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Abstract: The quantitative analyses of Nuclear Power Plant (NPP)’s repairable systems are 

conventionally Markov-based methods. The thing is, systems’ state space grows exponentially with 

the increase of basic events, which makes the problem hard or even impossible to solve. In addition, 

the maintenance /test activities are frequently imposed on some safety-critical components, which 

make the Markov based approach unavailable. In this paper, a new numerical simulation approach 

based on MCSS (Minimal Cut Sequence Set) is proposed, which can get over the shortcomings of the 

conventional Markov method. Two typical cases are analyzed and results indicate that the new approach 

is correct as well as feasible. 
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1.  INTRODUCTION 
 

After Fukushima nuclear accident, more and more countries focus their attention on NPP’s safety, 

especially the reliability of safety-critical systems. The real-life safety-critical systems often have 

sequence- and function-dependent failure behaviours. For the description of these dynamic failure 

behaviors, traditional static fault tree is unfeasible. To overcome the shortcomings of the conventional 

static fault tree method, some researchers [1] introduced a few new dynamic gates, such as PAND, 

SPARE, FEDP and SEQ into static fault tree, i.e., DFT. Compared with previous static fault tree, the 

DFT greatly extends modeling capacities. Considering the intuitiveness and compactness of DFT, 

NPPs often adopt DFT to model safety-critical system’s failure mechanism. The commonly-used 

methods for quantifying a DFT are mainly based on Markov approaches [2,3,4] or multi-integration 

approaches [5,6,7]. Unfortunately, each of these methods has its own shortcomings: For the Markov-

based approach, it requires the time-to-failure/time-to-repair of components follows exponential 

distribution. In addition, the approach may confront the notorious problem of “state space explosion”; 

as to the multi-integration -based approach, although it avoids the problem of “state space explosion”, 

it is only applicable for non-repairable systems. Given that the components in NPP system are usually 

repairable and their failure and repair time are not exponent, the methods mentioned above are 

unavailable. To solve these problems, some researchers proposed a Monte Carlo Simulation-based 

method [8,9]. This Monte Carlo Simulation method is based on the failure behaviours of DFT gates. 

As to simple dynamic gates, this method is easy to implement. However, when dynamic gates are 

highly-coupled and complex, this method usually becomes hard to carry out. 

In this paper, a MCSS-based numerical simulation method is presented, which is applicable for any 

complex DFT and easy to implement. Results show this method is feasible and correct. 

The remainder of this paper is organized as follows: Section 2 reviews some related concepts 

including unavailability, Minimal Cut Sequence Set, etc; Section 3 presents our proposed method. 

Section 4 provides two cases studies to validate our proposed method. Section 5 gives final 

conclusions.    

 

2.  RELATED CONCEPTS 
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2.1. System’s Unavailability 

   Suppose a repairable unit that is put into working at time t=0. As the unit fails, a repair activity is 

implemented to restore the function of the failed unit. The state of the unit at time t is defined by a 

state variable: 
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   Then the reliability of a repairable unit may be measured by the availability of the unit at time t: 

                                                                     1rA t P X t                                                              (2) 

   Sometimes, A(t)  is referred to be as the point availability. Note if the unit is not repaired, then we 

can get: A(t)=R(t). Where R(t) is the reliability of a non-repairable unit at time t. Similarly, we can 

define the unavailability of a non-repairable component at time t as the probability that the unit is not 

in working state at time t: 

                                                               1 1 1rA t A t P X t                                                       (3) 

In NPP, we are more interested in the average or mission availability A(0, t) in time interval (0, t), 

which is defined as: 
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The average availability Aav(0, t) can be interpreted as the mean proportion of the time interval (0, t) 

where the unit is able to operate. Suppose a repairable unit that starts to work at time t=0. Whenever 

the unit fails, it is repaired to an “as good as new” state or substituted by a new one. Then a sequence 

diagram of up-times (life times) U1, U2 … and down-times (outage times) D1, D2 … appearing 

alternately is obtained as shown in Fig.1. 

