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Abstract:  
This paper presents a method for the quantification of software failures in a reactor protection system 
in the context of probabilistic safety assessment (PSA) for a nuclear power plant. The emphasis of the 
method is on the quantification of the failure probability of an application software module, which can 
lead to the functional failure modes: failure to actuate on demand a specific instrumentation and 
control (I&C) function or spurious actuation of a specific I&C function. The quantification is based on 
two main metrics, complexity of the application software and the degree of verification and validation 
of the software. The relevance of common cause failures and an analysis of the impact of fatal and 
non-fatal failures on the system will be covered by the discussion. Collection of operational data and 
challenges to use it for software reliability quantification will also be discussed. The outlined 
quantification method offers a practical and justifiable approach to account for software failures that 
are usually ignored in current PSAs. 
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1.  INTRODUCTION 
 
Currently, no common approach is available in the nuclear power plant (NPP) field for assessing 
safety and reliability of digital instrumentation and control (I&C) and meeting related regulatory 
requirements. However, there is a tradition to try to find harmonised approaches for probabilistic 
safety assessment (PSA) and its applications and there is generally a strong interest to find solutions 
and guidelines on how to deal with digital I&C.  
 
This paper presents a method for quantification of software failures in a reactor protection system 
(RPS) in nuclear PSA context. The aim is to define a simple yet sufficient model which describes the 
software failure impacts and provides a quantification approach for the failures. Treatment of common 
cause failures (CCF) between components is also discussed. 
 
The paper is organised as follows. In Chapter 2 the software fault modes are first identified. In Chapter 
3the list of evidence is discussed, taking into consideration the verification and validation (V&V) and 
the complexity of the software as well as software operating experience. In Chapter 4 the proposed 
quantification method is outlined. Finally conclusions are presented in Chapter 5. 
 
The work is part of the Nordic DIGREL project [1, 2, 3]. This work builds partly on the work on 
taxonomy of failure modes of digital components for the purposes of PSA conducted by the 
international OECD/NEA Working Group RISK [4].  
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2.  DEFINITION FOR SOFTWARE FAULTS 
 
2.1.  Example safety I&C architecture 
 
DIGREL project primarily considers the RPS of a nuclear power plant, since it is considered to be 
more important for PSA than other I&C systems and it is considered a conceivable target for the 
activity. 
 
For the purpose of defining concepts and demonstrating modelling and quantification approaches, a 
generic safety I&C architecture is assumed. The example protection system consists of two diverse 
subsystems, called reactor protection system (RPS) and diverse protection system (DPS), both divided 
into four physically separated divisions. 
 
The extent of diversity between RPS and DPS may vary, but we may generally assume that they 
perform different functions. The platforms of both subsystems are assumed to be identical, in order to 
include the platform CCF in consideration. The number of acquisition and processing units (APU) and 
voting units (VU) per each subsystem and division may vary, too, but here we assume that there can 
be more than one APU/VU per each subsystem and division. 
 

Figure 1. Example I&C system architecture. 
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2.2.  Software fault modes 
 
The qualitative part of the software fault mode analysis is focused on 

a) Identification of safety-critical software modules in I&C units 
b) Identification of possible effects of postulated faults in the safety-critical software modules 
c) Identification of defensive measures against the software faults. 

 
The approach is to successively postulate a single software fault in each software module regardless of 
the likelihood of such faults, and to determine the maximum possible extent of the failure, regardless 
of the measures taken by design or operation to limit that extent. The following software PSA modules 
are considered [4]: 
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• System software (SyS). This includes the operating system and runtime environment 
(interaction between application and operating system). 

• Elementary functions (EFs).* 
• APU functional requirements specification modules (APU-FRS). Their purpose is to allow the 

representation of errors in functional requirements specifications of the acquisition and 
processing functions.  

• APU application software modules (APU-AS). Their purpose is to allow the representation of 
errors in the implementation of application-specific acquisition and processing software.  

• Proprietary software (Propr. SW) in I&C. Other modules than the processor module. Specific 
pieces of software present in hardware modules in APU, DCU, VU or any other module of the 
system (e.g. power supply) other than SyS and AS. 

