

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Quantification of reactor protection system software reliability based on
indirect and direct evidence

Ola Bäckström2, Jan-Erik Holmberg3, Mariana Jockenhoevel-Barttfeld4, Markus

Porthin1, Andre Taurines4
1VTT Technical Research Centre of Finland, Espoo, Finland

2Lloyd Register Consulting, Stockholm, Sweden
3Risk Pilot, Espoo, Finland

4AREVA GmbH, Erlangen, Germany

Abstract:
This paper presents a method for the quantification of software failures in a reactor protection system
in the context of probabilistic safety assessment (PSA) for a nuclear power plant. The emphasis of the
method is on the quantification of the failure probability of an application software module, which can
lead to the functional failure modes: failure to actuate on demand a specific instrumentation and
control (I&C) function or spurious actuation of a specific I&C function. The quantification is based on
two main metrics, complexity of the application software and the degree of verification and validation
of the software. The relevance of common cause failures and an analysis of the impact of fatal and
non-fatal failures on the system will be covered by the discussion. Collection of operational data and
challenges to use it for software reliability quantification will also be discussed. The outlined
quantification method offers a practical and justifiable approach to account for software failures that
are usually ignored in current PSAs.

Keywords: PSA, Software reliability, Operational history data

1. INTRODUCTION

Currently, no common approach is available in the nuclear power plant (NPP) field for assessing
safety and reliability of digital instrumentation and control (I&C) and meeting related regulatory
requirements. However, there is a tradition to try to find harmonised approaches for probabilistic
safety assessment (PSA) and its applications and there is generally a strong interest to find solutions
and guidelines on how to deal with digital I&C.

This paper presents a method for quantification of software failures in a reactor protection system
(RPS) in nuclear PSA context. The aim is to define a simple yet sufficient model which describes the
software failure impacts and provides a quantification approach for the failures. Treatment of common
cause failures (CCF) between components is also discussed.

The paper is organised as follows. In Chapter 2 the software fault modes are first identified. In Chapter
3the list of evidence is discussed, taking into consideration the verification and validation (V&V) and
the complexity of the software as well as software operating experience. In Chapter 4 the proposed
quantification method is outlined. Finally conclusions are presented in Chapter 5.

The work is part of the Nordic DIGREL project [1, 2, 3]. This work builds partly on the work on
taxonomy of failure modes of digital components for the purposes of PSA conducted by the
international OECD/NEA Working Group RISK [4].

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

2. DEFINITION FOR SOFTWARE FAULTS

2.1. Example safety I&C architecture

DIGREL project primarily considers the RPS of a nuclear power plant, since it is considered to be
more important for PSA than other I&C systems and it is considered a conceivable target for the
activity.

For the purpose of defining concepts and demonstrating modelling and quantification approaches, a
generic safety I&C architecture is assumed. The example protection system consists of two diverse
subsystems, called reactor protection system (RPS) and diverse protection system (DPS), both divided
into four physically separated divisions.

The extent of diversity between RPS and DPS may vary, but we may generally assume that they
perform different functions. The platforms of both subsystems are assumed to be identical, in order to
include the platform CCF in consideration. The number of acquisition and processing units (APU) and
voting units (VU) per each subsystem and division may vary, too, but here we assume that there can
be more than one APU/VU per each subsystem and division.

Figure 1. Example I&C system architecture.

DPSRPS

Division 1

APU
A1

...

VU
B1

APU
B1

...

Division 2 Division 3 Division 4

...

VU
A1

Actuator ...

2.2. Software fault modes

The qualitative part of the software fault mode analysis is focused on

a) Identification of safety-critical software modules in I&C units
b) Identification of possible effects of postulated faults in the safety-critical software modules
c) Identification of defensive measures against the software faults.

The approach is to successively postulate a single software fault in each software module regardless of
the likelihood of such faults, and to determine the maximum possible extent of the failure, regardless
of the measures taken by design or operation to limit that extent. The following software PSA modules
are considered [4]:

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

• System software (SyS). This includes the operating system and runtime environment
(interaction between application and operating system).

