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Abstract: Developing a big picture understanding of a severe accident is extremely challenging. 

Operating crews and emergency response teams are faced with rapidly evolving circumstances, 

uncertain information, distributed expertise, and a large number of conflicting goals and priorities. 

Severe accident management guidance (SAMGs) provides support for collecting information and 

assessing the state of a nuclear power plant during severe accidents. However, SAMGs developers 

cannot anticipate every possible accident scenario.  Advanced Probabilistic Risk Assessment (PRA) 

methods can be used to explore an extensive space of possible accident sequences and consequences. 

Using this advanced PRA to develop a decision support system can provide expanded support for 

diagnosis and response. In this paper, we present an approach that uses dynamic PRA to develop risk-

informed “Smart SAMGs”. Bayesian Networks form the basis of the faster-than-real-time decision 

support system. The approach leverages best-available information from plant physics simulation 

codes (e.g., MELCOR). Discrete Dynamic Event Trees (DDETs) are used to provide comprehensive 

coverage of the potential accident scenario space. This paper presents a methodology to develop Smart 

procedures and provides an example model created for diagnosing the status of the ECCS valves in a 

generic iPWR design. 

 

Keywords:  risk-informed procedures; severe accident management guidelines; operator decision 
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1.  INTRODUCTION 
 

Severe accidents are extremely rare in the nuclear power industry. However, as demonstrated by the 

Fukushima accident, rare events are not impossible events, and responding to these accidents is 

extremely difficult. Severe Accident Management Guidelines (SAMGs) serve as a critical resource for 

helping operating crews respond to severe accidents. Currently, paper-based SAMGs are developed 

from a combination of expert judgments and best-estimates analyses to study the effectiveness 

individual management strategies and their interactions [8]. International Atomic Energy Agency’s 

(IAEA) standard on SAMG development state that “development of accident management guidance 

should be based on best estimate analyses in order to capture the proper physical response of the 

plant” [10]. However, procedure developers cannot anticipate every possible accident scenario, which 

may lead to gaps in SAMG coverage in terms of both scenario coverage and phenomenological detail. 

For example, there is debate within the Fukushima reconstruction community regarding the state of 

the steam line in Unit 1 [4]. If the steam line suffered a creep rupture before the Safety Relief Valves 

(SRVs) failed open, radioactive steam might have been released directly to the dry-well without the 

effects of scrubbing in the wet-well. Proper insights regarding the status of components such as the 

main steam line and the safety relief valves could impact accident mitigation strategies such as 

Filter/Venting, if such strategies would have been available in the Fukushima reactors. Furthermore, 

the same IAEA SAMG standard stresses that specific mitigation strategies should be dependent on 

groups of parameters indicative for a certain plant damage state. In this work, we propose a 

methodology for using the results of advanced Probabilistic Risk Assessment (PRA) methods to 

generate risk-informed procedures which provide dynamic decision support system for relating pre-

calculated instrumented parameters from uncertainty analyses to plant damage states in direct support 

of IAEAs SAMG standards intent.      
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Previous work has proposed that risk-informed approaches can enhance to inform operator and utility 

knowledge of accident states. This work has traditionally focused on combining classical static event 

tree information with Bayesian Networks to infer plant damage states [12]. This approach was limited 

due to the lack of instrumentation output available from the static event tree methodology. Thus, the 

prior belief regarding instrumentation readings were derived from expert judgments to infer plant 

damage states. The lack of scalability and potential errors derived from lack of expert judgment 

ultimately limits this approach. By combining the tools set forth in these previous studies in a novel 

way, Sandia National Laboratories (SNL) is creating a revolutionary new approach to increase the 

robustness of current and future development of SAMGs. Simulation-based dynamic PRA methods 

can be used to explore an extensive space of possible accident sequences and consequences in Nuclear 

Power Plants (NPPs). The approach in [2] uses Discrete Dynamic Event Trees (DDETs) to run the 

MELCOR [5] simulations in a structured way to provide comprehensive understanding of the reactor 

physics behavior associated with an expansive set of scenarios. The results of these analyses provide 

comprehensive insight into the likelihood of various accident scenarios and into how scenarios can 

evolve. This insight can benefit operators, emergency personnel, Nuclear Regulatory Commission 

(NRC), and other parties interested in understanding severe accidents. 

