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Introduction

o . - - . S
Pitting corrosion is a primary and one of the most severe failure
mechanism of oil and gas pipelines because of the high rate at
which pits can grow [velazquez, Caleyo, Valor, & Hallen, 2009].
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Internal corrosion 57.7 % Cxternal corrosion 12.0 %

Damage by others 5 0 %

Weld 3.5 %

Constructiondamage 4.5 %

Cverpressure 1.5 %

Pipe 2.8%

Joint 3.5 %

Eaith movement 1.7 %

Valeffitting 2.2 %

Alberta, Canada Production Pipeline Failure
Data for 1980-2005. [Papavinasam, 2013]




Motivation
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= To decrease the total cost due to internal pitting corrosion by
finding an optimal proactive maintenance policy
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Annual cost of corrosion in the infrastructure
category in the USA. [Koch et al., 2002]




Motivation
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= To decrease the total cost due to internal pitting corrosion by
finding an optimal proactive maintenance policy
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Assumptions

 ILI or pigging data (infrequent, discrete and low quality information) for most
segments of the pipeline are available.
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Assumptions
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IL1 or pigging data (infrequent, discrete and low quality information) for most
segments of the pipeline are available.

Online inspection (OLI) data (continuous, discrete, and high quality information)
and human inspection (infrequent, discrete, and high quality information) for
some pipeline segments are available. &

Centr al Authority
/@/ K {e)

[Wan et al., 2011]

The pipeline is aged and piggable (with some non-piggable segments).

Pits are not interacting with each other.

All pits are under similar operational condition at each time.

Details about the sensor layout, the NDT equipment and the methods (coverage

area, probability of detection and measurement errors, etc.) are known.
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Literature review on data fusion algorithms
on pipeline degradation o

Maes et al., (2009) fused multiple ILIs data in a hierarchical Bayesian
framework to predict defect growth. They did not consider the variation in
pits’ initiation times.

Zhang and Zhou (2013) considered corrosion initiation times within the
previous work. Both of these works just used the ILI data.

Rabiei et al. (2016) used augmented particle filtering to fuse two types of
sensor data (i.e., acoustic emission and modulus of elasticity) from a
damage in a metallic alloy under fatigue to estimate the degradation level.

Gaps: None of these works fused ILI and online sensor data from
different objects (pits). The similarity between objects should be
estimated which requires a physics-based degradation model.




Literature review on pitting corrosion
degradation models was used to identify six a8
requirements for a proper model

Level 1: Degradation model uncertainty o Characteristic I: the corrosion rate of a deeper
7 pit is greater than the corrosion rate of a
shallower one (Rivas et al., 2008)

Level 2: Location-specific uncertainty

RZ o — .
Level 3: Temporal uncertainty of the local degradation e Characteristic Il: the corrosion rate decreases
““i‘?‘“s over time and this declining behavior follows a
Level 4: Local inspection uncgl‘tahlty, detectability and pOWGr-laW model with a less than one pOSItIV_e
reportability exponent ((Velazquez et al., 2009) (Ossal,

Boswell, & Davies, 2015) (Nuhi, Seer, Al
Tamimi, Modarres, & Seibi, 2011))

Hierarchical levels of uncertainty in
degrading systems (Maes et al, 2009)




Literature review on pitting corrosion

degradation models; helped point to the correct i
modeling framework SYAR

Data-driven
probabilistic models

Stochastic process- Random variable-

i basar Todals Evaluation of current available models
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2013) (Hong, 1999), (Valor et al., 2007) —
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Fusing ILI1 and OLI data and physics of the
fallure

SYrRrA

[Wan et al., 2011]

Pit depth vs. Time (Stressed)
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[Bazan & Beck, 2013; Ossai et al., 2015; Velazquez et al., 2009]




Pros and cons of In-Line Inspection (ILI)
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Real ILI data (using MFL) for a gas pipeline in Alberta Canada, [Zhang et al., 2013]

