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Abstract: The coupling of plant simulation models and stochastic models representing failure events 
in Dynamic Event Trees (DET) is a framework to model the dynamic interactions among physical 
processes, equipment failures, and operator responses. The benefits of the framework, as a number of 
applications show, include, for instance, the capability to account for the aleatory timing of equipment 
failures or operator actions on sequence outcomes and to consider the impact of the number of 
available trains (rather than having to identify the bounding cases). The integration of physical and 
stochastic models may additionally enhance the treatment of uncertainties. Probabilistic Safety 
Assessments as currently implemented, e.g. for Level 1, propagate the (epistemic) uncertainties in the 
probability distributions for the failure probabilities or frequencies; this approach does not consider 
propagate uncertainties in the physical model (parameters). The coupling of deterministic (physical) 
and probabilistic models in integrated simulations such as the DET allows both types of uncertainties 
to be considered. The starting point in this work is to consider wrapping an epistemic loop, in which 
the epistemic distributions are sampled, around the DET simulation. To examine the adequacy of this 
approach, and to allow different approaches and approximations (for uncertainty propagation) to be 
compared, a simple problem is proposed as a basis for comparisons. This paper presents initial results 
on uncertainty propagation in DETs, obtained for a tank problem that is derived from a similar one 
defined for control system failures and dynamic reliability. An operator response has been added to 
consider stochastic timing.  
 
Keywords:  Epistemic and aleatory uncertainties, Dynamic PSA, Monte Carlo simulation, Dynamic 
Event Tree Analysis 
 
1. INTRODUCTION 

 
Typical accident scenario in a Nuclear Power Plant (NPP) involves complex interactions between 
physical process and safety systems (safety equipment and operator response). The response of a 
safety system is inherently random in nature, which is often referred as aleatory uncertainty [1]. The 
response of physical process can also have aleatory elements; for example, initial level, break size, 
break location, etc. Dynamic event tree (DET) analysis provides a framework to simulate the accident 
scenario considering the dynamic interactions [2], where mathematical models of physical process and 
safety systems are used.  The limitations in assessing the parameters of these models introduce another 
type of uncertainty, which is often referred as epistemic uncertainty [1]; for example, demand failure 
probability of safety equipment, human error probabilities, and thermal hydraulic parameters. These 
epistemic variables can significantly impact the simulated accident dynamics and ultimately the risk 
estimate; for example, uncertainty in TH parameter or operator response can change the outcome of an 
accident sequence affecting the final risk estimate.  Hence risk quantification must consider both 
epistemic and aleatory uncertainties in both physical and safety system models along with their 
dynamic interactions.  
 
In the current PSA practice [3], accident sequence models are first developed and then solved for a cut 
set equation. A point estimate of risk (e.g. Core Damage Frequency for level-1 PSA) can then be 
obtained using mean values for the PSA parameters. A Monte Carlo simulation is run to propagate 
epistemic uncertainty in PSA parameters. The obtained CDF distribution thus accounts for the aleatory 
and the epistemic uncertainties of safety system responses, e.g. demand failures. However, the current 
approach does not propagate uncertainties in TH parameters through to the risk model outcomes.  The 



     
 

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 
 

success criteria definitions are the interface between the physical system simulations and the PSA 
models; they are normally calculated with point estimates of Thermal-Hydraulic (TH) parameters, 
using bounding parameter values in some cases. 
 
For similar problems in the literature [4, 5], a two-loop Monte Carlo simulation has been used. 
epistemic variables are sampled in the outer loop while aleatory variables are sampled in the inner 
loop. In this work, the inner loop dealing with the aleatory response is a DET simulation. There are 
two DET approaches in the literature to consider dynamic interactions in NPP, discrete DET [6-8] and 
MCDET [9] approaches; these studies demonstrated the potential of DET approaches in addressing the 
complex interactions providing insights for risk assessment. Further, DET approaches have been found 
to be useful to assess the impact of dynamics [10] and the detrimental effects of bounding [11] in the 
quantification of risk. The DET approach can also provide a framework to consider epistemic and 
aleatory uncertainties.    
 