 

However, there are even more significant gains to be made by using this insight to both actively 

understand and manage evolving severe accidents as they happen. In the current work, we propose 

that the results of these advanced PRA activities can be used to build “Smart Procedures” -- 

comprehensive, scenario-specific guidance for real-time operator decisions [7].  

 

 

2. PROBLEM DESCRIPTION  
 

The nuclear industry has heavily regulated the anticipated operational occurrence and design basis 

accident space with conservative analysis and heavily trained operators to ensure safe nuclear power 

operation. Post Three Mile Island accident, the critical role that operators play to ensuring the safety of 

nuclear power plants was both recognized and emphasized by the NRC and other regulatory 

authorities [15]. Nuclear operators are provided with extensive engineering support, written and 

simulator training, limits on work hours per day/week/year that they can work, and appropriate 

assistance to maximize preparedness for off-normal occurrences [1]. These resources included 

frequent training on a wide range of accident scenarios, on-call Technical Support Center, and 

operating procedures.  

 

One critical resource for NPP operators is the set of plant-specific operating procedures, which help 

ensure timely and accurate diagnosis and response to myriad situations. During abnormal operations 

and design-basis accidents, operators have Emergency Operating Procedures (EOPs), and during 

severe accidents these come in the form of SAMGs. The procedures help operators collect critical 

information, diagnose failures, and prioritize response actions (often in the face of multiple failures, 

finite resources, and competing plant needs, and plan ahead based on current observations). 

 

Traditionally, EOPs and SAMGs are created using a combination of expert judgment and Best-

Estimate analyses [9]. However, these procedures tend to be inadequate for supporting severe 

accidents, when information is limited, plants are operating outside of the design range of 

instrumentation, and phenomenology can lead to non-intuitive accident progression. Due to the 

inherent limitations of expert judgment, scenario-specific procedures cannot be developed for severe 

accidents that the developers do not anticipate (e.g., the Fukushima accident) [4]. The fundamental 

limitations of human expert knowledge, combined with the complexity of severe accidents, require a 

new, comprehensive approach to procedure development.  
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3.  METHODOLOGY TO DEVELOP RISK-INFORMED SAMGS 
 

Advanced (Dynamic) PRA can be a game changer for procedures, but it also has two major 

limitations: it provides too much information to process during severe accidents, and even simple 

scenarios can take days to execute due to the complexity of underlying physics models involved. To 

overcome this shortcoming, we process the information through Bayesian Networks (BNs) before the 

accident occurs, which harness the results of advanced PRA in a probabilistic framework that can 

handle uncertainty. This framework explicitly ties plant observables to possible accident scenarios and 

can be used to support real-time decision making. 

  

In essence, Smart SAMGs leverage advances in simulation and computations to build a 

comprehensive understanding of a large range of accidents before they are experienced. Putting this 

into a probabilistic framework enables operating crews and other interested parties to use this 

knowledge base to facilitate accident diagnosis in faster than real time.  The resulting system increases 

in plant safety through accurate, timely response to critical conditions. Even if an accident experienced 

by the operators was not directly simulated by the advanced PRA, the probabilistic nature of the BN 

will be able to use similar sequences in order to diagnose the state of the system.   

 

3.1 Overview of methodology 

 

Advanced, simulation-based PRA methods can provide a scientific basis for supporting this diagnosis 

and response planning for current and future reactor designs. Recent advances in computing enable 

simulation-based PRA approaches to explore thousands of accident scenarios. Coupling these 

scenarios with plant simulations allows prediction of plant parameters and consequences associated 

with each accident scenario.  In effect, running thousands of advanced PRA simulations allows experts 

to explicitly map out the relationship between known accident scenarios and observable reactor 

parameters. Advanced PRA offers a comprehensive understanding of accident scenarios, beyond what 

any single expert can provide.  