• Elementary functions (EFs).*
• APU functional requirements specification modules (APU-FRS). Their purpose is to allow the

representation of errors in functional requirements specifications of the acquisition and
processing functions.

• APU application software modules (APU-AS). Their purpose is to allow the representation of
errors in the implementation of application-specific acquisition and processing software.

• Proprietary software (Propr. SW) in I&C. Other modules than the processor module. Specific
pieces of software present in hardware modules in APU, DCU, VU or any other module of the
system (e.g. power supply) other than SyS and AS.

• VU functional requirements specification modules (VU-FRS). Their purpose is to allow the
representation of errors in functional requirements specifications of the voting functions.

• VU application software modules (VU-AS). Their purpose is to allow the representation of
errors in the implementation of application-specific voting software.

• Data communication software (DCS). Operating system of DCUs.
• Data link configuration (DLC).

Two failure effects are considered from the hardware module point of view. A software fault leads
either a fatal or a non-fatal failure of the hardware module (e.g. the processor module). A fatal failure
means that generation of outputs is ceased and e.g. in the processor module the exception handler sets
the output values into defined fail-safe values. A non-fatal failure means that the module continues to
operate, but one or more output values are wrong.

Depending on the location of the software fault, failure effect and system architecture, one or more
units in one or more subsystems can be impacted. The report [4] presents a list of maximum failure
extents of a postulated event. Because it would be impractical to take all of them into consideration in
the PSA model, the most relevant can be identified. The following software faults and effects are
considered in this paper:

1. Software fault causing loss of both subsystems (SYSTEM, case 1). This is a complete CCF
covering all platforms that have the same system software. The probability of such an event is
naturally extremely low, but the basic event can be used to evaluate the level of hardware
diversity in the actuation of safety functions. It is only reasonable to consider a fatal failure
leading to a crash of the processing units, i.e., no output signals coming from the processors.
This maximal end effect covers all the other principally possible end effects. Software fault
can be located in SyS, EFs, proprietary SW-modules in APUs/VUs, DCS, but it can be
represented in a model by a single basic event.

For this event, a single generic probability needs to be estimated, denoted here P(SYSTEM-
SyS fatal CCF).

2. Software fault causing loss of one subsystem (1SS). This is a complete CCF causing a fatal
failure which crashes the processing units in one subsystem, i.e., no output signals coming
from the processors within this subsystem. The software fault can be located in

a) the SyS, EF (APU/VU), APU-FRS, proprietary SW-modules in APUs/VUs, VU-FRS or
VU-AS,

b) DCS or DLC.

The difference is that in case of fatal failure in DCS or DLC (case 2b), VUs run and can take
default values. In case (2a), the whole subsystem stops running. For each case, a generic

* EF can be considered as part of the system software. However, all the application-specific processing is done in
the code of the elementary functions modules. For this reason, EF could be considered as part of the application
software.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

probability needs to be estimated, denoted here P(1SS-SyS fatal CCF) resp. P(1SS-DCU fatal
CCF).

3. Software fault causing failure of redundant set of APUs (case 3a) or VUs (3b) in one
subsystem. This is a fatal fault causing loss of all functions of corresponding units. The fault
can be in FRS or AS.

For this event, a single generic probability needs to estimated, denoted here as P(AS fatal
fault).

4. Software fault causing a failure of one or more application functions. This is a non-fatal
failure and can be failure to actuate the function or spurious actuation (Boolean output is
assumed). The fault can be in the APUs (case 4a), VUs (4b) or have effect only in one division
(4c). For instance, there can be safety functions which are actuated on 2-o-o-4 basis or are not
implemented in all divisions. Cases 4a – 4c are modelled by application function and failure
mode specific basic events.

3. LIST OF EVIDENCE

In this chapter the relevant pieces of evidence considered for the quantification of software failure
probability are identified.

3.1. Description of the relevant evidence

Figure 2 illustrates a Bayesian Belief Net (BBN) for quantification of software reliability proposed in
[5]. This model includes three main pieces of evidence which are proposed to be used in the
quantification of probability of failure on demand (pfd) of an AS: Safety Integrity Level (SIL) class,
software complexity and observations from usage and tests. The main rationale for the model is that
development process and product quality affect the reliability of the software.