Fig.1: alternate state-time of a repairable unit 
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   In this paper, we suppose the up-times U1, U2, … are independent and identical distributed and D1, 

D2, … are independent and identical distributed as well. In addition, we also suppose Ui+Di for i=1, 

2, … are independent. Assume a unit has just finished n repair, then the unit’s up-times U1, U2, …,Un 

and down-times D1, D2, …, Dn are obtained. When the n  +∞, then the average availability of the 

unit can be expressed as:  
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   Then the average unavailability of the unit can be written as: 
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2.2. Minimal Cut Sequence Set 

    

   As to a system modelled by DFT, the occurrence of the top event (system failure) not only depends 

on the combination of basic events but also depends on their failure sequences. Thus traditional 

minimal cut set is not able to describe this sequential failure behaviour correctly. To solve this 

problem, Tang et al [10] presents a concept of Minimal Cut Sequence (MCS) that expresses the 

minimal failure sequence that causes the occurrence of the top event of a DFT. The original expression 

of a minimal cut sequence comprises several capitals denoting a failure of a basic event and several 

temporal connecting symbols “→” which is used to express the failure sequence, i.e., the left event 
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fails before the right one. However in a real-life system’s DFT, the failure behaviours of the basic 

events may be not the same: Some components are initially powered on; some components may be 

initially powered on just at a reduced power; and some others may be originally in a standby state 

without any power. In this paper, to distinguish the failure behaviours of the basic events, four special 

symbols are introduced: “X” denotes the component X being initially powered on at a full energy and 

fails randomly; “ 0

XY ” indicates the component Y as a cold spare of X is initially unpowered and fails 

after X; “ 1

XY ” expresses the component Y as a warm spare of X and fails after X; “ XY ” shows the 

component Y as a warm spare of X and fails before X. For an illustrative purpose, an example is given 

in Fig.2. 

Fig.2: An Illustrative Example 
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   For the system’s top event is connected by the logic OR of the two dynamic gates, i.e., WSP gate 

and CSP gate, according to the failure behaviours of dynamic gates mentioned in [11], the minimal cut 

sequences of the system failure are obtained as { 1

XX Y , XY X  , 0

ZZ W }. For a DFT, it may have 

more than one MCS and all these MCSs compose an aggregate, i.e., Minimal Cut Sequence Set 

(MCSS). Since the occurrence of each MCS leads to the failure of a system, the MCSS captures the 

complete information about a system’s failure. Note that whether a system is repairable or not, the 

corresponding MCSS is unique. Therefore we can get the MCSS of a repairable system using the 

approaches developed for non-repairable systems [12,13]. 

 

2.3. Basic Events’ Failure Behaviors   

 

   The failure behaviour of a basic event refers to the randomness of its failing. As mentioned above, 

basic events involved in a DFT may have different failure behaviours. According to the failure 

behaviours of the basic events, we classify the basic events into three categories: random basic events, 

semi-random basic events and decided basic events. As we know the failure time of a basic event is 

completely random during its mission time. Note that a component’s mission time doesn’t always 

equal the system’s mission time. For example, the mission time of a cold spare is always dependent on 

the primary component.  

   In general, the occurrences (failure behaviours) of components providing the main functions during 

system mission period are considered to be random basic events. And the occurrences of components 

supplying standby function are considered semi-random basic events. In most cases, the entire spare 

components except hot spares are semi-random basic events, and the remains are the random basic 

events. In NPP, some components’ function failure is caused either by a random event (random failure 

event) or by a decided event. The decided events here refer to the regular maintenance/test activities 

imposed on the safety-critical components to improve the reliability. However, when the safety-critical 

components are forced outage for the regular maintenance/test activities, the risk of the system will 

increase. In this paper, the decided basic event is supposed to be a virtual component. To reflect the 

influence of the decided basic events to a component’ function, this paper developed a new function 

dependent dynamic gate. To differ from the traditional FDEP gate, this new dynamic gate is called 

Decided Function Dependent gate (DFDEP) where the trigger events are the decided events. When the 

decided events occur, the dependent events are forced outage. The DFDEP gate is shown in Fig.3. The 

symbols 1 … n  represent the decided events such as maintenance activity, test activity, etc. and the 

E1… En means the dependent events. In general, the classifications of the basic events are listed in 

Table 1. 
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Table 1: Classification of the Basic Events 

 

Fig.3:  A Decided Function Dependent gate 
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3.  NUMERICAL SIMULATION FOR THE MCSS 
 

3.1. Numerical Simulation for the Failure Behavior of a Basic Event 

 

   As to a repairable component, its failure behavior can be simulated by a Monte Carlo-based 

approach. It is known the time-to-failure and time-to-repair of a component are only determined by 

their respective Cumulative Probability Distributions (CDFs). Consider the CDFs of a component’s 

time-to-failure and time-to-repair are F(x), G(x), and then the time-to-failure Tf and the time-to-repair 

Tr are obtained by the following expressions: 
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                                                              (6)  

   Where the  ,  are uniform random numbers generated by any standard random number generators. 