 

This information can be harnessed to provide comprehensive, science-based support to operators 

facing severe accidents that fall beyond the scope of existing procedures, training, and experience. By 

formally encoding advanced PRA knowledge in SAMGs, we reduce the socio-technical challenges 

associated with responding to severe accidents, and provide an additional line of defense against 

events which have traditionally been related to Beyond Design Basis or residual risk. The 

methodology, as shown in Figure 1, takes outputs from advanced PRA and aggregates them into a 

Bayesian Network decision-support framework. Researchers develop and execute a full spectrum of 

DDET/MELCOR runs to scope the state-space of the accident. This information is used in 

combination with basic PRA information to provide a detailed, probabilistic model of the accident 

sequence space. The resulting BN model is an extensive knowledge base covering a wide spectrum of 

possible accidents. This BN is a decision support system, which encodes the best-available knowledge 

from PRA to be used when needed. 

 

In this work, the advanced PRA method uses DDETs coupled with MELCOR (although ongoing work 

at SNL is coupling DDETs with SAS4a, a Sodium Reactor dynamic simulator) [5]. DDETs are 

powerful discrete simulation tools used for dynamic accident analysis. Using these dynamic 

computational methods allows greater analysis of the possible accident space than traditional PRA 

methods The analysis conducted in this report used the Analysis of Dynamic Accident Progression 

Trees (ADAPT) driver code [13] to conduct DDET analyses. This coupled approach provides a 

process for extensive and comprehensive modeling of both the accident space and the plant response 

in a decision tree framework. However, due to the complexity of models used in simulation-based 

PRA, this in-depth understanding cannot be simulated and processed in real-time. BNs provide a way 

to synthesize and reduce this information into a framework that can be used for faster-than-real-time 

decision support. 
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Once developed, the BN can be used in real-time to facilitate diagnosis and response planning given 

whatever information is available about the plant state. The model can be used to dynamically update 

the situational awareness of the crew, which enables faster response time during critical scenarios. 

Furthermore, this generic PRA model will enable crews to respond to a myriad of accident conditions 

(including those that we have yet not anticipated) without exhaustive expert efforts to predict every 

possible bifurcation in an accident scenario. 

 

The idea behind using BNs to mimic operator reasoning is not new. Kim and Seong [12] proposed a 

BN operator reasoning, but this BN was highly dependent on existing procedures to provide structure 

and causal relationships. This approach used the probabilities found in a static Level 1 PRA to provide 

probabilistic support to the causal relationships, but lacked the range of potential instrumentation 

response a dynamic analysis can provide.  Finally, the proposed approach in this paper does not rely 

on the availability of procedures to form the causal relationships in the BN.   

 

3.2 Bayesian Networks for decision support 

 

BNs offer a graphical and mathematical framework to formally integrate multiple types of information 

into decision making. A BN model encodes a detailed knowledge base and enables the knowledge 

base to be used to reason about specific events, given new information (called evidence). BNs offer a 

language for understanding and documenting causal relationships among variables, and using that 

model for diagnosis and prediction. Analysts can apply BNs to any task that requires drawing 

conclusions from uncertain and incomplete information [11].  

 

BN-based decision support systems have been successfully implemented in many industries, and they 

are especially prevalent for diagnostic support in medical applications
†
. In this work, Sandia leverages 

parallels with disease diagnosis to provide support for diagnosing a plant state given limited 

information. 

                                                      
†
 BNs have also been used within PRA and HRA, but these applications have not leveraged the decision-support 

capability of BNs. The use of BNs for PRA/HRA quantification is conceptually distinct from the use of BNs to 

provide diagnostic support. While the underlying computational tool is similar, the content and application of the 

models is different. 

Figure 1: Illustration of conceptual process as applied to the development of risk-informed “Smart 

SAMG” procedures for nuclear power plant diagnostic support. 
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Mathematically, BNs consist of a directed acyclic graph and a complex probability distribution. The 

graph contains nodes (the set of relevant variables) and arcs (relationships among the variables). The 

quantitative aspect associates each node with a conditional probability function; most BNs use discrete 

conditional probability tables. The BN exploits the chain rule, conditional independence assumptions, 

and Bayes’ Theorem to provide a powerful reasoning tool. The Bayesian updating process can be used 

repeatedly to conduct inference with any combination of evidence about model nodes, or to conduct 

inference about the evidence given the existing model.  

