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Abstract: Bayesian Belief Nets represent factor relationships in the form of conditional probability 

distributions (CPDs). The transparency of the CPD assessment is an important element for the 

acceptability of BBNs. This is especially the case when expert judgment is dominant in CDP 

assessment, which is often the case in risk analysis and in particular HRA. Unfortunately, research and 

applications on BBNs have frequently focused on their modeling potential as opposed to the process 

of building BBNs. This paper deals with this process and examines it for a BBN developed to quantify 

Errors of Commission (EOCs). The derivation of CPDs is based on introducing weighted functions 

among the nodes, an approach from the literature. The approach builds the CPDs automatically (ie. by 

an algorithm) from high-level assumptions on the effect of the factors; this contrasts with approaches 

in which CPDs for each child node are separately elicited. The assumptions concerning the effects of 

the factors were determined from operational event analyses in the database of the Commission Error 

Search and Assessment (CESA) quantification method (CESA-Q). The application shows the 

feasibility of systematically building a BBN from limited information and identifies some of the 

research needs related to BBN building and verification. 

 

Keywords:  Bayesian Belief Nets, Human Reliability Analysis, Expert Judgment, Errors of 

Commission. 

 

 

1.  INTRODUCTION 
 

Bayesian Belief Nets (BBNs), a mathematical framework to model probabilistic causal relationships 

[1], are increasingly raising interest in the Human Reliability Analysis (HRA) field. One reason is 

their natural ability to represent the joint effect of numerous factors that are possibly correlated and 

interacting. Another is that they can be built by aggregating heterogeneous sources of information: 

data and expert judgment of different forms [2]. The applications of BBNs for HRA have addressed 

different issues. A number of studies have exploited their multi-level modeling to integrate the 

quantitative treatment of management and organizational factors in HRA, eg. [3-5]. Other 

contributions proposed BBN versions of existing HRA models, such as SPAR-H [6] and CREAM [7], 

allowing to introduce additional modeling features, such as interdependent performance shaping 

factors. Further approaches to integrate cognitive models, field data and expert judgment for the 

development of a BBN-based HRA model are presented in [2, 8].   

 

With few, notable exceptions [2, 8], the BBNs developed for HRA (and for many other applications in 

risk analysis) are developed solely from expert judgment. Indeed, their graphical structure and 

quantification engine are naturally suited to represent expert knowledge about factors and their 

influences. The most delicate part of the BBN development process is the quantification of the model 

relationships. In BBNs, these take the form of Conditional Probability Distributions, CPDs. Especially 

when resorting to expert judgment, care should be taken to avoid different types of biases – as 

discussed in [9]. Another issue relates to the large number of relationships to be elicited, which can 

indeed be impractical and potentially lead to inconsistencies [9]. Additionally, the separate elicitation 

of all relationships may lead to the loss of view of general model properties, e.g. the functional 

relationships of the factors over their entire range of variability, the overall importance of factors, and 

group influences. This can be overcome by resorting to algorithms to populate the CPDs: expert 

judgment is limited to the determination of selected relationships (selected CPDs) and/or to the 
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definition of general tendencies in the factor influences; then, the algorithm populates the CPDs on the 

basis of the expert input. The application of such algorithms to HRA has been limited. Some examples 

are [10, 11]; however, the application of the algorithm required the important assumption of 

independence in the factor influences – a condition that, for HRA models, is often difficult to satisfy.    

 

This paper presents the application of the approach from [12], in which the CPDs are generated based 

on associating functional relationships between the values of the influencing nodes (parent nodes) and 

the probability of the influenced nodes (child nodes). The functions allow modeling dominance effects 

on the parameter (with maximum or minimum values dominating), and therefore allow modeling some 

degree of dependence among the factors. The functions and their parameters, which will determine the 

CPDs, are assessed based on the general tendency of the effect of the factors, with no need for direct 

elicitation of all CPDs. An important difference of the present paper, compared to the original 

approach of [12], is that the functions and their parameters are determined based on information from 

a database of experienced EOC events in which the influencing factors have previously been identified  

by means of expert judgment. The implications of this difference will be discussed shortly in the 

conclusions of this paper. 

