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Abstract: Due to the characteristics of both highway bridge-tunnel structures and facilities, bridge-
tunnel transition section (BTTS) is an environment ally precarious place heavily influenced by 
external factors, such as topography and local weather. This is truer in reduced visibility conditions, 
such as fog, when road traffic accidents increase dramatically. This paper presents an assessment of 
road traffic safety at BTTS in reduced visibility conditions. In line with research objectivity, we 
employ the 8-Degrees of Freedom (8-DoF) Motion Platform for Driving Simulator, owned by Tongji 
University (Shanghai, China), to test the motion parameters of eighteen drivers when they drive 
through BTTS. Such experiment serves to analyze the principal performance of their driving speed 
behavior on the one hand, and on the other, the characteristics of speed deviation at different visibility 
levels (VLs). The tested results reveal VL’s effects on vehicle’s running speed, operating speed, as 
well as speed coefficient of variation. In addition, based on Multinomial Logistic regression model, we 
propose the model of vehicle velocity risk control at different VLs at BTTS. The key findings include: 
1)the higher the VL, the faster the average vehicle velocity; 2) when the visibility distance is 150 
meters, drivers drive at a speed close to when they drive in sunny days; 3) VL generates considerable 
effects on the 85th percentile speed and speed coefficient of variation. Our findings provide support 
for conducting researches driving risk control. 
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1.  INTRODUCTION 
 
As one of the important modern engineering constructs functioning to shorten driving distance and 
optimize road linearity, bridge and tunnel is a common facility in mountain highway. Due to the 
characteristics of its structures and facilities, bridge-tunnel transition section (BTTS) is an 
environment ally precarious place heavily influenced by external factors, such as topography and local 
weather. This is truer in reduced visibility conditions, such as fog. When drivers drive through the 
BTTS, it is difficult for them to react quickly to the traffic environment and to decrease the speed 
properly. This fact is among the main causes of the dramatic increase of traffic accident at BTTS.  
 
There have been substantial researches, both in China and around the global, on traffic safety issues at 
independent bridge, tunnel, and tunnel group. Related reports and writings cover a wide range of 
topics, including traffic accident prevention, temporal and spatial distributions of traffic accident, its 
situations, automotive types, road traffic injuries and mortality, economic loss, traffic congestion, 
early warning, and assessment of the traffic accident [1-6]. In contrast, studies on traffic safety issues at 
BTTS are limited in both quantity and topic. To be precise, most researchers focus on assessing the 
traffic safety [7-9], but few pay attention to the traffic environment [10], drivers’ driving behaviors [11], 
operating speed [12], and characteristics of traffic flow [13].  
 
Findings from previous studies suggest that in reduced visibility conditions at BTTS, driving 
environment and speed changing are among the leading causes of traffic accidents [10]. From the 
perspective of driving simulation-based vehicle velocity risk studies, and treating the driving 
simulation technique as an efficient means for conducting experiment and analysis [14,15], this paper 
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presents a risk simulation analysis of vehicle velocity in reduced visibility conditions (i.e. fog) at 
BTTS. It has significance and pragmatic values for our works on fixing expected running speed, 
expected vehicle safety distance, and criteria for setting speed limits in LV conditions, as well as for 
traffic safety improvement design. 
 
2.  Experiment Design and Data Analysis Methods 
 
2.1. Scenario Design of the Road Segment for the Experiment 
 
The road segment selected for the experiment is 3.0 kilometers in length, in which tunnel section and 
bridge are1.7 and 0.8 kilometers long respectively. The design speed for the overall road segment is 80 
km/h. The carriageway, traffic line marking, and emergency lane are 3.75, 0.15, and 2.5 meters in 
width respectively. Figure 1 illustrates the detailed scenario design. 
 

Figure 1: The scenario design of driving simulation experiment at BTTS 
 

 
 
2.2. Visibility Level (VL) Setting 
 
Drawn on the meteorological visibility theory, and the concept of visibility in foggy 
conditions defined by the transportation sector of China, our driving simulation experiment 
sets up four gradient levels of visibility. The visibility distance of each level is 50 meters, 100 
meters, and 150 meters, in addition to sunny days, as indicated in Table 1. 
 