Figure 2. A BBN for assessing software reliability using SIL class, software complexity and
usage and test observations as evidence.

The SIL class is assumed to give information about the quality of the software development process,
including V&V and installation tests. Product quality is represented by complexity of the software
solution, with the assumption that more complex software is more likely to fail. However, complexity
of software is not easy to define and measure accurately, so one may have to rely on indicative
complexity metrics or expert judgments. Still, receiving even indirect evidence on the complexity of
the software influences the beliefs on its reliability.

The observation node in the BBN includes all usage and test observations done after the installation
tests, e.g. maintenance and periodical tests are included in this node. Normally no errors are found in
the software at this stage, and known errors are fixed. The value of this information depends on the
representativeness of the observations with respect to the possible and foreseeable state space of the
software. Since this state space is huge, the representativeness of tests and even of operation

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

experience has traditionally been seen as weak by regulators, and they would rather rely on the quality
of software V&V measures.

Although the absence of findings during tests or usage do not guarantee a low software pfd, their
presence help to calibrate the weight of the other BBN nodes, because a reliable model cannot under
predict an already known operational failure rate.

3.2. Discussion on V&V procedure and SIL

The IEC 61508 standard defines a generic approach for analysis of systems comprised of electrical
and/or electronic and/or programmable electronic elements. The standard introduces the concept safety
integrity level, SIL [6]. The different levels have different requirements on how the equipment should
be manufactured and tested and also on how the software is being developed.

The V&V measure is believed to impact the software fault probability in the way that critical faults are
expected to be much rarer in a system with high V&V principles. This could be compared with the
SIL-system described in IEC-61508, where the obvious purpose is to reduce the failure probability of
the system by increasing the requirements on the V&V process.

The basic idea in this paper is that the main process quality indicator that can be used to assess the
quality of the software is the safety class or SIL class of the system.

3.3. Discussion on complexity of software

Concerning the reliability of software, one of the most important properties is its complexity.
Complexity of a system is a parameter that is dependent on the size of the system, how many inputs
are handled, if there are delays or hold circuits and so on. It is a measure defined with the intent that
complicated software should be more likely to produce a critical fault than simple software, given that
the same level of V&V is applied.

There is no widely accepted general method to calculate software complexity. The general idea in this
work is to adapt existent methods, e.g. the TOPAAS approach [7] or the ISTec approach [8] as an
input to the calculation, or use a simplified method to estimate the complexity of the software.

3.4. Discussion on software user experience

The discussion on user experience is based on the TELEPERM® XS (TXS) system platform developed
at AREVA GmbH. The operating experience of the TXS platform has been assessed in 2008 and it is
based on the user experience of more than 60 nuclear-related plants worldwide (see [9]). These I&C
systems are permanently in operation, are broadly monitored, and have been working reliably and
accumulating applicable operating experience for over thirteen years. During the considered operating
time and until the present no CCF caused by the TXS platform was experienced.

Problems observed during power operation, deficiencies of released products and components found
during engineering, design or testing activities but also deficiencies found during internal/external
audits are documented in non-conformance reports (NCR). After a NCR initialization, the further
processing of NCR is tracked in a data base by a dedicated team separately and independently from
the engineering and product development teams in order to ensure an independent evaluation. The
NCR data base contains those faults and failures which constitute a significant deviation of released
products from their specification [10].

For each of these non-conformances, it was analyzed if the non-conformance had the potential –if
undetected- to be triggered by a CCF initiator and what could be the impact (resulting down time).
From this analysis, the following software CCF triggering mechanisms have been identified as
relevant:

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

• Temporal effects: this group encompasses all CCF which may be triggered by time-dependent
effects (internal trigger mechanisms), such as the depletion of resources by time (e.g.,
leakages in the memory allocation), or by accumulated time of operation. Affected by this
CCF cause are all processors with the same operating time, which usually includes all
processors of one subsystem (case 2a).