 

BNs implement both forward reasoning and backward reasoning simultaneously. Forward propagation 

(inference) reasons from causes to effects (e.g., interpreting a new situation, predicting the probability 

of being in various states, conducting “what-if” analyses, or choosing a corrective action for a specific 

situation). Backward propagation (diagnosis) reasons from effects to causes, to understand why an 

event happens. By observing certain variables being in various states (e.g. knowing that temperature is 

high or pressure is low) they can enter that information in the network and get updated probabilities 

for unobserved variables. This is used to understand possible root causes given observed symptoms. 

 

When operators cannot gather information (e.g., due to unavailability of indicators) or they receive 

ambiguous information (e.g., due to indicators that were not designed for accident monitoring), the BN 

can be used to help solve the state estimation problem, using observable information (effects) from the 

plant displays, to assist operators in diagnosing the system (causes). The same model can be used to 

help identify potential effects of various accident mitigation actions. 

 

 

4.  CASE STUDY 
 

This case study demonstrates a SAMG for diagnosing problems with the 

Emergency Core Cooling System (ECCS) of a generic integral Pressurized 

Water Reactor (iPWR), which has been simplified for illustrative purposes. 

The generic iPWR model is a 150 MWth design with no reactor coolant 

pumps and a single SRV off the pressurizer, which is located at top of the 

reactor pressure vessel (RPV). A simplified drawing of the reactor and the 

ECCS system can be seen in Figure 2. The ECCS is comprised of a set of 

Depressurization Valves (DVs, top spray valves), and Feed Valves (FVs, 

bottom flow valves) which serve to provide a heat transfer pathway from 

the core to the ultimate heat sink. In the generic iPWR model, the ultimate 

heat sink is a pool of water submerging a single iPWR module consisting 

of a steel containment vessel surrounding the RPV.  

 

When the ECCS system is activated, the DVs and FVs open to enable core 

cooling, and the SRV cycles open and closed as necessary. In this example, 

failure of the ECCS system results from failure of one or more valves (any of the DV, FV, and SRVs). 

In this simplified example, we assume that DVs and FVs can fail in the closed position only (that is, 

we are only considering failure-to-open on demand). 

 

As is evident, the ECCS can fail in multiple ways. Depending on how the ECCS fails, the accident 

scenario progression will vary (ranging from no fuel damage, through severe fuel damage). The goal 

of this example model is to support diagnosis of the configuration of ECCS system from observable 

reactor parameters to enable appropriate selection of mitigating actions. 

 

Figure 2:  Generic 

iPWR ECCS 
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4.1 Simulations 

 

Using the advanced PRA methodology discussed above, SNL ran over 600 ADAPT/MELCOR 

simulations on the iPWR model. In this study, the DDET (implemented in ADAPT) had branches for 

decay heat (high or low), reactor pool status, ECCS operation (modeled as combinations of DV-failure 

or FV-failure), RPV-SRV cycling and failure position, core degradation kinetics, and containment 

failure pressure. These dynamic variables are linked between ADAPT input and MELCOR control 

functions. The order of the branching events can vary; the timing and evolution of the scenarios is 

determined by MELCOR calculations. The series of simulations includes dozens of simulations of 

each possible combination of valve states. 

 

The extent of predicted core damage varies significantly across the possible combinations of valve 

failures. As part of the inherent safety of the generic iPWR, most combinations of failure of the SRV 

and ECCS components will result no fuel damage (e.g., an accident, but not a severe accident). 

However, some combinations of failures can result in severe fuel damage (a severe accident); in this 

scenario, molten core debris is expected to remain within either the vessel or containment accident 

(i.e., there is significant system damage, although is not expected to result in any radiological release). 

These combinations were identified in the set of MELCOR/ADAPT runs. As expected, branches with 

no failures of the DV, FV, or SRV, there was no core damage. Table 1 summarizes the results of those 

runs, in terms of whether core damage is a possibility for a given valve configuration. 

 
Table 1: Summary of effects on core for given configurations of the DV, FV and SRV, generated from a 

series of MELCOR simulations.    

