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Abstract: In August 2012, Hurricane Isaac, a Category 1 hurricane at landfall, caused extensive 
power outages in Louisiana. The storm brought high winds, storm surge and flooding to Louisiana, 
and power outages were widespread and prolonged. Hourly power outage data for the state of 
Louisiana was collected during the storm and analyzed. This analysis included correlation of hourly 
power outage figures by zip code with wind, rainfall, and storm surge using a non-parametric 
ensemble data mining approach. Results were analyzed to understand how drivers for power outages 
differed geographically within the state. This analysis provided insight on how rainfall and storm 
surge, along with wind, contribute to power outages in hurricanes. By conducting a longitudinal study 
of outages at the zip code level, we were able to gain insight into the causal drivers of power outages 
during hurricanes. The results of this analysis can be used to better understand hurricane power outage 
risk and better prepare for future storms. It will also be used to improve the accuracy and robustness 
of a power outage forecasting model developed at Johns Hopkins University. 
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1.  INTRODUCTION 
 
Hurricane Isaac hit Louisiana in August 2012 and caused substantial power outages.  It was a 
Category 1 hurricane at landfall and 47% of the state’s electric customers lost power.  The storm was 
large, slow-moving, and had significant storm surge associated with it.  In comparison with other 
hurricanes, Isaac ranks fourth in customer power outages, behind Hurricanes Katrina, Gustav, and 
Rita, for the Entergy service area in Louisiana, Mississippi, Texas and Arkansas [1]. 
 
Power outages result in direct repair and restoration costs for utility companies, and can also result in 
loss of services from other types of critical infrastructure that are reliant on power service such as 
water, transportation, and communications systems.  This can delay recovery times for a community 
that is impacted by a hurricane [2].  Accurate predictions of power outages prior to a storm can benefit 
both utility companies and government agencies by making planning and recovery more efficient [3]. 
 
Power outage prediction is often accomplished through the development of models based on wind 
field estimates, along with other covariates such as power system data, soil moisture levels, land use 
and topographical indicators [3].  A number of such statistical models have been developed [2,3,4].  
While these models can be very accurate for some storms, they are less accurate for others.  
 
In addition to accuracy of models varying from storm to storm, the causes of the outages can vary 
geographically across a region, and the existing models do not include some potential causes of power 
outages, particularly high rainfall.  The main goal of this paper is to obtain a better understanding of 
the causes and geographic variance of power outages, both to improve basic understanding and to 
provide a stronger basis for improving outage forecasting models.  Are the causes the same for a 
coastal area as an inland area?  How important are rainfall and surge relative to wind? Damage to 
power systems is recorded by utilities, but good data on causes of outages is not generally available, 
making a longitudinal approach necessary. 
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Can statistical analysis of power outage data and covariate data provide a better understanding of the 
causes of outages?  The purpose of this study was to look at power outages longitudinally across the 
state of Louisiana for Hurricane Isaac to identify how the importance of covariates changes 
geographically.  The results of this analysis may inform power outage prediction models and help to 
build more resilient infrastructure through improved understanding of the causes of outages. 
 
In Section 2, the data used for the analysis as well as the statistical analysis methods are presented.  
Results and Discussion are included in Section 3, and Conclusions in Section 4. 
 
2.  METHODS AND DATA 
 
2.1 Overview of Methods and Data 
 
We focused on variables related to three key physical hazards associated with hurricanes: wind, storm 
surge, and rainfall in order to gain a better understanding of relative contribution of these three 
drivers. We analyzed all variables on an hourly basis, and so included variables that change over time 
as the storm progresses.  We obtained data for the covariates of interest from publically available 
sources or modeled them based on publically available data.  A summary of the covariates, 
abbreviations used for covariate names, data sources, and a description of each covariate is provided 
in Table 1.  While data was available in varying time increments for each covariate, we performed 
interpolation to obtain hourly estimates.  We chose the hourly change in outages as the response 
variable, and hours that did not have a positive increase in outages were removed from the analysis to 
focus the analysis on only the outage occurrence portion of the storm, not the outage restoration part 
of the storm.  A more detailed description of each category of data and the data interpolation are 
provided in Sections 2.2 through 2.6.  
 