• VU functional requirements specification modules (VU-FRS). Their purpose is to allow the 
representation of errors in functional requirements specifications of the voting functions.  

• VU application software modules (VU-AS). Their purpose is to allow the representation of 
errors in the implementation of application-specific voting software.  

• Data communication software (DCS). Operating system of DCUs. 
• Data link configuration (DLC).  

 
Two failure effects are considered from the hardware module point of view. A software fault leads 
either a fatal or a non-fatal failure of the hardware module (e.g. the processor module). A fatal failure 
means that generation of outputs is ceased and e.g. in the processor module the exception handler sets 
the output values into defined fail-safe values. A non-fatal failure means that the module continues to 
operate, but one or more output values are wrong.    

Depending on the location of the software fault, failure effect and system architecture, one or more 
units in one or more subsystems can be impacted. The report [4] presents a list of maximum failure 
extents of a postulated event. Because it would be impractical to take all of them into consideration in 
the PSA model, the most relevant can be identified. The following software faults and effects are 
considered in this paper: 
 

1. Software fault causing loss of both subsystems (SYSTEM, case 1). This is a complete CCF 
covering all platforms that have the same system software. The probability of such an event is 
naturally extremely low, but the basic event can be used to evaluate the level of hardware 
diversity in the actuation of safety functions. It is only reasonable to consider a fatal failure 
leading to a crash of the processing units, i.e., no output signals coming from the processors. 
This maximal end effect covers all the other principally possible end effects. Software fault 
can be located in SyS, EFs, proprietary SW-modules in APUs/VUs, DCS, but it can be 
represented in a model by a single basic event. 

For this event, a single generic probability needs to be estimated, denoted here P(SYSTEM-
SyS fatal CCF). 
 

2. Software fault causing loss of one subsystem (1SS). This is a complete CCF causing a fatal 
failure which crashes the processing units in one subsystem, i.e., no output signals coming 
from the processors within this subsystem. The software fault can be located in 

a) the SyS, EF (APU/VU), APU-FRS, proprietary SW-modules in APUs/VUs, VU-FRS or 
VU-AS, 

b) DCS or DLC. 

The difference is that in case of fatal failure in DCS or DLC (case 2b), VUs run and can take 
default values. In case (2a), the whole subsystem stops running. For each case, a generic 

                                                 
* EF can be considered as part of the system software. However, all the application-specific processing is done in 
the code of the elementary functions modules. For this reason, EF could be considered as part of the application 
software. 
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probability needs to be estimated, denoted here P(1SS-SyS fatal CCF) resp. P(1SS-DCU fatal 
CCF). 
 

3. Software fault causing failure of redundant set of APUs (case 3a) or VUs (3b) in one 
subsystem. This is a fatal fault causing loss of all functions of corresponding units. The fault 
can be in FRS or AS. 

For this event, a single generic probability needs to estimated, denoted here as P(AS fatal 
fault). 
 

4. Software fault causing a failure of one or more application functions. This is a non-fatal 
failure and can be failure to actuate the function or spurious actuation (Boolean output is 
assumed). The fault can be in the APUs (case 4a), VUs (4b) or have effect only in one division 
(4c). For instance, there can be safety functions which are actuated on 2-o-o-4 basis or are not 
implemented in all divisions. Cases 4a – 4c are modelled by application function and failure 
mode specific basic events. 

 
3.  LIST OF EVIDENCE 
 
In this chapter the relevant pieces of evidence considered for the quantification of software failure 
probability are identified.   
 
3.1.  Description of the relevant evidence 
 
Figure 2 illustrates a Bayesian Belief Net (BBN) for quantification of software reliability proposed in 
[5]. This model includes three main pieces of evidence which are proposed to be used in the 
quantification of probability of failure on demand (pfd) of an AS: Safety Integrity Level (SIL) class, 
software complexity and observations from usage and tests. The main rationale for the model is that 
development process and product quality affect the reliability of the software. 
 

Figure 2. A BBN for assessing software reliability using SIL class, software complexity and 
usage and test observations as evidence. 

