 

Or 

1-P(C=c1 | A=a2,B=b2) 

  
With BN it is possible to combine different sources of information and make HRAs compatible with 

Probabilistic Safety Assessments, due to its probabilistic representation of uncertainty [10].  

 

 

2.  DATA USED IN THE MODEL – MAJOR ACCIDENTS DATASET 
 
The dataset used in this work has been obtained from the analysis of 238 major accident reports from 

different industrial sectors using the same framework, with the intention to optimise the learning from 

cross-sector accidents [11]. The framework used was the classification scheme adapted from the 

Cognitive reliability and error analysis method (CREAM) [12].  

 

The dataset, named MATA-D, the Multi-attribute Technological Accidents Dataset [11] contains the 

relevant information from the accident reports, condensed into a table with the numbers zero and one. 

The presence of factors that could have contributed to an accident (the so-called  Performance Shaping 

Factors, PSFs) was accounted into the dataset as the number one, as well as indications of workers’ 

cognitive functions and actions executed that contributed to the accidents. When there was no evidence 

of an organisational, technological and person-related factor, the number zero was inserted. Tables 2 

and 3 relate the PSFs, errors of cognition and execution used to create the dataset. To have a full 

description and meaning of each PSF, error of cognition and execution, see [12]. 
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Table 2. Performance shaping factors used as a framework to create the MATA-D dataset [11], [12], [13]  

 
Organisational factors  Technological Factors  Person Related Factors  

Communication failure  

Missing information  

Maintenance failure  

Inadequate quality control  

Management problem  

Design failure  

Inadequate task allocation  

Social pressure  

Insufficient skills  

Insufficient knowledge  

Temperature  

Sound  

Humidity  

Illumination  

Other  

Adverse ambient conditions  

Excessive demand  

Inadequate workplace lay-out  

Inadequate team support  

Irregular working hours  

Equipment failure  

Software fault  

Inadequate procedure  

Access limitations  

Ambiguous information  

Incomplete information  

Access problems  

Mislabeling  

 

Memory failure  

Fear  

Distraction  

Fatigue  

Performance variability  

Inattention  

Physiological stress  

Psychological stress  

Functional impairment  

Cognitive style  

Cognitive bias  

 

 
Table 3. Errors of cognition and execution used as a framework to create the MATA-D dataset [11], [12], [13] 

 

Errors of cognition Errors of execution 

Observation  

 

Observation missed  

False observation  

Wrong identification  

Wrong time  

Wrong type 

Wrong place 

Wrong object Interpretation  

 

Faulty diagnosis  

Wrong reasoning  

Decision error  

Delayed 

interpretation  

Incorrect prediction  

Planning  

 

Inadequate plan  

Priority error  

 

 
3.  METHODOLOGY – MODELLING THE DATA 
 

3.1. The Bayesian model  

 
Previous works had already used the Bayesian network to model Human Performance under 

organisational, technological and person-related factors for different purposes, as classified and 

investigated by [10]. 

 

The following procedure was used to create the model: 1st select the nodes and their states, 2nd develop 

the BN structure, 3rd asses the conditional probability table, and 4th verification and validation step [10].  

 Figure 3 presents a summary of what has been made to achieve each step. For more details, and 

simplifications considered in the model, see [13]. The preliminary results of the validation step are 

discussed in the present paper, in the results’ section. 
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Figure 3 – Summarised process to create and evaluate the BN model  

 
 
The Bayesian model of the major accident dataset is presented in Figure 4. The model inputs are the 

number of times each parameter (PSFs, cognitive functions and human actions) was observed in a 

dataset of major accidents. The model outputs are the human failure probabilities, as the results 

presented in the next section. 

 

 

Selection of nodes and 
states

• The parent nodes used in 
the model are the same 
PSFs used to classify the 
accident dataset. 

• The child nodes are errors 
of cognition and errors of 
execution, also the same 
from the dataset.

• The states of the nodes 
have been defined as the 
‘presence’ or ‘absence’ of 
the PSFs and the human 
errors reported in the 
reports (in the dataset as 
'0' and '1'). For some 
nodes, it was also created 
a state named "state of 
ignorance", when no data 
was available for a set of 
combinations.

• Note that, at a previous 
model [13], the errors of 
cognition were also parent 
nodes of errors of 
execution. However, it 
have been decided to 
remove the links between 
cognitive and execution 
errors in the model used in 
this paper. That's because 
there were many accidents 
that didn't have a 
cognitive error preceding 
an execution, and this lack 
of combinations was 
preventing the software to 
do the inference to the 
CPT whenever the 
probabilities to the states 
were both equal to zero. 
Although the lack of 
combinations was solved 
adding a state named 
"state of ignorance" for 
the affected nodes, this 
new state was propagated 
to the CPTs of the next 
child nodes, causing more 
impossible combinations 
and more imprecision - so 
it was decided to remove 
the links between those 
nodes.

Structure

• Parent nodes were 
linked by arrows to the 
child nodes.