• Faulty telegrams: this group considers all CCF which may be triggered by the transmission of
information via serial data links. The failure mechanism is given by the existence of an
undetected random failure in a sending CPU causing transmission of invalid data. If the
system software of the receiver processor contains an undetected fault in the validation of the
received data (e.g., wrong implementation of message checking), the corrupt data remain
undetected. If these corrupt data are processed an exception (interrupt) may happen. The
impact of this CCF cause is restricted to all units with direct communication. According to the
architecture of Figure 1, communication exists between APUs and between APUs and VUs
within one subsystem (no communication between RPS and DPS). For this reason this CCF
affects the APs and VUs within one subsystem (case 2b).

• Same signal trajectory: this group encompasses all CCFs which may be triggered by a
sequence of input data from the field (external trigger mechanism). It cannot be ruled out that
the function computers which have the same operating system and same application software
and process exactly the same signal trajectories may fail simultaneously. This CCF cause
presumes that a very rare (not tested) signal trajectory may be combined with a latent
hardware or software fault. For the analysis of this trigger mechanism it is convenient to
differentiate between two categories:

o Category 1: the latent fault is located within the software, e.g., systematic fault in a
TXS function block – elementary function – involved in the application software, and
leads to a fatal failure. In the case of a latent software fault, the fault has an
impermissible interference (exception) on the system behaviour, such as the incorrect
computation of a command executed with inoperable values due to a design error
(e.g., division by zero, logarithm of negative values). As a consequence, the
application function can no longer be processed as designed. For such cases, pre-
checks and remedial actions are implemented in the TXS system software to protect
the processor against software exceptions from the application software processing.
Exceptions can be captured by pre-checking algorithms, which detect the exception
and handle it by substituting suitable values for computation if necessary. If the
handling of the exception fails (system software failure due to e.g., failure of pre-
checking routines, failure of the activation of remedial actions, faulty/incomplete
implementation of remedial actions) an exception handler is activated that interrupts
the cyclic process in the processor module and sets the signal values into defined fail-
safe values. Trajectories with exactly the same sequence of data may only happen
between the APUs within one subsystem (e.g., RPS or DPS, see Figure 1), such that
this CCF trigger mechanism is restricted to affect at most all APUs within one
subsystem (case 3).

o Category 2: the latent fault is located in the FRS or in the application software and
leads to a non-fatal failure. This CCF initiator presumes that a not-tested signal
trajectory may be combined with a latent fault in the FRS or in the application
software (e.g., incorrectly designed set point value). In this case the requested function
is not executed (or a different response than the requested is obtained) but the TXS
processing unit continues to operate cyclically. The impact extent is restricted in this
case to the specific application function (case 4).

The operating experience of the potential CCF causes addressed in [9] is summarized in Table 1. The
CCF triggering mechanisms and the latent fault location, i.e., system software (SyS), application
software (AS) or communication of processors (DLC) is also indicated. Note that all observed failures
of the TXS platform correspond to single failures with no evidence of CCF events.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Table 1. Assessment of software CCF triggering mechanisms based on TXS operating
experience

CCF triggering
mechanism

Latent fault
location Fault effects

(see Ch. 2.2)

Failures
in

operation

Accumulated
operation

time
[h]

Failure
rate
[1/h]

Event
duration

[h] SyS FRS/
AS

DL
C

Temporal effects x case 2a 0(1) 3.4E+6 1.5E-7 0.25(2)
Faulty telegrams x x case 2b 2 3.4E+6 7.4E-7 0.25
Same
signal
trajectory

Cat. 1 x x case 3 0(1) 3.1E+7 1.6E-8 0.10

Cat. 2 x case 4 -(3) - -(3) -
(1) Although no failures during the TXS accumulated operating experience are reported in [9], one dependent failure is assumed for the failure rate calculation.

(2) This value is estimated (not reported in [9]).

(3) A precise failure probability for application software faults triggered by the same signal trajectory cannot be predicted using operating experience of TXS

because the possible influence mechanisms can only be detected in case of a demand of the function. No such a case has occurred until now.