 

 
The SIL class is assumed to give information about the quality of the software development process, 
including V&V and installation tests. Product quality is represented by complexity of the software 
solution, with the assumption that more complex software is more likely to fail. However, complexity 
of software is not easy to define and measure accurately, so one may have to rely on indicative 
complexity metrics or expert judgments. Still, receiving even indirect evidence on the complexity of 
the software influences the beliefs on its reliability. 
 
The observation node in the BBN includes all usage and test observations done after the installation 
tests, e.g. maintenance and periodical tests are included in this node. Normally no errors are found in 
the software at this stage, and known errors are fixed. The value of this information depends on the 
representativeness of the observations with respect to the possible and foreseeable state space of the 
software. Since this state space is huge, the representativeness of tests and even of operation 
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experience has traditionally been seen as weak by regulators, and they would rather rely on the quality 
of software V&V measures. 
 
Although the absence of findings during tests or usage do not guarantee a low software pfd, their 
presence help to calibrate the weight of the other BBN nodes, because a reliable model cannot under 
predict an already known operational failure rate. 
 
3.2.  Discussion on V&V procedure and SIL 
 
The IEC 61508 standard defines a generic approach for analysis of systems comprised of electrical 
and/or electronic and/or programmable electronic elements. The standard introduces the concept safety 
integrity level, SIL [6]. The different levels have different requirements on how the equipment should 
be manufactured and tested and also on how the software is being developed. 
 
The V&V measure is believed to impact the software fault probability in the way that critical faults are 
expected to be much rarer in a system with high V&V principles. This could be compared with the 
SIL-system described in IEC-61508, where the obvious purpose is to reduce the failure probability of 
the system by increasing the requirements on the V&V process.  
 
The basic idea in this paper is that the main process quality indicator that can be used to assess the 
quality of the software is the safety class or SIL class of the system. 
 
3.3.  Discussion on complexity of software 
 
Concerning the reliability of software, one of the most important properties is its complexity. 
Complexity of a system is a parameter that is dependent on the size of the system, how many inputs 
are handled, if there are delays or hold circuits and so on. It is a measure defined with the intent that 
complicated software should be more likely to produce a critical fault than simple software, given that 
the same level of V&V is applied.  
 
There is no widely accepted general method to calculate software complexity. The general idea in this 
work is to adapt existent methods, e.g. the TOPAAS approach [7] or the ISTec approach [8] as an 
input to the calculation, or use a simplified method to estimate the complexity of the software. 
 
3.4.  Discussion on software user experience 
 
The discussion on user experience is based on the TELEPERM® XS (TXS) system platform developed 
at AREVA GmbH. The operating experience of the TXS platform has been assessed in 2008 and it is 
based on the user experience of more than 60 nuclear-related plants worldwide (see [9]). These I&C 
systems are permanently in operation, are broadly monitored, and have been working reliably and 
accumulating applicable operating experience for over thirteen years. During the considered operating 
time and until the present no CCF caused by the TXS platform was experienced. 
 
Problems observed during power operation, deficiencies of released products and components found 
during engineering, design or testing activities but also deficiencies found during internal/external 
audits are documented in non-conformance reports (NCR). After a NCR initialization, the further 
processing of NCR is tracked in a data base by a dedicated team separately and independently from 
the engineering and product development teams in order to ensure an independent evaluation. The 
NCR data base contains those faults and failures which constitute a significant deviation of released 
products from their specification [10]. 
 
For each of these non-conformances, it was analyzed if the non-conformance had the potential –if 
undetected- to be triggered by a CCF initiator and what could be the impact (resulting down time). 
From this analysis, the following software CCF triggering mechanisms have been identified as 
relevant: 
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• Temporal effects: this group encompasses all CCF which may be triggered by time-dependent 
effects (internal trigger mechanisms), such as the depletion of resources by time (e.g., 
leakages in the memory allocation), or by accumulated time of operation. Affected by this 
CCF cause are all processors with the same operating time, which usually includes all 
processors of one subsystem (case 2a). 

• Faulty telegrams: this group considers all CCF which may be triggered by the transmission of 
information via serial data links. The failure mechanism is given by the existence of an 
undetected random failure in a sending CPU causing transmission of invalid data. If the 
system software of the receiver processor contains an undetected fault in the validation of the 
received data (e.g., wrong implementation of message checking), the corrupt data remain 
undetected. If these corrupt data are processed an exception (interrupt) may happen. The 
impact of this CCF cause is restricted to all units with direct communication. According to the 
architecture of Figure 1, communication exists between APUs and between APUs and VUs 
within one subsystem (no communication between RPS and DPS). For this reason this CCF 
affects the APs and VUs within one subsystem (case 2b). 