Table 1: Summary of Covariates 
 

Covariate Abbreviation Source Description 
Cumulative Precipitation cumprecip NCDC Total precipitation amount 

during storm duration to hour 
of analysis in inches 

Hourly Precipitation Total precip NCDC Precipitation amount in hour 
of analysis in inches 

Wind Speed windspeed Texas A&M model Wind speed in meters/second 
for zip code in hour of 
analysis 

Wind Gust Duration windduration Texas A&M model Duration of wind gust >20 
meters/second for zip code in 
hour of analysis 

Previous Outages prevout Entergy website Number of outages in 
previous hour of analysis for 
zip code 

Population population US Census Bureau Population estimate for zip 
code 

Average Surge surgeAVG George Mason 
University model 

Average storm surge depth for 
zip code in hour of analysis 

Minimum Surge surgeMIN George Mason 
University model 

Minimum storm surge depth 
for zip code in hour of 
analysis 

Maximum Surge surgeMAX George Mason 
University model 

Maximum storm surge depth 
for zip code in hour of 
analysis 

Surge Variance surgeVAR George Mason 
University model 

Variance of storm surge depth 
for zip code in hour of 
analysis 
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After completing the data collection and interpolation, we ran a Random Forest model for the entire 
data set.  The most important variables were identified through Random Forest based importance 
measures for use in additional analysis as described further below.  Using this reduced set of 
covariates, we ran the Random Forest analysis for each zip code separately.  We plotted the results in 
map format for analysis of spatial trends.  Then we used a Quantile Regression Forest for selected zip 
codes to gain insight into model accuracy.  The modeling and analysis methods are described in more 
detail in Sections 2.7 through 2.9. 
 
2.2 Outage Data 
 
Power outage data was collected during the duration of the storm from August 27 to September 5, 
2012.  The data was harvested from the Entergy Louisiana website by a team of researchers at Johns 
Hopkins University [5].  The data was collected on a half-hourly basis during periods of peak outages, 
and was collected less frequently during non-peak outage periods. Data collected included the number 
of current customer outages by zip code.  In order to standardize the data for use in analysis, we 
performed linear interpolation to estimate the number of outages for each zip code at the top of each 
hour for the duration of the storm. 
 
We chose the change in outages (termed delta outages in this paper) for each hour of analysis for each 
zip code as the response variable for this analysis.  Total power outages for the previous hour of 
analysis for each zip code was included as a covariate to account for the fact that the number of 
customers already without power impacts the number of power outages occurring in a given hour. 
 
2.3  Precipitation Data 
 
Precipitation data were obtained from the National Climatic Data Center (NCDC) website.  Data was 
available for 36 stations in Louisiana.  The time intervals at which the precipitation data were 
recorded varied by station, but were typically hourly or half-hourly.  The data obtained was the hourly 
total rainfall [6].  In order to standardize the data for use in analysis, we interpolated the data set to 
estimate the hourly precipitation (precipitation that occurred in the previous 60 minute period) at the 
top of the hour for each station.  Because our analysis was performed on a zip code basis, we needed 
rainfall estimates for each zip code. Based on the geographic coordinates of the zip code centroids and 
on the locations of the stations, we generated hourly rainfall estimates for each zip code using inverse 
distance weighted interpolation based on the spatially sparser set of rainfall stations that we had 
available. 
 