 

The approach is applied for the development of a model for the quantification of Errors of 

Commission (EOCs), aggravating operator actions in post-initiator accident scenarios. This is an area 

of HRA where strongly interacting factors are expected to influence the human error probabilities and 

where practically no quantitative data is available. The EOC quantification model underlies CESA-Q 

[13], the quantification module of the Commission Error Search and Assessment (CESA) method, a 

method developed at the Paul Scherrer Institute [14, 15]. In the original version of CESA-Q [13], 

additional judgment by the analyst is required after the factors are assessed. The need to decrease the 

element of expert judgment in the application of CESA-Q motivates the adoption of a model-based 

EOC quantification approach. With a model-based approach, the analyst is only required to assess the 

input factors of the model; the model, which is the BBN, yields the corresponding error probability. 

The database of pre-evaluated situations is the CESA-Q database (a set of 26 operational events 

involving EOCs that have been analyzed and quantified in earlier work [16]).  

 

The paper is organized as follows. Section 2 briefly introduces the CESA-Q method – the detailed 

method presentation is reported in [13], some recent advances in [17]. The approach to quantify the 

CPDs (based on [12], with the CESA-Q database providing the information to determine the 

functional relationships and their parameters) is presented in Section 3. Section 4 compares the 

predictions of the developed BBN with the results of the database analyses [13]. Of course, this does 

not represent a validation of the model, given that the database was used for its development. 

However, the comparison can serve as partial verification of the model response for “known” 

situations and it allows some conclusions to be drawn concerning the model response.  

 

 

2.  CESA-Q: A METHOD FOR QUANTIFYING ERRORS OF COMMISSION 
 

The CESA method was developed with the focus on identification and prioritization of EOCs [14, 15]. 

The CESA method includes guidance for the quantitative analysis of EOCs as well as for the 

assessment of their risk importance; CESA-Q addresses the quantification, emphasizing decision 

EOCs, i.e. for which the inappropriate action is committed following a motivated decision (so the 

action is intentionally made, although its inappropriateness is not known). 

 

The features of CESA-Q relevant for the present paper are as follows (refer to [13] for a complete 

description of the method). The EOC is analyzed in terms of plant- and scenario-specific factors that 

may motivate inappropriate decisions. Two groups of factors are introduced: situational factors, which 

identify EOC-motivating contexts (Table 1), and adjustment factors, which refine the analysis of 

EOCs to characterize how strong the motivating context is – the adjustment factors are: Verification 

Hints (VH), Verification Means (VM), Verification Difficulty (VD), Verification Effort (VE), Time 

Pressure (TP), Benefit Prospect (BP), Damage Potential (DP), Personal Redundancy (PR).  
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In CESA-Q, a distinction is made between the nominal context and multiple “worse-than-nominal” 

contexts. The nominal context is defined by the scenario (in the Probabilistic Safety Assessment) in 

which the error is modelled; the worse-than-nominal contexts refer to scenario variants that could lead 

to more challenging contexts than the nominal one (a scheme to search for worse-than-nominal 

contexts is provided in [13]). CESA-Q includes two levels of quantification. The first level treats only 

the nominal context. The second level addresses the search for worse-than-nominal contexts, the 

quantification of their likelihood, and the analysis and quantification of the error probability for each 

of the identified contexts. The quantification analysis can be terminated at the first level, depending on 

the specific EOC’s risk significance. If this is done, the obtained EOC probability bounds the results 

that would be obtained in the more detailed, second-level analysis, which additionally quantifies the 

worse-than-nominal contexts. 

 

An important element of the CESA-Q quantification is the analysis of the strength of the error forcing 

impact (of the nominal as well as of the “worse-than-nominal” contexts) on the basis of eight 

adjustment factors. The strength of the impact is characterized by the so-called reliability index, i, 

representing the overall belief regarding the positive or negative effects on the EOC probability (the 

reliability index i is defined from 0 for strongly error-forcing contexts to 5 for contexts with very low 

EOC probabilities). Table 2 shows the correspondence of the reliability index with the qualitative 

judgment on the error forcing impact of the context under analysis. The probability of committing the 

error is related to the reliability index (and therefore to the error-forcing impact) as: Prob(EOC│i)= 

exp(-c·i),  with the constant c = 1.315, obtained in [18] via a statistical analysis of operational events.  