In this work, the discrete DET framework along with epistemic uncertainty analysis is applied to 
quantify risk and identify important contributors in the light of uncertainties and dynamics. The 
analysis determines the impacts of physical uncertainties and safety system uncertainties on the 
accident evolution and final risk estimate. Monte Carlo simulation with convergence criteria for 
epistemic uncertainty analysis and appropriate discretization strategies for DDET are considered. To 
examine the adequacy of this approach, and to allow different approaches and approximations (for 
uncertainty propagation) to be compared, a simple problem is proposed as a basis for comparisons. 
This paper presents initial results on uncertainty propagation in DETs, obtained for a tank problem that 
is derived from a similar one defined for control system failures and dynamic reliability [12]. An 
operator response has been added to consider stochastic timing. The results from DDET approach are 
compared with analytical solution including, important risk contributors and uncertainty importance 
measures.  
  
The paper is organized as follows. Section 2 explains the methodology and its elements. Section 3 
presents application to the tank problem, its analytical solution, and its comparison with DDET 
approach. The detailed analysis of the results and discussion is presented in Section 4. Finally, 
conclusions are given in Section 5.  
 

 

Fig. 1: Propagation of uncertainties in the current PSA practice 
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2. DYNAMICS AND UNCERTAINTIES IN RISK QUANTIFICATION 
 
The classical combination of fault tree and event tree analyses is used to develop risk models in 
Probabilistic Safety Assessment of NPPs. Success criteria requirements (for fault tree development) 
and sequence outcomes (for event tree development) are derived based on plant simulations with 
thermal-hydraulic codes. PSA model is then solved for a cut set equation, which is subsequently 
quantified to estimate core damage frequency (CDF) using plant specific or/and generic reliability data. 
In order to account for epistemic uncertainty in PSA parameters such as demand probabilities of safety 
systems, HEPs, etc., Monte Carlo simulation is used to quantify the uncertainty in CDF. Fig. 1 shows 
the current practice of uncertainty propagation in PSA; epistemic and aleatory uncertainties in 
stochastic elements (safety systems and operator responses) are properly accounted, but these 
uncertainties are also present in the physical process. For example, epistemic uncertainties in physical 
process (TH model) parameters or the natural variability of break size or location could change the 
structure of the event trees or success criteria definitions, subsequently the risk estimate. Any 
uncertainties related to the success criteria are treated through enveloping / bounding [11, 13]. Thus 
the uncertainties in PSA models and TH models are separately treated and they are not propagated 
across the interface.  All these uncertainties (both epistemic and aleatory) in the dynamic interactions 
of physical process and stochastic systems (safety systems and operator responses) must properly be 
accounted in the risk assessment.  

 
Table 1: Epistemic and aleatory uncertainties in safety and physical models 

 Aleatory Epistemic 

Safety equip. 
& OAs 
(PSA) 

Demand failure probability, 
failure times, recovery time of 
safety equipment 

Parameter uncertainty of discrete & continuous  aleatory 
variables 

Response time of OA 

Physical 
process (TH) 

 TH parameters 

Aleatory variables in TH model 
(discrete & continuous) 

Parameter uncertainty of TH aleatory variables 

 
Table 1 gives a summary of the uncertainties involved in risk calculations.  In safety system models, 
equipment failures on demand, time to failure (during operation), recovery time, and operator response 
times are aleatory variables, usually characterized with binomial distribution, exponential distribution, 
and lognormal distribution respectively. The parameters of these aleatory distributions are epistemic 
variables. Both these variables in PSA studies were well explored in the literature and used in practice 
[4, 5]. In plant physics models, the uncertainty in TH parameters is epistemic in nature; the examples 
of aleatory variables are initial levels and break size. Thus there are four types of variables in a full 
scope risk model and their propagation to final risk is the problem under consideration. Although some 
studies considered TH epistemic variables by wrapping an epistemic loop, these uncertainties were not 
propagated up to final risk quantification [9]. Some of these limitations are due to issues with DET 
quantification of risk [11]. Besides propagation of the uncertainties, ranking of uncertainty parameters 
and important risk contributors considering uncertainties is also necessary [14, 15], which help to see 
their individual impact on risk, and further in uncertainty and risk management.   In addition to 
considering epistemic variables of both TH and PSA models in risk quantification, the current study 
also considers aleatory variables of physical process. A solution is proposed here to this problem of 
integrated treatment of uncertainties (both epistemic and aleatory in both TH and PSA models) in 
quantifying risk and its uncertainties.  
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Fig. 2: Computational framework – DDET along with epistemic uncertainty analysis 