2.4  Storm Surge Model 
 
We used the coupled version of the 2-Dimensional Depth Integrated version of the Advanced 
Circulation (ADCIRC) model and the wave model SWAN [7] to simulate hurricane storm surge. The 
ADCIRC model [8] is a finite element, shallow water model that solves for water levels and currents 
at a range of scales and is widely used for storm surge modeling (e.g., Ferreira et al. 2013) [9]. This 
version of the program solves the Generalized Wave Continuity Equation (GWCE) and the vertically 
integrated momentum equations. SWAN is a third generation spectral wave model [10] that computes 
the time and spatial variation of directional wave spectra. We used the pre-validated numerical mesh 
SL15 presented in Bunya et al. (2010) [11] and validated by Dietrich et al. (2010) [12] with resolution 
up to 30 meters in some areas. The hurricane surge model was forced by wind and pressure fields 
developed by a parametric asymmetric wind model [13] that computes wind stress, average wind 
speed and direction inside the Planetary Boundary Layer (PBL) based on the National Hurricane 
Center (NHC) best track data [14] meteorological conditions (e.g., central pressure, forward speed and 
radius to maximum wind). The simulations for Hurricane Isaac included tides (Tidal potential 
components M2, S2, N2, K2, K1, O1 and Q1) and neglected rivers inflows. Simulation results were 
recorded at 15 minute intervals for every model node in the study region. The water levels for each 
model node within each zip code were extracted from the entire model domain and inundation levels 
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were converted to the NAVD88 vertical datum. Covariates based on the storm surge model include 
average storm surge, maximum storm surge, minimum storm surge, and storm surge variance. 
 
2.5  Wind Model 
 
The parametric wind field model of Willoughby et al. (2006) [15] is used to generate wind estimates 
for the duration of the hurricane at the zip code level for Hurricane Isaac.  Parametric hurricane 
models are formulated from a physical understanding of hurricane wind fields. That is, winds are calm 
in the eye of the hurricane and they are typically at a maximum in the eyewall. Outside the eyewall 
the wind decreases with radius, although not always monotonically, and become near zero at some 
distance from the center of circulation. This wind field model was previously used in Han et al. [2, 
16]. Two of the covariates are based on output from this model. The first is maximum wind speed in 
meters per second in the previous hour. The second is wind gust duration greater than 20 meters per 
second, with duration being taken cumulatively over the life of the storm for each zip code. Both of 
these covariates are simulated for the centroid of each zip code polygon based on running the wind 
field model every 60 minutes over the duration of the storm. 
 
2.6  Other Data 
 
Population estimates for each zip code were obtained from the US Census Bureau American 
Community Survey.  These estimates were based on the US Census Bureau data for the year 2011.  
Because the US Census bureau does not track population on a zip code basis, the population data is an 
estimate based on census tract data (US Census) [17]. 
 
2.7  Random Forest and Quantile Regression Forest Methods Overview 
 
A Random Forest is a non-parametric ensemble data mining method [18].  In the method, a large 
number of regression trees are developed, with each tree based on a bootstrapped sample of the data 
set.  Random Forest models are good for data sets with non-linear data, outliers, and noise.  Two types 
of output from the Random Forest model fit very nicely with the objectives of this analysis.  The first 
is variable importance, which is a measure of the contribution of a given covariate to the model 
prediction accuracy.  The second is the partial dependence plot.  These plots show the marginal effect 
of a covariate on the response variable. The randomforest package in R was used for this analysis 
[19]. 
 
Quantile Regression Forests provide a non-parametric way of estimating conditional quantiles based 
on an underlying Random Forest model [20].  Quantiles give more information about the distribution 
of the response variable as a function of the covariates than just using the conditional mean as a 
standard Random Forest model does.  In this method, regression trees are grown as in the Random 
Forest method.  Then the weighted distribution of the observed response variables is used to estimate 
a conditional distribution. The difference between Random Forest models and Quantile Regression 
Forest models is that Random Forest models keep only the mean predictions and disregard other 
information.  Quantile regression forests estimate the quantiles of the predictions based on the trained 
forest (Meinshausen, 2006).  The quantregForest package in R was used for this analysis [21]. 
 
2.8  Statistical Analysis 
 
A statewide Random Forest model was run using the data for all covariates and zip codes.   Variable 
importance was reviewed to identify the variables that are most significant for predictive accuracy.  
Based on the variable importance, one covariate from each category of covariates (precipitation, wind, 
storm surge, and outages) was retained for individual zip code analysis in order to better understand 
the influences of the different variables. Partial dependence plots were generated for each of these 
covariates, and were reviewed to understand the marginal effects of these covariates on the response 
variable. 
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In order to understand the relative importance of the four covariates, and how that importance varies 
geographically, plots of importance for each of the covariates were generated.  Because the magnitude 
of variable importance is not the same for each Random Forest run, comparing the variable 
importance between zip codes would not be useful.  Instead, we calculated a percent variable 
importance for each zip code.  The variable importance for the four covariates (wind speed, 
cumulative precipitation, maximum storm surge, and previous outages) was summed to calculate the 
total importance value for each zip code.  Then the percent of total importance accounted for by each 
covariate was calculated.  For each of the four covariates, we plotted the percent variable importance 
by zip code.  We visually reviewed these plots to identify how the percent importance for each 
covariate differed geographically.  The plots were also evaluated in light of the plots of the covariate 
values (Figure 4), so that the magnitude of the covariates was accounted for in evaluating the percent 
importance trends. 
 