 

In its original form [13], the determination of the error forcing impact characterizing a specific context 

(ie. the corresponding value of the index i) is based on a match-and-adjust approach: it involves 

comparing the EOC under analysis with entries from the above-mentioned CESA database of 

operational events. The closest entry in the database provides the reference probability value for the 

new analysis. Given the limited number of entries in the database, the identification of a close match is 

indeed rare and guidelines for adjusting the reference are limited. The new concept recently developed 

for EOC quantification via CESA-Q is based on an explicit model, a BBN [17]. The quantitative 

relationships underlying the model are informed based on the existing CESA-Q database. The 

adoption of a model-based approach is expected to reduce the subjectivity in the quantification, 

because the applicable error probability directly follows from the factor evaluations, without need for 

additional judgments by the analyst. 

 

Table 1: The CESA-Q situational factors [13] 
 

Situational Factor Short description  

Misleading Indication 

or Instruction (MII) 

An indication or instruction is misleading. It indicates or advices the acceptability 

or need of an action that is inappropriate under the condition in the scenario 

Adverse Exception 

(AE) 

The operators are involved a response strategy. The strategy includes an action 

that becomes or is inadequate due to an exceptional condition (e.g. an subsequent 

event or component failure) 

Adverse Distraction 

(AD) 

A cue (i.e. an occurrence that draws the operator’s attention) arises, which has an 

association to an action or decision that is inappropriate. The action could be 

outside the scope of the nominal decision options, or the cue could be different 

from the key indications referred to in the procedural guidance 

Risky Incentive (RI) The operators have to follow a well-recognized safety rule. The deviation from 

the rule is associated with a prospect of a notable benefit (such as the prevention 

of economical loss or delay in plant stabilization), and the rule is precautionary 

(deviations do not necessarily lead to safety degradations) 
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Table 2: Correspondence of Error forcing impact, reliability index (i),  

mean probability of EOC in CESA-Q [13] 

 

Error-Forcing Impact Extremely high Very high High Low  Very low None 

Reliability index (i) 0 1 2 3 4 5 

Mean Prob(EOC│i) 1 2.7e-1 7.2e-2 1.9e-2 5.2e-3 1.4e-3 

 

 

3.  DEVELOPMENT OF THE BBN MODEL 
 

3.1 BBNs 

 
A BBN is a probabilistic graphical model whose structure consists in nodes linked by directed arcs [1]. 

Nodes represent random variables and arcs between nodes (linking parent nodes to child nodes) 

indicate causal or influential relationships. Typically, discrete states are associated to each nodes. The 

quantitative relationships between the nodes are represented by conditional probabilities: each 

outcome (state) of the child node has a conditional probability given each combination of the states of 

the parent nodes. The primary use of BBNs is the representation of knowledge and decision support 

under uncertainty; their application is established in diverse areas such as medical diagnosis and 

prognosis, engineering, finance, information technology, natural sciences [1]. Generally, a distinction 

is made between BBN use in data-rich applications (e.g. some medical diagnosis and financial 

applications) and rare-event applications (typically, risk). In the former, both the BBN structure and 

the quantitative relationships are learned from the data: the general use of BBNs in data-rich 

applications is to identify the important factors, their relationships (correlations and causal 

relationships) and their quantitative influence on the variables of interest. If small data sets are 

available, the typical approach is to construct the BBN structure with expert judgment and use the 

available data for quantification of the relationships. In most of the applications dealing with rare 

events, only expert judgment is available; in these cases, BBNs are used to represents the expert 

knowledge about factors and their influences. 

 

3.2. BBN structure and node definition  
 

As presented in Section 2, CESA-Q features eight adjustment factors used to characterize the error-

forcing impact of a particular context (refer to [13] for their definition, rating scale and guidance).  