 # cycles to SRV failure Core damage? 

FV and DV function  

normally 

12 None 

58 None 

114 None 

DV fails closed 12 Sometimes  

58 Sometimes 

114 None 

FV fails closed 12 Always 

58 Always 

114 Sometimes 

FV and DV fail 

closed 

12 Always 

58 Sometimes 

114 None 

 

The key reactor parameters which can result from various failures of the ECCS also vary, as is 

illustrated in Figure 3, which shows MELCOR predicts different observable reactor parameters for 

different valve configurations and different failure times.  

 

4.2 BN Model Structure 

 

Prototype models were developed in GeNIe [3], which is a Windows-based development environment 

for graphical decision-theoretic models developed by the Univesity of Pittsburgh Decision Systems 

Laboratory. GeNIe implements the SMILE library of decision-theoretic method (including BNs) for 

the development of intelligent systems. 
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Figure 3: MELCOR simulation output of RPV pressure, illustrating that reactor parameters illustrate 

different behaviour at different times, for known combinations of valve failures. This figure aggregates 

MELCOR simulations for the cases where DV is failed closed, FV is open, and the SRV failure status 

varies. 

 
 

Figure 4 illustrates a dynamic conceptualization of the ECCS diagnosis problem. This figure contains 

a plate-based dynamic BN modeling the relationship between the three valves and three key plant 

operating parameters: RPV pressure (P_RPV), RPV water level (Level_RPV), and core exit 

temperature (T_CoreExit). The model structure shows that the status of the DV, FV, and SRV each 

influence the state of the three plant parameters. The DV and FV can each be on one of two states: 

open or [failed] closed. The SRV can be in one of four states: Cycling (functioning normally) or failed 

(either open or closed) at 12, 44, or 58 cycles. The temporal plate indicates that the bottom portion of 

this model (containing the time-varying reactor parameters) is duplicated to 169 time steps, each 

representing 1 hour in the seven day accident evolution. In this example model, the status of the FV, 

DV, and SRV remain constant throughout the duration of the accident. 

 
Figure 4: Plate-based BN modelling the relationship between three valves (DV, FV, SRV) and three key 

plant operating parameters. 

 
 

The plant parameters are discretized into three different states each (Low, medium, high). 

Discretization thresholds were chosen based on examination of a small set of MELCOR results. For 

P_RPV, high corresponds to a predicted pressures above 12MPa, medium corresponds to 9-12MPa, 

and low corresponds to below 9MPa. For Lev_RPV, high corresponds to above 10.0m, medium to 4.0-

10.0m, and low to below 4.0m. For T_CoreExit, high corresponds to temperatures above 1500K, 

medium to700-1500K, and low corresponds to temperatures below 700K. 
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Figure 5: First two time steps of the unrolled version of the BN shown in Figure 4. 

 
 

In the BN, the three valve nodes are target nodes, with target states of closed/failed; this indicates that 

these failed states are the target of diagnosis activities. The plant parameter nodes are modeled as 

observation nodes; this indicates that they may be observed at some point during the diagnosis 

activity. 

 

4.3 BN Model Quantification 

 

The parameters in the BN are derived from a combination of generic PRA data and the results of a 

subset of ADAPT/MELCOR simulations. Figure 4 shows the probability distribution for the various 

states of FV, DV, and SRV. These distributions were assigned based on generic failure data for valves 

[14]. 

 

For the reactor parameter nodes, the ADAPT/MELCOR data are post-processed into matrices 

mapping known FV, DV, and SRV status onto the three plant parameters at each time step. An 

example of this is shown in Table 2, in which each row represents a single ADAPT/MELCOR 

simulation, with the known valve configurations shown in the first three columns. The next five 

columns (P_RPV_0,…,P_RPV_4) show the RPV pressure at the first five time steps from the 

MELCOR simulation (discretized according to the rules discussed in the previous section). The full 

results table contains and one column for each parameter at each time-step. Multiple simulations are 

run for each possible configuration of valves.  