The triggering mechanisms “temporal effects”, “faulty telegrams” and “same signal trajectory”
(category 1) lead to a processor shut down via an exception handler (detected common cause failures).
This is followed by either a CPU reset including the start-up self-tests or by the immediate shut down
of the processor. The downtimes caused by the failures with CCF potential are very short (see Table
1). Taking diversity requirements between both subsystems into account no relevant/realistic CCF
mode of the TXS software which causes the complete failure of the system (both subsystems) can be
identified.

4. PROPOSED QUANTIFICATION METHOD

The proposed method to quantify the failure probability of software is presented in this chapter.
Chapter 4.1 presents an introduction to the quantification method. The approaches considered for the
estimation of system and application software failure probabilities can be found in Chapters 4.1 and
4.3, respectively.

4.1. Introduction to the quantification method

Different quantification methods are appropriate for different type of software modules. System
software and application function software modules are considered relevant to model and quantify in
PSA. The other SW modules could be ignored since their faults are implicitly covered by other cases.

Fault in system software (SyS) may cause in principle any type of end effect. The proposal here is,
however, that only fatal failure of one subsystem (1SS) or both subsystems (SYSTEM) are considered.
It is analytically very difficult to examine the reliability of a SyS but operating experience could be
used as evidence.

For application software (AS) an analytical approach is suggested taking into account the complexity
of the application function and the level of V&V process. Various failure effects and failure extents
are considered using generic fractions (i.e. conditional probabilities). Analysis of faults in FRS are part
of the analysis of faults in AS.

Fault in EF can in principle cause any of the end effects. The case ”fatal failures affecting redundant
units” is covered by the SyS fault. Non-fatal failures are covered by corresponding AS-fault. It may be
of interest to study whether some extra complex EF is used in several AS, which causes a dependency
between AS-modules. The most likely fault is not EF fault itself but that the EF is used in a wrong
way in the AS – use of EFs is thus part of analysis P(AS-fault). Therefore there is no need to explicitly
model EF faults.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Faults in proprietary SW modules are covered by HW faults from the end effects point of view.
Therefore there is no need to explicitly model these proprietary SW module faults.

Faults in DCS and DLC may require some special treatment, due to possibly unique end effect, not
necessarily covered by cases 1 and 2. However, the case ”fatal failures affecting redundant units” is
covered by SyS fault, and thus faults in DCS and DLC are omitted.

4.2. System software

The failures of a SyS should preferably be estimated for the system in question from operational
history. The main challenge is to find historical events that have caused a complete fatal failure of the
whole system.

Fatal failure of SyS is assumed to cause at least the failure of one subsystem (1SS). With sufficient
data, this failure mode should be possible to estimate. The value calculated from operating experience
represents thus the unavailability of one subsystem.

Depending on the degree of similarities between application functions of the two subsystems, a
fraction of faults may cause the failure of both subsystems (SYSTEM). The assessment of fraction
requires an analysis of degree of diversity between the application functions of the two subsystems.
Diversity assessment is out of the scope of this report and may be considered in the near future, if
examples are available. For time being, it is suggested that without an analysis of degree of diversity,
CCF between subsystems should be assumed (since it has not be ruled out). Tentatively a factor 0.1
may be used, which is a common CCF judgment in PSA when no proper data is available.

For comparison purposes, and for the use within the DIGREL example PSA model, the tentative
probabilities presented in the table below can be used:

Table 2. System software fault related basic events.
SW failure event Tentative failure probability Evidence
SW fault case 1:
SYSTEM-SyS fatal CCF

1E-7 Engineering judgement, 10% from
case 3 (same signal trajectory). This
is where the diversity between
application functions has an
influence

SW fault case 2a:
1SS-SyS fatal CCF

1E-6 Analysis of TXS operating
experience

SW fault case 2b:
1SS-DCU fatal CCF

1E-5 Analysis of TXS operating
experience

4.3. Application software

The estimate of the AS failure probability is dependent on the processes that are run on the processor.
On each processor, several AS modules may run.