In order to better understand the predictive accuracy of the random forest model, a Quantile 
Regression Forest model was run on three selected zip codes.  The zip codes were chosen so that 
different geographic areas in the state were represented.  These zip codes include 71220 (north), 
70129 (southeast), and 70525 (southwest). 
 
3.  RESULTS AND DISCUSSION 
 
3.1  Variable Importance 
 
The variable importance results for the Random Forest model with all covariates included are shown 
in Figure 1.  Cumulative precipitation, wind speed, and previous outages are the most important 
variables, followed by population and hourly precipitation.  All of the surge variables, along with 
wind gust duration had considerably lower variable importance. This differs from some previous work 
where wind gust duration was shown to be an important variable (e.g., Han et al. 2009) [16] and may 
be specific to this hurricane for which wind speeds were lower than for the hurricanes included in the 
Han et al. work [2]. 
 

 
Figure 1: Variable Importance, all covariates included 

 
Based on these results, four variables were selected as part of a reduced covariate set to be used for 
the remainder of the analysis.  These variables were: cumulative precipitation, wind speed, previous 
outages, and maximum surge.  Maximum surge depth was selected over average surge depth in each 
zip code because it had a clearer physical interpretation than the average surge depth yet had nearly 
the same importance score.  Population was not included because the remainder of the analysis was 
done on an individual zip code basis wherein population is constant.  The Random Forest model for 
the entire state was rerun with this reduced set of covariates.  The resulting variable importance plot is 
included as Figure 2.  In this model, the previous outages covariate has the highest variable 
importance, followed closely by cumulative precipitation and wind speed.  Maximum surge has a 
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lower importance, as should be expected since only a small portion of the state was impacted by storm 
surge. 
 

 
 

Figure 2: Variable Importance, reduced covariate set 
 
3.2  Partial Dependence 
 
Partial dependence plots were generated for the four covariates in the reduced set, and are provided as 
Figure 3.  Partial dependence provides insight into the marginal impact of the covariate on the 
response variable, increase in outages. 
 

 
 

Figure 3: Partial Dependence Plots: a) partial dependence on cumulative precipitation, b) 
partial dependence on wind speed, c) partial dependence on maximum surge, and d) partial 
dependence on number of previous outages.  The x-axis represents the value of the covariate 

and the y-axis represents the marginal influence of the covariate on delta outages. 
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The marginal influence of the cumulative precipitation covariate is highest for about 0 to 4 inches of 
precipitation.  The marginal influence of wind speed generally increases with increasing wind speed.  
The influence of maximum surge is more variable, which may be due to the fairly low number of zip 
codes that experience storm surge.  The marginal influence of the previous outages covariate increases 
up to around 10,000 outages, and then slightly decreases, since once a high number of outages occurs 
in a zip code, additional outages may be small in magnitude. 
 
3.3  Geospatial Analysis 
 
In order to analyze spatial trends across the state, we generated plots to get a sense of the magnitude 
of precipitation, wind speed, storm surge, and outages, and how the magnitude varied across the state.  
These plots are presented in Figure 4.  Total precipitation (cumulative precipitation) was highest in 
the southeast part of the state, with more than 12 inches of precipitation recorded in some locations.  
Maximum wind speed was also highest in the southeast part of the state, where the hurricane made 
landfall.  Maximum storm surge was highest in several zip codes bordering the Gulf of Mexico, as 
well as in several zip codes bordering the Mississippi River.  The maximum numbers of power 
outages were observed in zip codes in the southeast, around New Orleans, where the population is 
greatest and the storm impacts were more significant. 
 