 
Table 2: Partial illustration of tabular representation of the aggregated results from ADAPT/MELCOR 

simulations. (Full table has one column for each parameter at each time step, and one row for each 

simulation run) 

FV DV SRV P_RPV_0 P_RPV_1 P_RPV_2 P_RPV_3 P_RPV_4 

Closed Open Cycling Low Medium Low Low Low 

Closed Open Cycling Low Medium Medium Low Low 

Open Open Cycling Low Low Medium Low Medium 

Open Closed Cycling Low Medium Medium Medium Medium 

Open Closed Fail58 Low Medium Medium Medium Medium 

Open Closed Fail58 Low Medium Medium Medium Medium 

Open Closed Fail58 Low Medium Medium Medium Medium 

Closed Closed Cycling Medium Medium Medium Medium Medium 

Closed Closed Cycling Medium Medium Medium Medium Medium 

 

The tabular simulation results are fed into the GeNIe parameter learning algorithm (with the prior 

probabilities on DV, FV, SRV held as fixed), which associates the variables and states in the data set 

with those in the network. The learning algorithm implements EM (Expectation Maximization) 
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algorithm. In the example model, we used the results of 155 runs were used to generate scenario and 

end state probabilities
‡
. 

 

4.4 Using the model 

 

The prototype model in Figure 5 contains the best-available information about the progression of 

possible ECCS accidents. Users (e.g., doctors, NPP operators) apply the model to reason about 

specific situations. The users input a set of known conditions (ranging from the value of a single 

parameter, up to specification of every parameter in the model) into software. The model then 

propagates these observations through the network to provide a posterior probability of every 

unobserved node in the model. This posterior probability distribution can be used for reasoning tasks, 

such as diagnosing the status of the ECCS valves, or predicting the evolution of key reactor 

parameters for known valve statuses. 

 
Figure 6: Posterior version of Figure 5, with evidence that T_CoreExit(t=0)=low. 

 
 

The model in Figure 6 illustrates an implementation of the model for diagnosing the state of the DV, 

FV, and SRV, given knowledge of some of the plant parameters. This is an example of backward 

reasoning (effect-to-cause). In this model, the T_CoreExit at time 0 is known to be “low” – this is 

shown in Figure 6 (bottom row, third box from the left), where the probability distribution for 

T_CoreExit has changed to (0,0,100%) from (98.79%, 0.79%, 0.42%) in Figure 5. Comparison of 

Figure 5 and Figure 6 also demonstrates significant changes in the beliefs about the states of the DV, 

FV, and SRV; these results are illustrated in Table 3. The results show that the single observation 

T_CoreExit(t=0)=low makes a significant change in the belief about failure of each value. The 

probability of DV being failed close goes from 0.10% to 23.49%, and FV exhibits a similar change 

from 0.10% to 23.52%. Further comparison of the two figures illustrates that beliefs about the reactor 

parameters (both at time 0 and at the next time step) also change, based on the same evidence about 

P_RPV (t=0). 
 

Table 3: Comparison of prior and posterior probabilities for valve 

states, given the evidence that T_CoreExit(t=0)=low. 

Valve Prior (Fig. 5) Evidence Posterior (Fig. 6) 

DV 
Open = 99.90% 

P_RPV (t=0)  

= “Low” 

Open = 76.51% 

Closed = 0.10% Closed = 23.49% 

FV 
Open = 99.90% Open = 76.48% 

Closed = 0.10% Closed = 23.52% 

SRV 

Cycling = 99.00% Cycling = 46.62% 

Failat12 =  0.33% Failat12 = 0.16% 

Failat44 = 0.33% Failat44 = 26.21% 

Failat58 = 0.34% Failat58 = 27.01% 

 

Figure 6 also demonstrates intercausal (mixed forward-and-backward) reasoning. Comparison of the 

unobserved plant parameters shows making the observation on T_CoreExit has also changed 

                                                      
‡
 Numbers in the models are provided for illustrative purposes - they do not represent the full set of MELCOR 

simulations, and therefore may not represent the actual likelihoods of various plant configurations and responses 
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expectations about the value of the other two parameters at t=0, and about all three parameters at 

future time steps. For example, the probability of low T_CoreExit at (t=1) increases from 0.23% to 

64.19%. 