Computational Framework – DDET along with epistemic uncertainty analysis 

The objective is quantifying the risk, identifying accident sequences, and ranking of important 
parameters in the light of uncertainties and dynamics. The premise of the solution approach, while 
considering uncertainties and dynamics in accident scenario simulation, is based on the primary 
distinction of parameters on the nature of uncertainty, and not based on the physical vs. safety systems. 
The two-loop Monte Carlo simulation strategy, which was used in the literature for similar problems, 
is adapted for the current problem. The inner loop modeling the aleatory response is replaced by a 
DDET simulation. In this way, the aleatory response is addressed by the DDET rather than by means 
of Monte Carlo sampling. Mathematically, risk is a function of epistemic and aleatory parameters of 
the model, as depicted in equation (1): it has two variables relating physical process and two variables 
relating to safety systems. ‘THp’ is an epistemic variable (physical) and physical level ‘L’ is an 
aleatory variable; Pf and OA are aleatory variables (safety system) and their distribution parameters 
are epistemic variables. Let us assume that the probability distributions for all these epistemic and 
aleatory variables are available. The following steps are involved in the computational methodology as 
shown in Fig. 2. 

i. Epistemic sampling: The epistemic variables are sampled based on their distribution. In this 
case, epistemic parameter THp and epistemic parameters of aleatory variables, viz. µL, P, and 
αOA, are sampled and they are treated as constants in the next step. A convergence criterion for 
epistemic Monte Carlo sampling is required to check the accuracy and keep the number of 
computations to manageable size. A criterion that uses the acceptable percentage of error and 
confidence levels as inputs is used for the implementation. Details of convergence criterion 
are discussed in section 3.4.    

ii. Aleatory physical variables: DDET simulation considers both physical and safety system 
aleatory variables. The aleatory variables of physical process are different from safety systems. 
While the initial conditions or boundary conditions of accident initiator depend upon the 
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aleatory physical variables, the aleatory variables of safety systems influence post-accident 
initiation and drive accident evolution.  
Branches are generated for each of the aleatory physical variables. As they are not time 
dependent, these branches correspond to accident initiating event. If any of these variables is 
continuous (e.g. level in this case), they are discretized on a logarithmic scale as discussed in 
section 3.3.   

iii. Aleatory safety system variables: DDET tool simulates accident scenario with the boundary 
conditions from steps 1 and 2, branches are generated as and when the safety system are 
demanded. The response of aleatory safety system variables can be discrete (for example 
success or failure on demand Pi or 1-Pi) or continuous such as operator response time. 
Appropriate discretization is used if the variables are continuous. The logarithmic 
discretization strategy ensures optimal number of branches with less conservatism at reduced 
computations. The branches of aleatory physical variables are simulated subsequently. 

iv. Quantification of risk: Each DDET generated from step iii is evaluated to quantify risk and 
important contributors. These results correspond to an epistemic sample i. The computation is 
switched over to next epistemic sample, i.e. step i. The computations continue until the 
convergence criterion is satisfied. 

v. Quantification of uncertainty in Risk Estimates: The following measures of risk are 
obtained from the simulations: Epistemic uncertainty distribution of final risk, important 
sequences, uncertainty importance measures (ranking of uncertainty parameters), ranking of 
risk contributors along with their uncertainties.                   

The next section presents an application of this computational framework to simple tank problem and 
also its comparison with analytical results. 
 
3. APPLICATION TO A SIMPLE TANK PROBLEM 
 
3.1 Depleting Tank Problem 
 
A tank problem has been derived from a similar one defined for control system failures and dynamic 
reliability [12]. An operator response has been introduced to consider stochastic timing. There is a 
cylindrical tank of diameter ‘D’ with an initial water level of Hi. Tank starts depleting due to a 
spurious signal that opens a valve, which has a diameter of the leak as ‘d’. Alarm is the cue for 
operator action. Operator has to close the valve before the tank level reaches a critical level Hf. The 
objective is to estimate the likelihood of the tank reaching a critical level considering all epistemic and 
aleatory uncertainties in the scenario. Time taken for a depleting tank to reach a level Hf based on 

Bernoulli’s equation is [16, 17]:  

ܹܶ ൌ
஺

௔஼
൫ඥܪ௜ െ ඥܪ௙൯ට

ଶ

௚
     (1) 

 

 

Fig. 3: A depleting tank with an initial level Hi and a critical level Hf 

Hi 

Hf 
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The tank depletes to critical level when the operator does not act before a time, which is the time taken 
for the tank to reach the critical level. Operator has a cue from an alarm, which is due to fall of level, 
and in response operator needs to close the valve. The valve needs to function on demand to stop the 
leak.   The tank failure depends on the failures on demand of alarm and valve, and human response. 
The time dependent (dynamic) element in the problem is human response time competing with the 
time taken by the tank to reach the critical level, which depends on initial level and other constants.   
 