The ratings associated to the factors are the basis for the assessment of the EOC probability given a 

particular context. Naturally, the BBN has been developed by taking the adjustment factors as the 

model input nodes (Figure 1). Two intermediate nodes (“Verification” and “Benefit_Damage”) have 

been introduced, modeling the presence of a single overarching group effect that can arise from 

multiple factors. Indeed, no verification of the inappropriateness of the action can arise because of 

missing verification hints, or because of the cognitively complex verification activity. The node 

“Benefit_Damage” models the net effect between the factor ‘benefit prospect’ (which represents 

whether the performers perceive that the action has a benefit) and the factor ‘damage potential’ (which 

represents whether the performers perceive that the action has a potential for damage). 

 

The introduced intermediate nodes decouple the factors entering the intermediate node and the output 

node, the Error Forcing Impact (EFI) node: the EFI depends only on the intermediate node entering 

the EFI node (e.g. Verification), not on the single factors (Verification Hints, Means, Complexity, and 

Effort). As explained later on, the introduction of intermediate nodes largely decreases the number of 

conditional probabilities to be determined (note that the introduction of the intermediate nodes should, 

whenever appropriate, generally be sought when building BBNs, because it helps identifying and 

visualizing group effects and significantly simplifies the model quantification).  

 

The states of the BBN nodes are defined in Table 3. Note the node states are different from the rating 

scale presented in [13]: the node states represent the revised definition of the CESA-Q factors of [17], 
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recently developed to improve the evaluation guidance of the CESA-Q adjustment factors. The EFI 

node has 5 states, corresponding to the CESA-Q reliability indexes 0 to 4 (Table 3). 

 

 
 

Figure 1: The BBN structure modeling influence of CESA-Q adjustment factors on the EFI 

(implemented in the software AgenaRisk, http://www.agenarisk.com/) 
 

Table 3: CESA-Q adjustment factors and BBN nodes  

 

CESA-Q factor / BBN node   States Label in BBN 

0 (error-forcing) EF 

0.5 (moderately error-forcing) Mod_EF 

Verification Hints, 

Verification Means, 

Verification Difficulty 

Time Pressure 
1 (not error forcing) NEF 

0 (error-forcing) and N/A EF Verification Effort  

Benefit Prospect 1 (not error-forcing) NEF 

0 (not success-forcing) NSF Damage Potential  

Personal Redundancy 1 (success-forcing) SF 

0 (error-forcing) EF 

0.5 (moderately error-forcing) Mod_EF 

Verification  

(intermediate node) 

1 (not error-forcing) NEF 

0 (error-forcing) EF 

0.5 (neutral) Neutral 

Benefit_Damage  

(intermediate node) 

1 (success-forcing) SF 

Extremely high Ex High 

Very high Very high 

High High 

Low Low 

Error forcing impact  

(output node) 

Very low Very low 

 

 

 

Verification 
Hints 

Verification 
Means 

Verification 
Difficulty 

Verification 
Effort 

Verification  

Benefit 
Prospect 

Damage 
Potential 

Benefit_ 
Damage  

Time 
Pressure 

Personal 
Redundancy  

Error Forcing 
Impact  
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3.3. Quantification of the BBN relationships (the CPDs)  
 

For each node, a CPD is associated for each combination of the states of the incoming nodes: 94 

conditional probability distributions are required in total, for the developed BBN. For example, 3
3
*2 = 

54 distributions quantifying the relationships between factors VH, VM, VD, VE and the intermediate 

factor Verification. These distributions are of the type: 

 

Prob(Verification = “EF”│VH = “EF”, VM = “EF”, VD = “EF”, VE = “EF”) 
Prob(Verification = “Mod_EF”│ VH = “EF”, VM = “EF”, VD = “EF”, VE = “EF”)  
Prob(Verification = “NEF”│ VH = “EF”, VM = “EF”, VD = “EF”, VE = “EF”), 
 

of course, the above three probabilities sum to 1. To complete the table for the intermediate node 

Verification, distributions need to be determined for each combination of the states of the VH, VM, 

VD, VE nodes. Note that in case of no intermediate nodes, i.e. all eight adjustment factors directly 

connected with node EFI, the number of distributions to be assessed would be 3
4
 * 2

4
 = 1296, thus 

largely complicating the quantification of the model. 