Table 1: VL Setting 
 
 
 
 
2.3. Methods 
 
The experiment adopts the UC-Win/Road driving simulation software package, and the assorted 
driving simulator to monitor and collect data of drivers’ driving behavior. Figure 2 presents the 
experiment scenario.  
 
A total number of eighteen people were selected to participate in the experiment, half of whom are 
professionally trained drivers. To ensure that the results of driving simulation experiment in reduced 
visibility conditions not be influenced by uncertain factors, the participant drivers have attained 
complete rest before the experiment got started. Pre-experiment works also include some brief training 
that we provided to them, so that they became fully cognizant as to how to operate the driving 
simulator correctly. The installation and testing of eye tracker ensued. This is followed up by a five-

Reference No. 1 2 3 4 
Visibility Level (VL) N/A 150 100 50 
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minute free driving, to ensure that all the eighteen drivers have fully adapted themselves to the driving 
simulation scenario in foggy conditions prior to the commencement of the formal experiment. 
 

Figure 2: Driving simulation experiment 

 
 
2.4. Data Analysis Methods 
 
In the driving simulation experiment, drivers were allowed to drive freely. Under such circumstance, 
we were able to examine the effects different VLs produced on several indicators including running 
speed, accelerated speed, and lane departure. These eighteen drivers performed differently at different 
VLs. The experiment examines the VL’s effects on the running speed through the lenses of the 
variations of lane, speed, and the vehicle stability. By means of monitoring and collecting different 
indicator data of driving speed, accelerated and decelerated speed, steering wheel performance, lane 
departure, and lane shift, etc., we analyze drivers’ principal driving behaviors, including their driving 
speed, accelerated speed, lane departure, etc. at BTTS at different VLs. Through analyzing vehicle’s 
operating properties, we also propose the indicators of the characteristics of driving behaviors, fix 
criteria for safety risks assessment, frame risks assessment model, in addition to examine different 
VLs’ quantitative relations with both the characteristics of driving behaviors and driving risks.  
 
3.  Properties of the Vehicle Velocity at Different VLs 
 
3.1. Simulation Analysis of the Principal Properties of Speed 
 
The abovementioned experiments conducted in the scenarios of different visibility conditions lead us 
to the formation of box plot of speed (Figure 3) and continuous plot of average speed (Figure 4). As 
the box plot shows, at each VL, the average speed rises notably along with the increasing of VL. In 
relatively reduced visibility conditions (e.g. visibility distance is between 50-100meters), however, the 
speed deviation appears to be minor. This is likely because the drivers’ driving behaviors have been 
greatly influenced by the visibility conditions, and in turn chose to drive cautiously. In contrast, when 
the visibility distance reaches 150meters, the average driving speed gets faster, and the speed deviation 
is large. Thus, we infer that such visibility level is most likely to cause traffic accident.   
 

Figure 3: Box plot of speed at different VLs 
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Figure 4: Continuous plot of average driving speed at different VLs at BTTS 

 
 
As Figure 4 indicates, visibility conditions generate great influence on drivers’ average driving speed: 
the higher the visibility, the faster the speed. Noteworthy, when the visibility distance is 150 meters, 
drivers drive at a speed close to when they drive in sunny days. This is mainly because in such 
visibility condition, all signs which require drivers’ optical judgment for safety driving are within their 
eyeshot, and their own driving skills and response capability are adequate to tackle with emergent 
situations in time. In other words, fogs produce minor effect on them. 
 
3.2. VL’s Effects on Speed Indicators 
 
In order to confirm the relations between speed and speed-related statistics in various driving 
simulation scenarios, we employ the variance analysis method to test whether significant variance 
between average driving speed, 75th percentile speed, and 25th percentile speed exist. Normal 
distribution test was undertaken in SPSS through the K-S (Kolmogorov-Smirnov) single sample test 
method. The results indicate that both the average speed and the lower and the upper quartile speed do 
not fully comply with the normal distribution. This is likely because of the K-S test’s over-
sensitiveness when the sample quantity is large. To verify the speed distribution, and confirm whether 
the variance analysis method is plausible, we have drawn probability plot to scrutinize the relationship 
between actual cumulative probability and theoretical cumulative probability. Figure 5 is the 
probability plot in scenario1-50(visibility distance is 50 meters).   
 