• The connections 
between the nodes were 
proposed based on 
relations between 
factors and human 
errors identified on 
[14]. 

• Simplifications to the 
structure had to be 
made because the 
algorithm used do not 
support an elevated 
number of conections to 
one child node. The 
simplification was also 
helpful to decrease the 
number of non-
exhistent combinations 
between the PSFs. The 
simplifications were 
applied not only to the 
connections but also to 
the number of nodes.

• The nodes were 
restricted to the factors 
and human errors 
considered significant 
for the ocurrence of 
major accidents. The 
selection was made 
through the aplication 
of an algorithm aplied 
on [14], named SOM 
(self-organising maps). 

Conditional 
Probability Table 

(CPT)

• The prior probabilities 
to input the CPTs for 
each node were also 
obtained from the 
dataset MATA-D. They 
have been obtained by 
calculating how many 
times a specific 
combination of factors 
and errors have 
occurred, divided by 
the total number of 
accidents of the dataset.

• Software MATLAB 
was used to calculate 
the probabilities of each 
possible combination 
between PSFs and 
errors.

• Software GeNIe 
Modeler, for academic 
use [15], was used to 
create the model and 
calculate, and to 
calculate the posterior 
probabilities, using the 
clustering algorithm 
embedded in the 
software. The node type 
used was ‘chance –
general’. Other 
software containing 
Bayesian network 
toolboxes can be used 
for the same purpose, 
e.g. Cossan-X [16], 
Netica [17] and Uninet 
[18].

• The child node with the 
highest number of 
combinations had 
nineteen parent nodes 
directly linked to it. 
That means 524,288 
combinations (two to 
the power of nineteen) 
inside the node's CPT.

Verification & 
validation

• Verification: to verify if 
the model behaved 
according to its 
specifications, some 
scenarios were created, 
changing some set of 
the PSFs to its extremes 
(sets of parent nodes 
were assumed to be 0 
and 1). After that, the 
posterior probabilities 
of the human errors' 
nodes were calculated 
again. 

• Some discussions about 
the sensitivity of each 
error for each PSF can 
be evaluated from 
results obtained at the 
verification step.

• Validation: The first 
attempt to validate the 
model was made 
comparing the BN 
results against HEPs 
described at [12], which 
the author informed to 
have extracted from a 
variety of sources, 
mainly [19], [20], [21] 
and [22]. These 
preliminar results are 
discussed in the present 
paper (see Results' 
section)
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Figure 4. Bayesian model of PSFs and errors of cognition and execution using MATA-D  

 

 
 

4.  RESULTS 
 

4.1. Human Error Probabilities (HEPs) from major accidents dataset 

 

After building the model and inserting the prior probabilities of parent and child nodes (through their 

conditional probability tables), the marginal probability distributions were calculated using Genie 

software embedded algorithm. The results are presented in Table 4. 
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Table 4. Results of Human Error Probabilities (HEP) from the Bayesian model 
 

Cognitive Error Probability Execution Error Probability 

Observation Wrong time 8.99 x 10-2 

Observation missed 3.91 x 10-3 Wrong type 7.36 x 10-2 

Interpretation Wrong place 1.09 x 10-2 

Faulty diagnosis 8.61 x 10-2   

Wrong reasoning 4.95 x 10-4   

Decision error 6.12 x 10-2   

Planning   

Inadequate plan 4.81 x 10-2   

Priority error 3.81 x 10-2   

 

4.2. The validity of the HEPs found 

 

To validate a model, one should test if the system does what is supposed to do in the real world: if the 

outputs have a good correlation to ‘real world data’ [3]. In other words, we should ask ourselves: “Did 

we built the right system?” [23]. 

 

Considering the data quality criteria proposed in Figure 1, there is an understanding that a model should 

be tested against another kind of real operation or derived data [3].  

 

The first attempt to validate the model was made comparing the BN results against human error 

probabilities described at [12], which the author informed to have extracted from a variety of sources, 

mainly [19], [20], [21] and [22]. According to him, data sources for behaviours such as observation and 

execution were relatively well established at that time (1998). In the other hand, the author declared that 

interpretation and planning behaviours were mostly based on expert judgements. The results of this first 

validation attempt can be seen at Table 5. Note that not all the cognitive and execution errors used for 

the model were presented at this table, only the ones that the author on [12] proposed a HEP reference. 