Table 2: Epistemic and Aleatory uncertainties in the tank model 
 Aleatory Variables Epistemic Variables 
Safety System Models Demand failure probability of 

Valve (2e-4) 
P-Lognormal(1.24e-4, 5) 

Response time of OA –g(t
OA

) 

Lognormal(360s, 2) 

Error factor-Uniform(1.8, 2.2) 

Physical Process Models  Discharge coefficient C 

Uniform(0.72, 0.98)  

Initial tank level Hi 

Normal(10, 0.3)m 

 

Other data used in calculations Diameter of the tank -2m 
Critical tank level – 2m 
Diameter of the hole -0.05m 
g – 9.8m/sec2 

 
Table 2 gives the summary of aleatory and epistemic uncertainties assumed in the analysis. In physical 
process model, tank level is an aleatory variable and discharge coefficient is an epistemic variable. In 
safety system models, demand failure probabilities of valve and alarm, and operator response time are 
aleatory variables, where as their distribution parameters are epistemic variables.   
 
3.2 Analytical Solution 

This section presents the analytical solution for the system failure probability, as a baseline result with 
which to compare the DDET solution, in both cases, with uncertainties. 
 
Tank failure probability FP can be expressed as a function of likelihoods of alarm, valve, and human 
error probability, which is shown in equation (2).  

ܲܨ ൌ ݂൫ܲሺܣሻ, ,ܲܧܪ ܲሺܸሻ൯     (2) 

The failure probability of alarm and valve are independent of physical parameters or time dependent 
elements. But the HEP is the probability of the aleatory variable response time (R) exceeding another 
aleatory variable time window (W) or time taken for the tank level to reach the critical level (see Fig. 
4). The time window is an aleatory variable as it is a function of initial level, which is another aleatory 
variable. HEP is shown in equation (3), which can be simplified using reliability theory on load-
resistance or stress-strength concept [18] as shown below: 

ܲܧܪ ൌ ܲሺܴ ൐ ܹሻ      (3) 

Differential HEP is the probability of response time falling in the interval ‘dr’ around r and the time 
window being smaller than the value ‘r’ simultaneously is 

Nomenclature: 
TW – Time     A – area of tank 
a – area of the hole   Hi – Initial tank level 
Hf – Critical tank level    C – discharge coefficient 
g – gravitational force   TOA – Response time of operator 
P(V) – Valve failure prob 
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݀ሺܲܧܪሻ ൌ ோ݂ሺݎሻ݀ݎන ௐ݂ሺݓሻ݀ݓ
௥

଴
 

The HEP is given as the probability of time window ‘W’ being smaller than the response time ‘R’ for 
all possible values of R. 

ܲܧܪ ൌ න ோ݂

∞

଴
ሺݎሻ݀ݎ න ௐ݂ሺݓሻ݀ݓ

௥

଴
ൌ න ோ݂ሺݎሻܨௐሺݎሻ݀ݎ

∞

଴
																																ሺ4ሻ 

 

 

Fig. 4 Operator response time and time window 
 

PDF of response time is known, but PDF of time window is not known; as time window is a function 
of core level whose pdf is known, we can derive its PDF using transformation of random variables [19] 
as shown below: Equation (1) can be simplified to  

ܹ ൌ
஺

௔஼
൫ඥܪ௜ െ ඥܪ௙൯ට

ଶ

௚
ൌ ݇ଵ√ܪ െ ݇ଶ	; ଵ݇	݁ݎ݄݁ݓ		 ൌ

஺

௔஼
ට
ଶ

௚
	ܽ݊݀	݇ଶ ൌ ඥܪ௙ ൈ ݇ଵ   (5) 

As mentioned in Table 2, Hi is a normal distribution, we have to find probability density or cumulative 
distribution function (CDF) of ‘W’. The CDF of W can be expressed as 

ሻݓௐሺܨ ൌ ܲሺܹ ൑  ሻ       (6)ݓ

Equation (5) can be rearranged to derive H as a function of w: 