Figure 5: Analytical results of 1-50 normal probability plot of the average speed 

  
         (a)1-50 Normal probability plot        (b)1-50 Normal probability plot of the average speed 

 
As shown in Figure 5, the cumulative probability of average speed in scenario 1-50 does not comply 
with the cumulative probability of normal distribution. Moreover, the normal deviation in the normal 
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probability plot is too large, exceeding 0.05. Hence, we infer that the distribution of average speed in 
scenario 1-50 does not meet the normal distribution. Normal distribution tests were conducted in other 
scenarios as well, all of which failed to meet the conditions of normal distribution.  
 
Therefore, we use K-W (Kruskal-Wallis H) in nonparametric method to conduct variance test on 
average speed, the lower and the upper quartile speed in different scenarios. The tested results are as 
shown in Figure 6. Each spot in the Figure indicates the sample’s average value. The yellow-color line 
segments in various samples represent the status of statistical significance, while the black-color ones 
represent the status of statistical insignificance. 
 

Figure 6: VL-based pairwise comparison results of the Kruskal-Wallis H test 

             
 (a)average speed                  (b) speed in the bottom quartile P25     (c)speed in the top quartile P75 

     
The VL-based pairwise comparison results derived from the Kruskal-Wallis H test suggest that 
drivers’ average driving speed, the lower, and the upper quartile speed differ greatly at different VLs. 
Drivers’ driving speed is influenced by vision at different VLs. In low visibility conditions, drivers 
usually decelerate the speed for safety consideration; and in relatively high visibility conditions, they 
would accelerate to ensure the pass speed. Thus, all speed indicators and visibility conditions are in 
direct proportion, with only one exception. The difference of the lower quartile speed in the situation 
when the visibility distance is100meters and when the visibility distance is 150meters is not of 
statistical significance. Because in these two VLs, drivers demonstrate similar level of cognition 
associated with vision’s effects on driving safety, and in turn are inclined to driving at a relatively 
lower speed for safety considerations. 
 
4.  The Indicator Confirmation of Speed Risk Assessment and Correlation Analysis 
 
4.1. The Indicator Confirmation of Speed Risk Assessment and Model Framing 
 
Based on the data analysis of the operating speed at BTTS, and speed changing’s effects on road 
safety, we use a series of indicators of driving speed properties for speed risk assessment. Findings 
from previous studies suggest that speed deviation directly influences road safety [16]. When the 
highway traffic conditions are good, drivers drive at a steady speed, whereas when the highway traffic 
conditions are poor, vehicle velocities turn to be more deviated. In calculating the speed coefficient of 
variation, we take into consideration the effects of the standard deviation of driving speed and the 
expected speed in terms of speed deviation. Furthermore, researches reveal a close correlation between 
speed coefficient of variation and the probability of traffic accident.  
 
To frame the indicator model of speed risk control at BTTS, we analyze the effects various speeds and 
accelerated speeds have produced on driving safety. We select several key parameters as independent 
variables of the model. The selection criteria mainly include drivers’ driving speed, accelerated speed, 
speed deviation, the 85th percentile speed, as well as speed coefficient of variation. The definitions of 
independent variables are as follows: 
 
(1)The 85th percentile speed: the 85th percentile value of driving speed of the same driver in a driving 
simulation scenario;  
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(2)Speed coefficient of variation: ratio of the standard deviation of driving speed to average driving 
speed of the same driver in a driving simulation scenario. The calculation process is illustrated as 
follows.  
 
The standard deviation of driving speed refers to the standard deviation of speed on the road segment. 
Its value can be obtained by two consecutive steps. First, calculating the driving speed V85; second, 
based on the number of collected sample speed, using the equation (1) to calculate the standard 
deviation of driving speed σ which is correspondent to the driving speed V85 in each intercept. 
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In equation (1), n refers to the number of monitored and collected speed. In practice, there could only 
be a limited number of spots designed for measurement. Changes of any values would generate 
significant effects on the standard deviation σ. Therefore, the standard deviation of driving speed σ 
possesses certain defects. We introduce VC , the speed coefficient of variation for the road segment, to 

overcome these defects:  
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In equation (2), μ refers to the average speed. 
 