 

Table 5 – Comparing HEPs from present model with other sources [12] (that compiled from [19]-[22]) 

 
Cognitive 

functions and 

human actions 

Generic failure type Lower 

bound(0.5)  

from [12] 

Basic value  

from [12] 

Upper bound 

(0.95) 

 from [12] 

Major 

accident 

Bayesian 

model HEPs 

Observation Observation not made 2.00 x10-2 7.00 x 10-2 1.70 x 10-2 3.91 x 10-3 

Interpretation Faulty diagnosis 9.00 x 10-2 2.00 x 10-1 6.00 x 10-1 8.61 x 10-2 

 Decision error 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 6.12 x 10-2 

Planning Priority error 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 3.81 x 10-2 

 Inadequate plan 1.00 x 10-3 1.00 x 10-2 1.00 x 10-1 3.81 x 10-2 

Execution Action of wrong type 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 7.36 x 10-2 

 Action at wrong time 1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 8.99 x 10-2 

 Action of wrong place 

(or out of sequence) 

1.00 x 10-3 3.00 x 10-3 9.00 x 10-3 1.09 x 10-2 

 

Figure 5 provides a better visualisation of the model results, showing that the results for the cognitive 

functions of interpretation and planning are closest to the value proposed by literature and most of them 

inside the boundaries also proposed by literature.  
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For the cognitive function of ‘Observation’, the HEP obtained is below the ‘lower bound’– showing a 

tendency of this result to be optimistic. This means that the results suggest a smaller probability of 

occurrence of a human failure than those compiled by [12]. It is not desirable in HEPs to have a high 

degree of optimism, as it can lead to under-estimated risk predictions [3]. However, a better 

understanding of the data used in [12] is still needed, as the basic value proposed is over the upper bound 

of the same literature source. 

 

On the other hand, all the execution errors obtained from the BN model were greater than the higher 

bound proposed by the literature. In other words they show a pessimistic tendency, being the cost of 

pessimism being not desired as well, as it can lead to slightly over-designed plants [3].  

 

Figure 5 – Graph comparing HEPs from the BN model with HEPs from literature [12] 

 
 

Apart from the apparent mistake on the literature for the Observation cognitive function data, better 

understanding of the all the data used in [12] is still needed, as it is possible that the HEP generated 

could serve to validate data from [12] and not the opposite. Furthermore, it has to be investigated if the 

HEPs found by the model could be used to validate some HRA methodologies.  

 

Together with a better understanding of the degree of optimism and pessimism, a complete validation is 

yet to be pursued and presented in future work. Other criteria, established at [3] may be considered, i.e. 

the presence of a predictive relationship (usually a correlation) and precision (agreement with HEPs 

within a factor between 3 and 10). 

 

4.3. Example of application of the HEP results 

 

To explain one of the ways these results can be applied in industry practice, the example of the 

introduction section can be used. Figure 6 presents the BN model with only the cognitive function and 

human action considered in the example: the action of opening the equipment door at the right moment 

can be described as “wrong time” and reading a pressure gauge can be vulnerable to “wrong 

observation”.  

The model result for “wrong observation” show that from one thousand observations conducted, only 

four have the potential to be wrong (HEP of wrong observation is 3.91 x 10-3). 
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Figure 6 – Example of HEPs use in an industrial context 

 
5.  CONCLUSION 

 

Quantified Human Reliability Analysis (HRA) is useful to check if one organisation or regulator risk 

criteria are met. One of the aims of the HRA is to quantify the likelihood of failure, the so-called Human 

Error Probability (HEP). Accurate and realistic HEPs are important to help decision-makers to prioritise 

which risks to tackle and to intercede in the factors that impact human performance. 

 

As there is imprecise information of the number of opportunities of errors over a hypothetical 

operational lifetime of a system to generate an ideal HEP, it was chosen to use a probabilistic tool named 

Bayesian network (BN). 

 

The BN model of human performance proposed in this paper uses the same framework of a dataset of 

major accidents to achieve probability estimates for errors of cognition and execution. The basic aspects 

of the model (nodes, states, structure and conditional probability table) were all extracted from the 

MATA-D dataset [11] and [14], avoiding expert judgement. The Bayesian model inputs are the 

number of times each parameter (performance shaping factors - PSFs) was observed in a dataset of 

major accidents, and the outputs are the human error probabilities (cognitive and execution errors). 

 
This is not the first time a dataset of incident events derived from real operation is used to find HEPs 

(e.g. [7], [8]). However, the previous publicly available works were focused on near-misses events – 

whereas the present one is based on a dataset of major accidents. Although the approach seems 

promising for its data quality, as investigation reports of major accidents have the potential to uncover 

more factors that trigger a human error then near misses reports [1], the results obtained suggest caution 

before use. 

 

Not all the HEPs found are inside the range proposed on existing HEPs from other sources [12].  All the 

execution errors (wrong time, type and place) have a higher probability of occurrence if compared to 

what has been practised, and one cognitive error (observation missed) had shown smaller probability. 

Kirwan [3] defends that if techniques are imprecise, it is desirable that they are pessimistic rather than 

optimistic, as it will compromise the cost of over-designed plants rather their safety. 

A possible interpretation of these results is that the other methods being compared in [12] had analysed 

general HEPs, not necessarily considering the consequences of errors, whereas the present results show 

an indication (and probability estimation) of errors causing major accidents.  

According to the data 

modelled, 4 out of 1000 
observations were wrong, 

contributing to major 

accidents 
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For this reason, it is suggested that future development of the model should include a broader 

investigation into the verification and validation requisites of the model – including the discussion 
if the HEP generated from this model should be validated or better serve to validate other HRA methods 

or HEP results. 
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