• Same signal trajectory: this group encompasses all CCFs which may be triggered by a 
sequence of input data from the field (external trigger mechanism). It cannot be ruled out that 
the function computers which have the same operating system and same application software 
and process exactly the same signal trajectories may fail simultaneously. This CCF cause 
presumes that a very rare (not tested) signal trajectory may be combined with a latent 
hardware or software fault. For the analysis of this trigger mechanism it is convenient to 
differentiate between two categories: 

o Category 1: the latent fault is located within the software, e.g., systematic fault in a 
TXS function block – elementary function – involved in the application software, and 
leads to a fatal failure. In the case of a latent software fault, the fault has an 
impermissible interference (exception) on the system behaviour, such as the incorrect 
computation of a command executed with inoperable values due to a design error 
(e.g., division by zero, logarithm of negative values). As a consequence, the 
application function can no longer be processed as designed. For such cases, pre-
checks and remedial actions are implemented in the TXS system software to protect 
the processor against software exceptions from the application software processing. 
Exceptions can be captured by pre-checking algorithms, which detect the exception 
and handle it by substituting suitable values for computation if necessary. If the 
handling of the exception fails (system software failure due to e.g., failure of pre-
checking routines, failure of the activation of remedial actions, faulty/incomplete 
implementation of remedial actions) an exception handler is activated that interrupts 
the cyclic process in the processor module and sets the signal values into defined fail-
safe values. Trajectories with exactly the same sequence of data may only happen 
between the APUs within one subsystem (e.g., RPS or DPS, see Figure 1), such that 
this CCF trigger mechanism is restricted to affect at most all APUs within one 
subsystem (case 3). 

o Category 2: the latent fault is located in the FRS or in the application software and 
leads to a non-fatal failure. This CCF initiator presumes that a not-tested signal 
trajectory may be combined with a latent fault in the FRS or in the application 
software (e.g., incorrectly designed set point value). In this case the requested function 
is not executed (or a different response than the requested is obtained) but the TXS 
processing unit continues to operate cyclically. The impact extent is restricted in this 
case to the specific application function (case 4). 

The operating experience of the potential CCF causes addressed in [9] is summarized in Table 1. The 
CCF triggering mechanisms and the latent fault location, i.e., system software (SyS), application 
software (AS) or communication of processors (DLC) is also indicated. Note that all observed failures 
of the TXS platform correspond to single failures with no evidence of CCF events. 
 



 

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Table 1. Assessment of software CCF triggering mechanisms based on TXS operating 
experience 

CCF triggering 
mechanism 

Latent fault 
location Fault effects 

(see Ch. 2.2) 

Failures 
in 

operation 

Accumulated 
operation 

time 
[h] 

Failure 
rate 
[1/h] 

Event 
duration 

[h] SyS FRS/ 
AS 

DL
C 

Temporal effects x   case 2a 0(1) 3.4E+6 1.5E-7 0.25(2) 
Faulty telegrams x  x case 2b 2 3.4E+6 7.4E-7 0.25 
Same 
signal 
trajectory 

Cat. 1 x x  case 3 0(1) 3.1E+7 1.6E-8 0.10 

Cat. 2  x  case 4 -(3) - -(3) - 
(1) Although no failures during the TXS accumulated operating experience are reported in [9], one dependent failure is assumed for the failure rate calculation. 

(2) This value is estimated (not reported in [9]). 

(3)  A precise failure probability for application software faults triggered by the same signal trajectory cannot be predicted using operating experience of TXS 

because the possible influence mechanisms can only be detected in case of a demand of the function. No such a case has occurred until now. 

 
The triggering mechanisms “temporal effects”, “faulty telegrams” and “same signal trajectory” 
(category 1) lead to a processor shut down via an exception handler (detected common cause failures). 
This is followed by either a CPU reset including the start-up self-tests or by the immediate shut down 
of the processor. The downtimes caused by the failures with CCF potential are very short (see Table 
1). Taking diversity requirements between both subsystems into account no relevant/realistic CCF 
mode of the TXS software which causes the complete failure of the system (both subsystems) can be 
identified. 
 