For the random basic events being active initially, its running state in system’s mission time can be 

simulated directly using Eq. (6). However, for the semi-random basic event, when there is no demand, 

it will keep up in standby state or may be in a failed state due to on-shelf failure. Therefore the failure 

behaviors of the semi-random events are relatively complicated. For the cold spares, they never fail 

during the standby states. Considering the outage time (time-to-repair) of the primary component is 

the mission time of the cold spare, the failure behavior can be simulated using Eq. (6) during this 

mission time.  As to the warm spare, the situation is even more complex. The failure rates of a warm 

spare in standby state and in working state are not the same. In other words, the warm spares have two 

CDFs of the time-to-failure in different states. Generally speaking, the failure rate of a warm spare in 

working state is higher than that in standby state. When the primary component is staying in a working 

period (time-to-failure), the failure behavior of the standby component is simulated by the Eq. (6) with 

one time-to-failure CDF. Similarly, when the primary component is staying in an outage period (time-

to-repair), the failure behavior of the standby component is simulated by the Eq. (6) with the other 

time-to-failure CDF. Apparently the failure behaviors of the semi-random basic events are dependent 

on but not affecting the random basic events. Finally, as to the decided events, the occurrences time of 

these events can be obtained directly from the scheduled maintenance/test management documents. 

Category  Basic Events Symbols 

Random basic events 

The basic events under AND, PAND , OR gate; 

The basic events under SPARE gate  representing 

the primary components;  

 
X  

Semi-Random basic events 
The basic events under PAND gate denoting the 

standby components; 
0

XY , 1

XY , 1

XY  

Decided basic event 
Virtual events expressing a series of maintenance, 

test, etc, activities. X   
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Considering the correlation between the basic events’ failure behaviors, the simulation precedence is 

required as: random basic events →decided events →semi-random basic events.  

 

3.2. Numerical Simulation for the MCSS 

 

After simulating the basic events’ failure behaviors, the numerical simulation of the system’s MCSS 

is carried out. If a MCS occurs at some point, the system is considered to be failed. For demonstration 

purpose, an illustrative example is shown in Fig.4. 

 

Fig.4: An Illustrative Example 
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   Based on the temporal rules mentioned in [12,13], the MCSS of the example system is: {A→B→ 0

B C , 

A→B→
C }. Where the symbol 

C represents a series of regular maintenance activities imposed on 

component C.  Therefore, the system has two failure scenarios: the scenario 1 is  A→B→ 0

B C and the 

scenario 2 is A→B→
C . The state-time of the example system (MCSS) is depicted in Fig.5. 

 

Fig.5: The State-time of The Example System’s MCSS 
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    For generating the system state time diagram, all components state time profiles, including virtual 

components (test/maintenance activities), involved in every MCS are compared. The system will fall 

in a failed state if all the components contained in a MCS failed in a pre-assigned sequence (usually 

from left to right), as shown in Fig.5 (first and second scenarios). In the scenario 1, the active 

component (A) failed followed by the second component (B), and then followed by the third 

component (C), the system is identified as failure since the failure sequence meets A→B→ 0

B C . As to 

the scenario 2, although the standby component (C) is functionally available during the repair period 

of the primary component (B), it is forced outage for the imposed maintenance activity, and the system 

is still considered to be failed since the failure order meets A→B→ C . 

 

3.3. Calculation the System Reliability Indexes  

 

In NPP, we are interested in system average unavailability and unreliability. To obtain these 

reliability indexes, the total outage time ( i

ot ) and time to first failure ( i

ft ) of the system in a simulation 

are recorded. Let  t  be the system state variable and the logic value of the variable is defined as: 
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Where, T is the mission time of the system. 

Then, the system average unavailability in the mission period is evaluated as: 
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Where, the N is the simulation number. And the system unreliabilityy Rs during the mission time T 

can be calculated using the follow equation. 
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4. CASE STUDY 
     
4.1. Case Study 1 

 

In this section, a case study is presented to validate the proposed method. The case is excerpted 

from an I&C (Instrument and Controller) system in one Chinese NPP. The simplified DFT model of 

this system is shown in Fig.6. And every capital letter represents a component. In I&C system, every 

component is repairable. The components failure and repair parameters are listed in Table 2. 