 

The model in Figure 7 shows how the prototype model can be used to reason about the value of 

parameters, given the known (or predicted) state of one of the valves. In this example, the FV is 

known to be failed closed.  This is an example of a single iteration of forward reasoning (cause-to-

effect). In this figure, the belief about the status of the FV is changed from unknown (Figure 5, topc 

center box) to closed (Figure 7, top center box); in this the probability of FV=closed has changed from 

0.10% (In Figure 5) to 100.00% (in Figure 6). Making this observation dramatically changes belief 

about all of the reactor parameters in the model; these changes are summarized in Table 5. As shown 

in Figure 7 and Table 5, the probability of states of P_RPV (t=0) changes from (98.79, 0.80, 0.42) to 

(0.32, 0.80, 98.89), -- the prior strong belief (high probability) of “high” RPV pressure has shifted to a 

strong belief of “Low” RPV pressure. Both RPV Level and Core Exit temperature at time ()) also 

show significant changes in the most likely state (tLev_RPV shifts from medium to high ,and 

T_CoreExit shifts from high to low). 

 
Figure 7: Posterior version of Figure 5, with evidence that FV=Closed. Comparison with Figure 5 shows 

that the observation of a closed FV dramatically change the probabilities of the reactor parameters. 

 
 

Table 4:Comparison of prior and posterior probabilities for reactor parameters, 

given the evidence that FV = Closed. 

Parameter Prior (Fig.5) Evidence Posterior (Fig. 7) 

P_RPV (t=0) 

High = 98.79% 

FV=Closed 

High = 0.32% 

Med = 0.80% Med = 0.80% 

Low = 0.42% Low = 98.89% 

Lev_RPV (t=0) 

High = 0.77% High = 96.18% 

Med = 98.79% Med = 1.78% 

Low = 0.45% Low = 2.05% 

T_CoreExit (t=0) 

High = 98.79% High = 0.50% 

Med = 0.79% Med = 0.60% 

Low = 0.42% Low = 98.90% 

P_RPV (t=1) 

High = 98.97% High = 95.24% 

Med = 0.80% Med = 0.80% 

Low = 0.23% Low = 3.97% 

Lev_RPV (t=1) 

High = 0.77% High = 96.18% 

Med = 98.79% Med = 1.78% 

Low = 0.45% Low = 2.05% 

T_CoreExit (t=1) 

High = 98.79% High = 0.50% 

Med = 0.79% Med = 0.60% 

Low = 0.42% Low = 98.90% 

 

Using the GeNIe software permits implementation of diagnosis modules with the model. The 

diagnosis module provides insight into the value provided by additional information (e.g., from 

checking parameters or performing additional diagnostic tests). These calculations are based on the 
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differential diagnosis method implemented in medical diagnoses. Diagnosis values are based on the 

expected gain in cross-entropy between the equipment fault and the state of a parameter. The 

diagnostic value comparisons can be used to help identify the most beneficial source of information 

for diagnosing a specific condition, or for differentiating between two conditions. 

 

5.  CONCLUSION 
 

A truly risk-informed accident management scheme, as outlined in this paper, has the potential to 

expand the use of risk information to provide real-time, dynamic support for severe accident 

management. The foundation of the methodology using dynamic PRA and severe accident simulations 

to build a (big) map of relationships between known accidents and evolving reactor parameters. 

Bayesian Networks provide a framework for reasoning with this information in real time, in the face 

of uncertainty about the plant status and about the parameters. 

 

Limitations in existing plant damage diagnosis and understanding may have hindered the management 

of the Fukushima accident and has led to uncertainty in attempts to reconstruct the Fukushima 

accident to inform requirements on the current reactor fleet.  

 

A combination of improvements in dynamic severe accident modeling fidelity, development of new 

uncertainty propagation techniques (DDETs), and the growing acceptance of Bayesian reasoning has 

allowed Sandia to develop a path forward for developing dynamic, risk-informed procedures. This 

represents a new application of risk assessment, expanding PRA techniques beyond simple licensing 

support, to reach the “game changing” potential called for by Goble and Bier [6].  
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