4.  PROPOSED QUANTIFICATION METHOD 
 
The proposed method to quantify the failure probability of software is presented in this chapter. 
Chapter 4.1 presents an introduction to the quantification method. The approaches considered for the 
estimation of system and application software failure probabilities can be found in Chapters 4.1 and 
4.3, respectively. 
 
4.1.  Introduction to the quantification method 
 
Different quantification methods are appropriate for different type of software modules. System 
software and application function software modules are considered relevant to model and quantify in 
PSA. The other SW modules could be ignored since their faults are implicitly covered by other cases. 
 
Fault in system software (SyS) may cause in principle any type of end effect. The proposal here is, 
however, that only fatal failure of one subsystem (1SS) or both subsystems (SYSTEM) are considered. 
It is analytically very difficult to examine the reliability of a SyS but operating experience could be 
used as evidence. 
 
For application software (AS) an analytical approach is suggested taking into account the complexity 
of the application function and the level of V&V process. Various failure effects and failure extents 
are considered using generic fractions (i.e. conditional probabilities). Analysis of faults in FRS are part 
of the analysis of faults in AS. 
 
Fault in EF can in principle cause any of the end effects. The case ”fatal failures affecting redundant 
units” is covered by the SyS fault. Non-fatal failures are covered by corresponding AS-fault. It may be 
of interest to study whether some extra complex EF is used in several AS, which causes a dependency 
between AS-modules. The most likely fault is not EF fault itself but that the EF is used in a wrong 
way in the AS – use of EFs is thus part of analysis P(AS-fault). Therefore there is no need to explicitly 
model EF faults. 
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Faults in proprietary SW modules are covered by HW faults from the end effects point of view. 
Therefore there is no need to explicitly model these proprietary SW module faults.  
 
Faults in DCS and DLC may require some special treatment, due to possibly unique end effect, not 
necessarily covered by cases 1 and 2. However, the case ”fatal failures affecting redundant units” is 
covered by SyS fault, and thus faults in DCS and DLC are omitted. 
 
4.2.  System software 
 
The failures of a SyS should preferably be estimated for the system in question from operational 
history. The main challenge is to find historical events that have caused a complete fatal failure of the 
whole system. 
 
Fatal failure of SyS is assumed to cause at least the failure of one subsystem (1SS). With sufficient 
data, this failure mode should be possible to estimate. The value calculated from operating experience 
represents thus the unavailability of one subsystem. 
 
Depending on the degree of similarities between application functions of the two subsystems, a 
fraction of faults may cause the failure of both subsystems (SYSTEM). The assessment of fraction 
requires an analysis of degree of diversity between the application functions of the two subsystems. 
Diversity assessment is out of the scope of this report and may be considered in the near future, if 
examples are available. For time being, it is suggested that without an analysis of degree of diversity, 
CCF between subsystems should be assumed (since it has not be ruled out). Tentatively a factor 0.1 
may be used, which is a common CCF judgment in PSA when no proper data is available. 
 
For comparison purposes, and for the use within the DIGREL example PSA model, the tentative 
probabilities presented in the table below can be used: 
 

Table 2. System software fault related basic events. 
SW failure event Tentative failure probability Evidence 
SW fault case 1: 
SYSTEM-SyS fatal CCF 

1E-7 Engineering judgement, 10% from 
case 3 (same signal trajectory). This 
is where the diversity between 
application functions has an 
influence 

SW fault case 2a: 
1SS-SyS fatal CCF 

1E-6 Analysis of TXS operating 
experience 

SW fault case 2b: 
1SS-DCU fatal CCF 

1E-5 Analysis of TXS operating 
experience 

 
4.3.  Application software 
 
The estimate of the AS failure probability is dependent on the processes that are run on the processor. 
On each processor, several AS modules may run. 
 
A fault in one application software, which causes a fatal failure of the processor affects also the other 
application software modules running in the same processor. Hence, a fatal failure can affect the other 
processes – but only in the configuration that the information output stops. 
 