ܪ ൌ ൬
ݓ ൅ ݇ଶ
݇ଵ

൰
ଶ

 

Substituting equation (5) in equation (6) and expanding further: 

ሻݓௐሺܨ ൌ ܲ൫݇ଵ√ܪ െ ݇ଶ ൑ ൯ݓ ൌ ܲ ቆܪ ൑ ൬
ݓ ൅ ݇ଶ
݇ଵ

൰
ଶ

ቇ ൌ න ு݂ሺ݄ሻ݄݀
ቀ
௪ା௞మ
௞భ

ቁ
మ

଴
 

ሻݎௐሺܨ ൌ ׬ ு݂ሺ݄ሻ݄݀
ቀ
ೝశೖమ
ೖభ

ቁ
మ

଴
       (7) 

Substituting equation (7) in equation (4) gives the HEP for final calculations: 

ܲܧܪ ൌ න ݂ܴሺݎሻ
ஶ

଴
න .ሺ݄ሻ݄݀ܪ݂ ݎ݀
ሺ
௥ା௞మ
௞భ

ሻమ

଴
																																																									ሺ8ሻ 

	
Numerical integration method has been used to solve equation (8) for HEP and with the data 
mentioned in Table 2.  

 

Time 
window 

Response 
time of 
Operator

f
R
(r) f

W
(w) 
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3.3 Discrete DET Solution 
 
The discrete DET approach has been applied on the tank problem. DDET is shown in Fig. 5. 
Continuous aleatory variables, viz., tank level and operator response times are discretized. The alarm 
and valve have two branches either success or failure.      
 

 

Fig. 5: Discrete DET of the tank problem considering aleatory uncertainties 

The initial tank level and operator response time are discretized as they are continuous random 
variables. The discretization strategies used in the literature [7, 20] are 3 percentiles which normally 
represent low, median, and high values. This strategy is reasonable for a qualitative understanding of 
the sequences, but, in quantification, can results in overestimation. It is also important to know if the 
variable to be discretized is sensitive as a whole or in certain parts (e.g. upper or lower tails) of the 
distribution. Since the tank level is sensitive for all the values, it was discretized linearly on the whole 
distribution. The logarithmic discretization strategy (“log strategy”) is used in case of operator 
response distribution on the upper tail (between 0.9 and 1.0 in cum. prob.). The premise for selecting 
this range is that human error probability (HEP) is assumed to be in the range of 0.0001 and 0.1; the 
lower values than this range would not contribute significantly compared with other risk contributors 
and the higher values would make only a marginal error.  5 different discretization strategies (4, 5, 7, 
10, and 20 Branches; the last 3 with log strategy, see Table 3) are considered and their results are 
compared with analytical result. Fig. 6 shows the 7-branch log strategy, where the tail is divided into 3 
branches (intervals) in log scale; the remaining 4 branches correspond to 5%, 50%, 90%, and skip, 
which are necessary to see quick, normal, late, and never actions.     Like the 7-branch log strategy, the 
10- and 20-branch strategies discretize cumulative probabilities between 0.9 and 1.0 in log scale into 6 
and 16 branches respectively. Table 3 shows the discretization strategies for 4, 5, and 7 branches used 
in the calculations. The percentiles of response time and the branch probabilities are also shown. 

 

Fig. 6: Log discretization strategy for operator response time 

Initial Tank 

Level 

Alarm  OA  Valve 

Time 
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Table 3: Discretization strategies for OA in DET simulations 
 4-branch 5-branch 7-branch 
Operator 
response time 

(5, 50, 95)tiles, skip (5, 50, 95, 99.9)tiles, skip (5, 50, 90, 99, 99.9, 99.99)tiles, skip 

Branch 
probability 

0.05, 0.45, 0.45, 0.05 0.05, 0.45, 0.45, 4.9e-2, 1e-3 0.05, 0.45, 0.4, 9e-2, 9e-3, 9e-4, 1e-4

 
3.4 Uncertainty Propagation by Monte Carlo Simulation with Convergence Criteria 
 
The uncertainty (epistemic) in distribution parameters of aleatory variables are propagated using 
Monte Carlo simulation which is widely used in current PSA practice [3]. The convergence criterion is 
based on the specified confidence level and percentage error. The method proposed by Driels and Shin 
[21] in Monte Carlo simulations of weapon effectiveness is adapted for this problem.  Let risk y is a 
function of epistemic variables whose uncertainties to be propagated. Let ‘n’ is the initial number of 
Monte Carlo simulations run (sample size). Sample mean and standard deviation are calculated. The 
current percentage error and estimate of number of runs required to achieve a specified percentage of 
error are determined using the equations 9 and 10 [21].   Assuming ‘y’ as a normally distributed 
random variable, the percentage error of the mean risk is  

ࡱ ൌ
૚૙૙ ∗ ࢉࢆ ∗ ࢟ࡿ

ഥ࢟ ∗ ࢔√
    (9)

  Where Zc confidence coefficient, Sy standard deviation, and mean of sample is ݕത.  
 