A fault in one application software, which causes a fatal failure of the processor affects also the other
application software modules running in the same processor. Hence, a fatal failure can affect the other
processes – but only in the configuration that the information output stops.

A non-fatal failure in one application software can produce an incorrect output (no actuation when
demanded or spurious actuation). If there is a strict separation between the system and application
software (such is the case for TXS), a non-fatal failure does not affect the other processes running in
the same processor.

In the proposed quantification method, indirect evidence is applied for the failure probability estimates
of application software modules using the metrics Complexity and V&V.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

In the baseline risk assessment – the SIL is used as the estimator of the V&V process. The value 0 for
the V&V denotes a very simple or non-existing V&V process not fulfilling any SIL class
requirements. The complexity of a system is defined as high, medium or low.

Table 3 presents some initial assumptions on SW fault probabilities. It shall be noticed that we are
assuming that a critical software fault will be CCF related between redundant AS that have the same
task.

Table 3. Baseline failure probability estimates for application software modules.
 Complexity
 High Medium Low

V&V 0 1.0E-1 1.0E-2 1.0E-3
 1 1.0E-2 1.0E-3 1.0E-4
 2 1.0E-3 1.0E-4 1.0E-5
 3 1.0E-4 1.0E-5 1.0E-6
 4 1.0E-5 1.0E-6 1.0E-7

The upper bound, a failure probability of 1E-1 per demand, would represent very complex software
developed with a very simple V&V principle. In practice, this would not be applicable to the nuclear
domain within RPSs. If such a system should be developed, the assumption that such a software
should fail 1 time out of 10 is maybe a bit conservative, but yet reasonable. If the complexity of the
software is medium or low, then the software failure probability should be lower than indicated by the
SIL level. If a piece of software is of low complexity, but has the same type of validation as one of
higher complexity, how much better could the software be claimed to be? In this process we have
assumed that software with low complexity would be a factor of 100 better than the software with high
complexity. The table is justified based on some available data (e.g. the data presented in section 3.4),
and also justified with practice regarding used data in PSA. However, more operational history data
would be welcome.

Figure 3 illustrates the process of calculating the failure probabilities for fatal and non-fatal
probabilities.

Figure 3. Procedure to estimate the software fault probability in fatal and non-fatal failures
(spurious and no signal scenarios).

P(AS1 fault)

P(AS1 fatal fault) P(AS1 non fatal
fault)

P(AS1 non fatal
spurious

actuation)

P(AS1 non fatal
failure to actuate)

P(fatal) P(non-fatal) = 1 - P(fatal)

P(spurious)=1 P(no signal)= 1

An alternative approach to estimate fatal failure probability in application software could be to use
operational history, if sufficient history is available. The method to be used for the fatal failure

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

probability estimation will be discussed further in the continued work. It shall also be noticed that
which of the fatal and non-fatal failure modes that are relevant in the fault trees are also dependent on
the system functionality (the safe state of the system).

5. CONCLUSION

This paper has outlined the background and the ideas behind a method for quantification of software
faults to be included in a nuclear PSA context.

The paper has outlined which parts of the software should be represented in the PSA, which failure
modes are relevant to consider and how to quantify the faults.

Fault modes associated to the system software is proposed to be modelled in the PSA with three types
of basic events:

• Fatal CCF of the complete system software (failure probability: 1E-7),
• Fatal CCF of one subsystem (e.g., RPS or DPS, 1E-6) and
• Fatal fault of one DCU within one subsystem (1E-5).

The proposed failure probabilities of system software faults should be evaluated based on operating
experience for the actual system/platform. The failure probabilities above are based on operating
experience for the TXS platform. In the case of TXS, fatal failures of the system software are detected
by the system, which sets the signal values into defined fail-safe values. For the estimation of the
failure probability of application software a quantification method was proposed. This method
considers the metrics complexity and V&V of the software as indirect evidences. Baseline failure
probabilities for application software modules were estimated depending on the metrics. This is still an
on-going research project and there are several items being investigated further. However, the outlined
quantification method offers already a practical and justifiable approach to account for software
failures that are usually ignored in current PSAs.