4.2. Indicator Model of Speed Risk Control 
 
This paper employs Multinomial Logit Model (MLM) to establish speed risk assessment model. The 
MLM is a transitional form between binary Logit regression model and ordinal Logit regression model. 
It is usually adopted in the situation when there are more than two categories of ordinal response 
variables. It is a natural extension of Logit regression model.  
 
As regards the non-ordinal response variables of J category, when j=1,2,……, the MLM can be 
described through the Logit expression below:  
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In the MLM, Logit derives from contrasting non-repetitive category pairs in the response variables. If 
there are J categories in response variables, there are J-1 number of Logit in the MLM, which can be 
expressed through the equations (4):  
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The last category, namely (J), functions as a reference. Given that: 
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For the response variables possessing J numbers of categories, the probability of classifying the jth 

category of the dependent variable can be estimated through the equation (6): 
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We adopt the backward-stepping method to choose proper model(s). This work comprises of two steps. 
First, we included all the variables to the model, to test whether any of them can be excluded. After 
excluding the variables with the highest significance level of the likelihood ratio statistics, we re-tested 
the models left. These procedures were repeated until no more variables should be excluded according 
to the test criteria. The second step of the experiment is to test whether those variables outside the 
model are qualified to be included in the model. After those variables the likelihood ratio statistic of 
which is of the lowest significance level were included in the model, we tested all the models anew. 
Similarly, these procedures were repeated until all the variables met the inclusion or exclusion criteria.  
  
The information of Multinomial Logistic regression model fitting is as listed in Table 2. Our analysis 
suggests that the interpolation of log likelihood is approximate to the Chi-Square distribution. The 
Chi-Square distribution is at significance level=0.002, which means in 99.8% of the scenarios, models 
with predictive variables could provide better information than that with pure constants. Pseudo R-
squared tested results are as listed in Table 3. The R-squared statistic of McFadden is less than 0.2, 
indicating a good status of the model fitting. 
 

Table 2: Model fitting information 
 

 
 
 
 

 
Table 3: Pseudo R-squared statistics 

 
 
 
 
 
The confirmation of the estimated values of parameters is based on multinomial Logistic regression 
model. The values are as listed in Table 4.  
 
Through the correlation analysis, we frame indicator model of driving speed risk control at BTTS as 
follows: 

                          85( , , )VR f V V C                                        
（7） 

                           1( )V g X                                                  
（8） 

Model 
Model Fitting Criteria Likelihood Ratio Test 

-2 log likelihood Chi-square df Significance level 
Intercept 120.573 - - - 

Final 103.926 16.647 4 .002 

Cox &Snell .249 
Nagelkerke .285 
McFadden .138 
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                            85 2( )V g X                                               
（9） 

                           3( )VC g X                                                
（10） 

 
In the equations (7), (8),(9), and (10), R refers to critical speed on horizontal curve sections;V to 

drivers’ driving speed; 85V  to the85th percentile speed; VC to speed coefficient of variation; and X  to 
VL.  

 
Table 4: The Estimated Values of Parameter 

 
5.  CONCLUSION 
 
Drawn on the results derived from driving simulation experiment, this paper analyzed the 
characteristics of drivers’ driving speed behaviors, accelerated speed behaviors, and speed deviation at 
different VLs, leading us to the principal conclusions: 
 
(1)Visibility conditions greatly influence the average vehicle velocity: the better the former, the faster 
the latter. Noteworthy, when the visibility distance is 150 meters, drivers drive at a speed close to 
when they drive in sunny days.  
 
(2)Visibility-based pairwise comparison results of the Kruskal-Wallis H Test indicate that drivers’ 
average speed, the lower and the upper quartile speed differ greatly at different VLs. Drivers’ driving 
speed is influenced considerably by vision. In reduced visibility conditions, drivers usually choose to 
decelerate the speed for safety driving; in relatively high visibility conditions, they would accelerate to 
ensure the pass speed. 
 
(3) By means of establishing multinomial logistic regression model, we revealed the relations between 
different visibility levels and predictive indicators; the VL has significant relations with both the 85th 
percentile speed and speed coefficient of variation. 
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