80 @ Observed depth by ILI for pit # 14
i + Predicted depth by linear regression for pit # 14
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Pros and cons of In-Line Inspection (ILI)
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Real ILI data (using MFL) for a gas pipeline in Alberta Canada, [Zhang et al., 2013]
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+ Real depth measurement after excavation for pit # 10
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Pros and cons of In-Line Inspection (ILI)
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Real ILI data (using MFL) for a gas pipeline in Alberta Canada, [Zhang et al., 2013]
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Pros and cons of In-Line Inspection (ILI)
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Real ILI data (using MFL) for a gas pipeline in Alberta Canada, [Zhang et al., 2013]
80 ® Observed depth by ILI for pit # 7
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Pros and cons of Online Inspection (OLI)

Synthetic OLI data
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Pipeline
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[Wan et al., 2011]

Pros:

* Low measurement error

» High frequency (e.g., near continuous)
Cons

* Requires power

OLI helps to decrease the epistemic uncertainty

* Discrete in location

» They rarely cover a large area of the pipelines




Developed data fusion framework
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Estimating prior values for model parameters by non-linear regression
analysis. d = 6,(t, —t,)?2
Estimating maximum pit depth of ILI pits by using a hierarchical Bayesian-
non-homogeneous gamma process (HB-NHGP)

Estimating maximum pit depth of OLI pits by augmented particle filtering
(APF)

Defining similarity index between each ILI pit and each OLI pit
Generating dummy observations of pit depth for ILI pits

Using APF to estimate maximum pit depth of ILI pits by using the
generated dummy observation

Estimating RUL




Developed data fusion framework
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ILI Mzasurment model: observed depth =0.17 “PWT + 0.97* real depth + Normal(0,0.06 *PWT)

8T — rzal depth of pit# 5
@ Observed depth by ILI
| — Real depth of pitM

e : g Answering the question:\
How to fuse more frequent
OLI data with less
frequent ILI data of
different pits at different

\_ locations? -/

depth (mm)
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Developed data fusion framework
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Developed data fusion framework
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ILI Mzasurment model: observed depth =0.17 “PWT + 0.97* real depth + Normal(0,0.06 *PWT)
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Developed data fusion framework
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ILI Mzasurment model: observed depth =0.17 “PWT + 0.97* real depth + Normal(0,0.06 *PWT)
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Developed data fusion framework
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ILI Mzasurment model: observed depth =0.17 “PWT + 0.97* real depth + Normal(0,0.06 *PWT)
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Developed data fusion framework
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ILI Mzasurment model: observed depth =0.17 “PWT + 0.97* real depth + Normal(0,0.06 *PWT)

8T — rzal depth of pit# 5
@ Observed depth by ILI
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5+ — Real depth of pit M
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Developed data fusion framework
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ILI Mzasurment model: observed depth =0.17 “PWT + 0.97* real depth + Normal(0,0.06 *PWT)

8T — rzal depth of pit# 5

@ Observed depth by ILI
® Estimated depth by HB
® Estimated depth by APF
5+ — Real depth of pit M

® Observed depth by OLI

(Answering the question:\
How to fuse more frequent
OLI data with less
frequent ILI data of
different pits at different

\_ locations? -/

® Dummy Observations

depth (mm)
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1=1 Estimated depth of an ILI pit by HB
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Developed data fusion framework

Inputs

Measurement error
of ILI tools

ILT data of ni pits
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Data fusion, Phase [

Fuse ILIs dataofn | Mean values of Piti depth
time |

pits. using HB-NHGP K at each pointin

D) |
Non linear regression
analysis : prior
distributions of 8, .6, I- “

OLI data of pit M
uptotime T

. Estimnate similarity
¥ Appl}’ A;Ei::[p:? time T # ndex between pit 1
- and pit M
Data fusion, Phase 11 1

@ s .: 2 Modify similarity
index by location
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parameters from APF of M multiplied by
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Hierarchical Bayesian-non-homogeneous

gamma process (HB-NHGP)

Model
uncertainties
(hyper parameters)
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Pit specific uncertainties

Temporal
uncertainties

Of each pit depth
increment

Local measurement
errors

of the iy, pit rate parameter
" at iy, pit

Time increment

1

T

1

1

l |
I

I

Pit initiation time v Gamma process
1

1

1

1

I

1

1

process c =t — F ;i

shape Aty =ti;— b ‘1|<=‘ tij
parameter Time of jp,
inspection

Circle: stochastic node

Square: deterministic node
Single arrow: stochastic link
Double arrow: deterministic link