Acknowledgements

The work has been financed by NKS (Nordic nuclear safety research), SAFIR2014 (The Finnish
Research Programme on Nuclear Power Plant Safety 2011–2014) and the members of the Nordic PSA
Group: Forsmark, Oskarshamn Kraftgrupp, Ringhals AB and Swedish Radiation Safety Authority.
NKS conveys its gratitude to all organizations and persons who by means of financial support or
contributions in kind have made the work presented in this paper possible.

References

[1] Authén, S, Björkman, K., Holmberg, J.-E., Larsson, J. Guidelines for reliability analysis of

digital systems in PSA context — Phase 1 Status Report, NKS-230 Nordic nuclear safety
research (NKS), Roskilde, 2010

[2] Authén, S., Gustafsson, J., Holmberg, J.-E. Guidelines for reliability analysis of digital systems
in PSA context — Phase 2 Status Report, NKS-261 Nordic nuclear safety research (NKS),
Roskilde, 2012

[3] Authén, S., Holmberg, J.-E., Guidelines for reliability analysis of digital systems in PSA context
- Phase 3 Status Report, NKS-277, Nordic nuclear safety research (NKS), Roskilde, 2013

[4] Failure modes taxonomy for reliability assessment of digital I&C systems for PRA, report
prepared by a task group of OECD/NEA Working Group RISK, draft January 2014

[5] Porthin, M., Holmberg, J-E., Modelling software failures using Bayesian nets, VTT Research
Report VTT-R-08279-12, 2013

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

[6] International Electrotechnical Commission, “Function Safety of
Electrical/Electronic/Programmable Safety-Related Systems,” Parts 1-7, IEC 61508, various
dates

[7] Rijkswaterstaat Ministerie van Verkeer en Waterstaat, TOPAAS: Een structurele aanpak voor
faalkansanalyse van software intensieve systemen, 01.04.2011

[8] Komplexitätsmessung der Software Digitaler Leittechniksysteme, ISTec-A-1569, J. Märtz H.
Miedl A. Lindner, Ch. Gerst, 2010

[9] AREVA GmbH, Quantitative Bewertung des Einflusses eines GVA auf die Unverfügbarkeit von
Leitsystemen in TELEPERM XS Gerätetechnik. Work Report NLR-G/2009/de/0001 Rev. A;
04.09.2009

[10] AREVA GmbH, Managing operating experience with TXS. Report PTLS-G/2010/en/0046 Rev.
A; 28.01.2008

	Abstract:
	This paper presents a method for the quantification of software failures in a reactor protection system in the context of probabilistic safety assessment (PSA) for a nuclear power plant. The emphasis of the method is on the quantification of the failu...
	Keywords: PSA, Software reliability, Operational history data
	1. INTRODUCTION
	2. DEFINITION FOR SOFTWARE FAULTS
	2.1. Example safety I&C architecture
	2.2. Software fault modes

	3. LIST OF EVIDENCE
	3.1. Description of the relevant evidence
	3.2. Discussion on V&V procedure and SIL
	3.3. Discussion on complexity of software
	3.4. Discussion on software user experience

	4. PROPOSED QUANTIFICATION METHOD
	4.1. Introduction to the quantification method
	4.2. System software
	4.3. Application software
	5. CONCLUSION
	This paper has outlined the background and the ideas behind a method for quantification of software faults to be included in a nuclear PSA context.
	The paper has outlined which parts of the software should be represented in the PSA, which failure modes are relevant to consider and how to quantify the faults.
	Fault modes associated to the system software is proposed to be modelled in the PSA with three types of basic events:
	Fatal CCF of the complete system software (failure probability: 1E-7),
	Fatal CCF of one subsystem (e.g., RPS or DPS, 1E-6) and
	Fatal fault of one DCU within one subsystem (1E-5).
	The proposed failure probabilities of system software faults should be evaluated based on operating experience for the actual system/platform. The failure probabilities above are based on operating experience for the TXS platform. In the case of TXS, ...