A non-fatal failure in one application software can produce an incorrect output (no actuation when 
demanded or spurious actuation). If there is a strict separation between the system and application 
software (such is the case for TXS), a non-fatal failure does not affect  the other processes running in 
the same processor. 
 
In the proposed quantification method, indirect evidence is applied for the failure probability estimates 
of application software modules using the metrics Complexity and V&V. 
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In the baseline risk assessment – the SIL is used as the estimator of the V&V process. The value 0 for 
the V&V denotes a very simple or non-existing V&V process not fulfilling any SIL class 
requirements. The complexity of a system is defined as high, medium or low. 
 
Table 3 presents some initial assumptions on SW fault probabilities. It shall be noticed that we are 
assuming that a critical software fault will be CCF related between redundant AS that have the same 
task. 
 

Table 3. Baseline failure probability estimates for application software modules. 
  Complexity    
  High Medium Low 

V&V 0 1.0E-1 1.0E-2 1.0E-3 
 1 1.0E-2 1.0E-3 1.0E-4 
 2 1.0E-3 1.0E-4 1.0E-5 
 3 1.0E-4 1.0E-5 1.0E-6 
 4 1.0E-5 1.0E-6 1.0E-7 

 
The upper bound, a failure probability of 1E-1 per demand, would represent very complex software 
developed with a very simple V&V principle. In practice, this would not be applicable to the nuclear 
domain within RPSs. If such a system should be developed, the assumption that such a software 
should fail 1 time out of 10 is maybe a bit conservative, but yet reasonable. If the complexity of the 
software is medium or low, then the software failure probability should be lower than indicated by the 
SIL level. If a piece of software is of low complexity, but has the same type of validation as one of 
higher complexity, how much better could the software be claimed to be? In this process we have 
assumed that software with low complexity would be a factor of 100 better than the software with high 
complexity. The table is justified based on some available data (e.g. the data presented in section 3.4), 
and also justified with practice regarding used data in PSA. However, more operational history data 
would be welcome. 
 
Figure 3 illustrates the process of calculating the failure probabilities for fatal and non-fatal 
probabilities. 
 
Figure 3. Procedure to estimate the software fault probability in fatal and non-fatal failures 
(spurious and no signal scenarios). 
 

P(AS1 fault)

P(AS1 fatal fault) P(AS1 non fatal 
fault)

P(AS1 non fatal 
spurious 

actuation)

P(AS1 non fatal 
failure to actuate)

P(fatal) P(non-fatal) = 1 - P(fatal)

P(spurious)=1 P(no signal)= 1

 
 

An alternative approach to estimate fatal failure probability in application software could be to use 
operational history, if sufficient history is available. The method to be used for the fatal failure 
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probability estimation will be discussed further in the continued work. It shall also be noticed that 
which of the fatal and non-fatal failure modes that are relevant in the fault trees are also dependent on 
the system functionality (the safe state of the system). 
 
5.  CONCLUSION 
 
This paper has outlined the background and the ideas behind a method for quantification of software 
faults to be included in a nuclear PSA context. 
 
The paper has outlined which parts of the software should be represented in the PSA, which failure 
modes are relevant to consider and how to quantify the faults.  
 
Fault modes associated to the system software is proposed to be modelled in the PSA with three types 
of basic events:  

• Fatal CCF of the complete system software (failure probability: 1E-7),  
• Fatal CCF of one subsystem (e.g., RPS or DPS, 1E-6) and 
• Fatal fault of one DCU within one subsystem (1E-5). 

 
The proposed failure probabilities of system software faults should be evaluated based on operating 
experience for the actual system/platform. The failure probabilities above are based on operating 
experience for the TXS platform. In the case of TXS, fatal failures of the system software are detected 
by the system, which sets the signal values into defined fail-safe values. For the estimation of the 
failure probability of application software a quantification method was proposed. This method 
considers the metrics complexity and V&V of the software as indirect evidences. Baseline failure 
probabilities for application software modules were estimated depending on the metrics. This is still an 
on-going research project and there are several items being investigated further. However, the outlined 
quantification method offers already a practical and justifiable approach to account for software 
failures that are usually ignored in current PSAs. 
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