A relationship between the number of trial runs necessary, confidence interval, and acceptable error is 
shown in Equation 10. 

ܖ  ൌ ൤
૚૙૙ ∗ ࢉࢆ ∗ ࢟ࡿ

ࡱ ∗ ഥ࢟
൨
૛

 (10)

It was reported that the estimate of number runs convergence quickly after a few initial runs.  This 
convergence method has been applied in the current calculations. 
 
 4. RESULTS AND DISCUSSION 
 
The methods discussed in the previous section, i.e. analytical and DDET method, have been applied 
on the tank problem to determine the failure probability. In the first set of calculations, aleatory 
uncertainties are only considered and epistemic parameters are kept at their mean values; the second 
set of calculations considers both epistemic and aleatory uncertainties. The comparison between 
analytical and DDET aleatory results are shown in Table 4 The analytical method solved with 
numerical integration technique is the reference result. Several discretization strategies are compared 
with the reference result. DDET with 3%tile and 4%tile methods that were used in the literature are 
found to be conservative in estimation. The former overestimates by 83.9 times and the latter depend 
on the percentile assigned to skip action giving different results. The sensitive to skip percentile 
indicates it may change from case to case.    Although it is obvious that larger the number of 
discretization levels the better accuracy in DDET calculations, log discretization strategy is found to 
give satisfactory results with few number of branches; for example, the percentage errors are 98%  and 
31%  for 7  and  10 log branches respectively and the 20 branch (log) case converged with the 
reference result.  
 
Monte Carlo sampling for epistemic calculations uses the convergence criteria discussed in the 
previous section. The criterion uses 95% confidence level and 5% error with respect to estimated mean. 
Comparing the epistemic mean with aleatory results (Table 4) from the analytical method, the former 
is higher than the latter indicating ignoring epistemic uncertainties could underestimate the risk.   
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Table 4: Comparison of failure probability without considering epistemic uncertainties                                  

 Analytical DDET-discretization 
Numerical 
Integration 

4 Br. 5 Br. 7 Br. 10 Br. 20 Br. 
 99%tile* 99.9%tile 99.99%tile*    

Failure 
Probability 

5.98e-4 5.02e-2 1.02e-2 1.19e-3 5.02e-2 1.19e-3 7.83e-4 6.43e-4 

Overestimation   83.9 17 1.98 83.9 1.98 1.31 1.07 

*Sensitive cases for 5 branch discretization 

 

 

Fig. 7: Cumulative probability functions for epistemic uncertainty in failure probability  
 
 

 

Fig. 8: Comparison of methods - Percentiles and mean of failure probability 
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In epistemic calculations, the discretization strategies are more thoroughly tested and compared with 
analytical results. Fig. 7 shows the cumulative probability functions for epistemic uncertainty in 
failure probability of the methods under consideration; further, the comparison of percentiles and 
mean among the methods is shown in Fig. 8. The median of all methods are close, but the upper tails 
of 5-branch and 7-branch are longer than other CDFs. The 20-branch and 10-branch approaches are in 
fairly good agreement with analytical CDF including the mean and tails. As expected 5-branch CDF is 
conservative, the log discretization strategies with a few more branches (7br., 10-branch) shifts CDFs 
close to the analytical result. Provided the percentiles focus on tails of operator response time 
distribution as in log strategy (e.g. 90, 99, 99.9, 99.99, skip), the results of 5-branch can be close to 
results of 7-branch.    
 
Importance measures (risk contributors) and their uncertainties, and uncertainty importance measure 
(Pearson correlation coefficient method) of epistemic parameters have been calculated. The 
comparison of results among the methods reveals that operator error and its distribution parameter are 
top contributors to risk and its uncertainty. The ranking order is same among all methods, but the risk 
and uncertainty contribution of valve and its distribution parameters in 5-branch case are 
underestimated because of overestimation of operator error in aleatory calculations.    
 