 

Fig.6: Simplified DFT of an I&C Controller System 
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Table 2: Components failure and repair parameters 

 

The MCSS of the DFT is {A, B, C→D, D→C, E→F,F→E, I→G→H,G→H→I}. For the mission 

time 10
4
h, the unavailability of I&C system calculated by our proposed method is 8.18E-4. For 

validation purpose, the Markov-based approach is adopted as a benchmark. To reduce the system state 

space, the system is divided into three independent sub-modules via modularization. Each sub-module, 

denoted with the dotted box, is solved by the Markov approach. Then the results of the three sub-

modules are integrated to obtain the system unavailability. As applying the Markov-based approach, 

Component Failure rate(h)  Repair rate(h) Component Failure rate (h) Repair rate(h)  

A 1.0E-4 0.25 F 5.0E-3 4.00 

B 5.0E-4 1.20 G 1.4E-3 2.00 

C 1.0E-3 1.50 H 2.0E-4 0.50 

D 1.5E-3 1.00 I 2.5E-3 3.00 

E 5.0E-3 5.00 - - - 
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the unavailability of the system is obtained 8.20E-4, which is accorded with ours. In addition, the 

unavailability time and first time to failure distribution for the system is shown in Fig.7-8, respectively. 

 

Fig.7: Unavailability with Time 
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           Fig.8: First Time to Failure Distribution 
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4.2. Case Study 2 

  

For further validation purpose, another case with complex failure behaviors is studied. The case is 

the electrical power supply system of typical NPP. The system contains three subsystems: the Grid 

supply subsystem known as Class Ⅳ supply is the main power which feeds all the load; The diesel 

generator subsystem, known as Class Ⅲ supply, as the standby power of the Class Ⅳ supply is 

providing the emergency power in the absence of the primary power; The sensing & control 

subsystem is used to trigger the redundant diesel generator once detecting the failure of Grid supply 

system. To ensure the reliability of the electrical power supply system, the redundant diesel generator 

is forced outage for regular test/maintenance. Therefore the system has two failure scenarios: The Grid 

supply subsystem fails, and then redundant diesel generator fails or is unavailable for test or 

maintenance outage; the sensing & control subsystem fails before the primary diesel generator fails 

and it makes the standby power be not triggered. The top event (station blackout) of the system 

modeled by DFT is shown in Fig.9. The component failure and maintenance information is listed in 

Table 3. 
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Fig.9: Dynamic Fault Tree Model for the Station Blackout Accident 
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Table 3: component failure and maintenance information 

 

 

For a general dynamic repairable system, the DFT can be quantified by a Markov-based approach. 

However, in this case, it becomes unavailable since the test and maintenance activities are decided 

events. Hence an approximate solving strategy is adopted as: the unavailability of CSP gate (QCSP) is 

approximately obtained by the unavailability of Grid supply being multiplied the unavailability of 

standby supply, and the unavailability Q of the standby component is solved by the equation: Q= [1-

(1-e T )/ T ]+[fmTm] +[ rT ]+[ / T ] suggested in IAEA P-4 [14], where  is failure rate, T is test 

interval, fm is frequency of preventive maintenance, Tm is duration of maintenance, Tr is repair time, 

 is test duration; As to the unavailability of PAND gate (QPAND), it is can be solved by the 

conventional Markov approach.  Then the approximate solution of the system unavailability (Qsyst) is 

calculated by the following equation: Qsyst = QCSP +QPAND-QCSP·QPAND. For the mission time 10
4
h, the 

unavailability of the system is 3.89e-7 using the approach mentioned above. 

At last, the unavailability of the electrical power supply system is calculated by our proposed 

simulation approach. The system MCSS is {C→A, A→B, A→ 1 , 1 →A, A→ 2 , 2 →A}, then the 

system unavailability is finally simulated as 3.87e-7 with 10
7
simulation numbers. Obviously, the result 

obtained using our method is in good agreement with that calculated by the approximate solving 

strategy. In addition, the unavailability-time and outage-time distribution of the system are obtained as 

shown in Fig.10-11. 

 

 

 

 

 

 

 

 

component description Failure rate Repair rate Test period/time Maint. period/time 

A Grid supply 2.34E-4 2.590 - - 

B Standby supply 5.33E-4 8.695E-2 - - 

C Sensor 1.00E-4 2.500E-1 - - 

1  Test activity - - 168/8.33E-2 - 

2  Maint. activity - - - 216/8 
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Table.10: Unavailability with Time 
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Table.11: Outage Time Distribution 
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5.  CONCLUSION 
 

    In this paper, we propose an efficient numerical simulation approach for evaluating the reliability of 

repairable system in NPP. By contrast to the existing approaches, such as Markov model, multi-

integration model, our proposed approach has no limitation in the size of DFT, exponential 

components time-to-failure and time-to-repair distributions. Moreover the proposed approach is 

applicable to the system components with scheduled tests and maintenance activities. The results show 

this simulation method is correct.  Although it is intensively computational for the top event with a 

small occurrence probability, it is a valuable approach to be studied with the rapid development of 

computer technology. 
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