= 7, ) Biased and unbiased
ij = a] + b]Dl,]+£l,

a(t) = 01(t — t)%? f(AD(®)) = Ga(AD|Aa(t), B) =

measurement errors . jth .
inspection
Observed depth of i, pit at j,, time at iy, pit,
= j=1n
ien PIt, i=1:m
Modified from (Maes, Dann, Breitung, & Brehm, 2008)
ﬁAa(t)

ADA®~1 exp(—BAD)

r'(Aa(t))




Using this framework to consider change In
operational condition in RUL estimation
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] — Real depth of pit M with change in operational conditions -
4 Measured depth of pit M'by OLI

Real depth of pit i w/o change in operational conditions

3 1 e Measured depth of pit i by ILI

(o D)

] | y using this framework and
“1 ;i taking advantage of having
online sensors, change in

/ operational ~ condition s

considered in RUL estimation
\of the pipeline segment. /

Depth (mm)
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Time (year)




RUL estimation
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Pit depth Time to failure distribution
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Summary

.. SYRRA
* Objectives

» RUL estimation of a segment of a pipeline
« Approach

» Fusing ILI data and OLI data of different pits
* Results

» Framework is developed

» Synthetic data is generated

» HB-NHGP code is developed
» Future works

» Adding variation of pits initiation times

» Considering POD in modeling

» Validating the proposed framework by finding real degradation data (not

necessarily pipeline data)
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Non-homogenous gamma process for
degradation modeling

SYRnifA
fD@®) = Ga(Dla(t),p) = i D=1 exp(—BD)
~ T T (a®) ’
a
S
= » Temporal variability of stochastic
3 degradation processes can be modeled
o properly by a gamma process.
Q : . . .
| » Itis appropriate to model monotonic
/| AD(O)~Ga(Aa(t), B) and gradual degradation processes.

Time

Based on the physics of
E(D@)) =a(t)/p ) failure:

a(t) = 6,(t — ty)?2




Particle Filtering
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Pr(D'|D)Pr(DeID*Y) o | |
Pr(DID™) = ——f ey~ ) wk8(Di = D)
=1

sensor measurements D' = {D',, ..., D'} }

Process Model:

Dy = 0, (ty — t)?2
Dy = f(Dk—p(Uk_l) - PT‘(Dk|Dk_1) k 1( k 0)

_ 0,-1
In which D, is state at time step k, w is called Dye = Di—1 + 610, (t — to)"27 At

process noise and f is the evolution function.

Measurement Model:

Dy = h(Dy,v) = Pr(Dy|Dy)
D;, = Dy, + measurement error (ILI
Where D, is measurement at time step k, v is or OLI)

called measurement noise and h is the
measurement function.




Reliability analysis of the pipeline segment
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fl =08PWT—-d [ Small leak fl <0nNn f2 >0 . B Oil Pipeline Léakage
Limit state functions 4 f2 = P, — P, | Large leak fi>0Nnf<0Nnf3>0
fi =P, —P Rupture i>0Nnf<0Nf;50
D op
Safe Otherwise
by 2ot _df —0.1571
bEETD T T TP T ooewr — o | || [Stephens & Leis, 2000]
e
p
[2 4 12
1 .62 - 0. <
p L8y ) +0.6275 5 = 0003375 o oo S 50
P MD
12 12
0.032 3.293 50
L D.PWT + D.PWT >
a,.. Ultimate tensile strength _
D: Pipeline diameter [Kiefner et al., 1973]

X: Model error

d: Pit maximum depth
PWT: Pipeline thickness
L: Pit length

P,,,: operation pressure




Motivation
SYRRA
= Considering change in operational condition in RUL estimation
of a segment of oil and gas pipelines

= All the available pitting corrosion degradation models assumed that
operational conditions remain the same during the life of the pipeline.

= |n some occasions operational conditions change over time:). [Regulations,
PHMSA, 2014 ]

= Flow reversal,
= Product change (e.g. crude oil to refined products),
= Conversion to service (e.g. convert from natural gas to crude oil)

Online monitoring data is required to consider
change in operational conditions in RUL
estimation, however, online monitoring of the
whole pipeline is infeasible.
Proposed solution: fusing ILI and OLI data