 

 

Fig. 9: Convergence criteria and no of runs required – comparison 
 
The DDET approach gives an overestimate of risk in general, but there is no chance of 
underestimation. Log discretization strategy in DDET reduces conservatism in risk estimate to a great 
extent and only with few branches involved. Nevertheless, it is important to note that the number of 
runs gets multiplied as the number of continuous variables to be discretized increases. On the other 
hand, the number of continuous variables to be discretized in the simulations of nuclear power plant 
(NPP) accident scenarios are limited, for instance in MLOCA scenario of PWR type NPP there are 
only two safety functions whose response is continuous.  
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Convergence criteria and the number of runs 
 
Accuracy costs, but acceptable error in results with limited number of runs is quite important during 
NPP accident scenario simulations, which challenges even today’s computational resources. 
Convergence criteria used in current calculations monitors the current percentage error and estimates 
the number of runs required to achieve a given percentage of error with respect to mean.  Fig. 9 shows 
such monitoring plots for DDET with 5, 7, and 10 branch cases. In DDET with 5-branch case, after 
500 runs it consistently estimates the required runs to be 4200 runs, and the percentage error after 
4200 runs matches 5%.  This trend of estimating runs required after a few initial runs is noticed in all 
other cases as well; only plots for 5, 7, 10-branch DDET cases are shown in Fig. 9. This online 
convergence criterion could be very useful when the complex nuclear scenarios are explored. 
Depending on the estimated number of runs and current percentage error after a few initial runs (with 
initially considered values of percentage error and confidence level), the criterion can be modified to 
reduce the number of runs or improve the accuracy.    
 

 
Fig. 10: Comparison of runs and %error among DDET methods 

 
Epistemic Vs Aleatory Runs 
 
An interesting relationship between the number of epistemic and aleatory runs is present. The number 
of epistemic runs is inversely proportional to the number of aleatory runs before it becomes stable. 
Their product which gives total number of runs and the percentage error with respect to analytical 
mean are also dependent. Fig. 10 shows such a relation among the DDET cases. The epistemic runs 
represent the total number of Monte Carlo simulations sampling epistemic parameters, where each 
simulation produces a DDET; whereas the aleatory runs represent the number of sequences in each 
DDET. The number of epistemic runs decreases as the number of aleatory runs increases, and both 
lines meet in DDET 10-branch case. Looking at the total number of runs versus percentage error with 
respect to analytical mean, larger number of runs required to reduce the error from 40% to 17%. The 
optimal point is DDET 10-branch case, which gives less error with a few runs.  
 
Having an optimal number of discretization levels (branches) helps the analyst. However, determining 
the optimal number of discretization levels is quite challenging in real plant applications and it should 
not be the aim in such cases. The number of branches may be added in steps and the change in risk 
estimate among them shall be monitored. When the change is not substantial, it indicates the 
convergence.   
  
5. CONCLUSIONS 
 
In risk quantification, both epistemic and aleatory uncertainties are present due to inherent physical 
and safety system variability and their model parameters. Ignoring any one could lead to inappropriate 
estimation of risk and its uncertainties. DDET along with epistemic uncertainty analysis has been 
proposed as an approach for solving the problem of integrated treatment of uncertainties and dynamics 
in quantifying risk. The approach has been demonstrated with the application to modified tank 
problem. The analytical solution provided as a means of comparison with the obtained results from 
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DDET cases. The proposed log discretization strategy reduces the conservatism in risk estimate, which 
is present in discretization strategies used in the literature. The log strategy needs only a few branches 
to converge with analytical results. Nevertheless, in DDET approach the number of aleatory runs gets 
multiplied as the number of continuous variables to be discretized increases. The number of epistemic 
runs depends on the number of aleatory runs. But increasing the aleatory runs beyond a point does not 
increase the accuracy significantly, but only increases total computational time significantly. Optimal 
allocation of computational resources between epistemic and aleatory runs ensures accuracy in risk 
estimate. The convergence criterion in epistemic calculations helps to monitor the current percentage 
error and estimates number of runs required to achieve a specified accuracy. The computational 
resources can be used more efficiently to improve accuracy in risk estimate. In more complex 
problems like NPP accident scenarios, the online convergence criteria will be particularly useful.   
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