 
 

Figure 4: Covariate values for a) cumulative precipitation (inches), b) maximum wind speed 
(meters/second), c) maximum surge (meters), and d) maximum number of outages. Zip codes 

not colored are not part of the utility’s service area. 
 
Figure 5 illustrates the percent importance for cumulative precipitation, wind speed, maximum storm 
surge, and previous outages for all zip codes analyzed in Louisiana.  In the northern part of the state, 
both cumulative precipitation and previous outages had the highest percent importance. Wind speed 
had the highest percent importance in the southeast part of the state.  In the southwest portion of the 
state, percent importance varied from zip code to zip code, with cumulative precipitation, wind speed, 
and previous outages having varying importance. With the exception of a few zip codes, the percent 
importance for maximum storm surge was less than 30%, even in coastal areas. 
 
These results indicate that the importance of covariates varies geographically.  This is due to the 
storm’s track and characteristics, but also potentially due to the interaction of other factors pertaining 
to the topography and power system.  Both wind speed and cumulative precipitation were highest in 
the southeast, due to the storm’s track; however, wind speed generally had greater importance in that 
area than precipitation.  In the northern part of the state, where precipitation was moderately high, but 
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wind speeds were low, precipitation was of greater importance.  The previous outages covariate was 
generally more important in areas that had a lower maximum outages value.   

 

 
 
Figure 5: Percent Importance Plots for a) cumulative precipitation, b) wind speed, c) maximum 

surge, and d) previous outages 
 

3.4  Quantile Regression Forest 
 
We ran a Quantile Regression Forest model on three selected zip codes in order to better understand 
the predictive accuracy of the model.  These zip codes include 71220 (north), 70129 (southeast), and 
70525 (southwest).  Plots of the Quantile Regression Forest results for these three zip codes are shown 
in Figure 6.  These plots show the 90% prediction confidence intervals and whether predictions using 
out-of-bag data fall inside or outside of the prediction intervals.  As shown on the plots, the majority 
of the predictions fall within the prediction intervals. 
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Figure 6: Quantile Regression Forest plots for a) zip code 70129, b) zip code 71220, and c) zip 

code 70546 
 
Table 2 shows the range of predictions that fall between the 10% and 90% quantiles.  For low values 
of delta outages (0 to 2), the coverage of the 90% interval is very low; the model has little reliability at 
the lowest level of delta outages.  For middle of the range values of delta outages (2 to 75), the model 
confidence interval coverage is fairly high, ranging from 76% to 100% for a 90% interval for the three 
zip codes analysed.  At the high end of the delta outages range (75+), the coverage accuracy varies 
significantly.  This makes sense given the nature of power outages and the covariates used in the 
model.  Very low increases in power outages are not likely well correlated to wind, precipitation, or 
previous outages, and are more likely caused by random events occurring at individual houses.  Very 
high increases in power outages can sometimes be correlated with high precipitation or wind, but 
could also occur due to sudden problems in the power grid. 
 

Table 2: Percent of Predictions within 80% Confidence Interval 
 

Delta Outage Range Zip Code 70129 Zip Code 71220 Zip Code 70546 
0-2 0% 0% 3% 

2-75 80% 100% 76% 
75+ 58% N/A 100% 

 
 
4.  CONCLUSION 
 
The purpose of this analysis was to provide insight on how rainfall and storm surge, along with wind, 
contribute to risk of power outages in hurricanes. By conducting a longitudinal study of outages at the 
zip code level, we were able to gain insight into the causal drivers of power outages during hurricanes.  
Our analysis showed that the drivers of power outages and the importance of the drivers can vary 
geographically.  In Louisiana, during Hurricane Isaac, rainfall and previous outages were the most 
important covariates in the north, while wind was more important in the southeast.  Rainfall, wind, 
and previous outages were all relatively important in the southwest.  With the exception of a few zip 
codes, storm surge was generally not an important variable in predicting power outages.  The reason 
the drivers vary geographically is likely due to characteristics of the location and of the storm.  In 
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areas where the highest wind speeds are experienced, wind is likely to be the most important 
covariate.  Elsewhere, the importance of covariates differs geographically. 
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