 

For the present application, a BBN with “ranked nodes” was deemed appropriate. Such nodes 

represent qualitative variables that are abstractions of some underling continuous quantities, typically 

ranging between 0 and 1 [12]. Indeed, for example, the five states of the output EFI node discretize the 

underlying continuum of the error-forcing impact. An attractive feature of the “ranked nodes” BBN 

relates to the determination of its CPDs: the child node’s probabilities are derived from a weighted 

(continuous) function of the parent node values (on the underlying continuous scale) [12]. Therefore, 

for each node, the each CPD is not elicited separately (for example each of the 54 distributions 

required to fill up the CPD for node “Verification”), but by choosing the appropriate function, its 

parameters and the factor weights.  

 

The CPDs are determined based on the underlying doubly truncated normal distribution (“TNormal”) 

on the continuous variables underlying the factor labels, then discretized on the range associated to 

each label (in the present application the 0 – 1 range is equally split among the labels, i.e. of size 0.2 

for output node “EFI”, centered in 0.1, 0.3, …, 0.9). The probability density for each child is the 

function TNormal(µ, σ), where  µ is a weighted function of the input values (on the underlying 

continuous scale) and σ the standard deviation, representing the degree of uncertainty on the child 

node value. Four weighted functions are introduced: Mean Average (Wmean), Minimum (Wmin), 

Maximum (Wmax), Mix of Minimum and Maximum (Wminmax). The approach is implemented in 

the Software AgenaRisk (http://www.agenarisk.com/).  

 

The choice of the appropriate function depends on the effect of the value of the parent nodes on the 

child node. As presented in the Appendix, this can be inferred from statements elicited from experts on 

selected parent-child relationships and possibly other qualitative considerations. Note that, however, 

this choice requires a number of subjective assumptions be made, i.e. no hard rules connecting elicited 

information and these functions exist. The evaluations of the operational events (excerpt in Table 4) 

were the basis for understanding the parent node effects, along with qualitative considerations by the 

authors of the present paper on the relative importance and effect of the factors.  

 

Note that two different BBN sub-models were developed, one used to represent EOC situations of 

types “Misleading Indications”, “Adverse Exception”, “Adverse Distractions” while the second sub-

model covers EOC situations of type “Risky Incentive” (the present paper will present only the 

former). The use of two sub-models was needed to represent the substantial difference between the 

two groups of factor influences expected for these situational features.  

 

Table 5 reports the data used for building the BBN with the algorithm from [12]. Several 

considerations entered in the determination of the specific functions and the corresponding weights. 

For example, function Wmax favors large values of the output (e.g. verification towards 1, i.e. error 

forcing, EF) in case of large values of at least one of the inputs (at least one of the inputs towards 1, 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

i.e. EF): in other words, at least one input being error-forcing leads verification being error-forcing. 

The weights represent the importance of each factor. For example, for node verification, the value of 

“Verification Hints” has been given the highest importance: reasonably, the presence and quality of 

the hints are very important to the error probability. For the node “Benefit_Damage” the combined use 

of both functions Wmin and Wmax (Table 5) favors small values of the output (i.e. Benefit_Damage 

towards 0, i.e. “success forcing”) in case of small values of input “Damage Potential” (“Damage 

Potential” towards 0, i.e. SF) and large values of the output (i.e. Benefit_Damage towards 1, i.e. “error 

forcing”) in case of large values of input “Damage Potential” (“Damage Potential” towards 1, i.e. 

NSF): this allows to model on the same node “Benefit_Damage”, the success forcing effect of 

“Damage Potential” and the error forcing effect of “Benefit Prospect”. The mathematical formulation 

of these functions is reported in the Appendix. Generally, besides qualitative considerations on the 

factor importance, the function weights were tuned after several trial-and-error attempts to reproduce 

as closely as possible the EOC event evaluations from [13]. Coverage of these events will be returned 

to in the next Section 4.  

 

Concerning the value of the standard deviation σ of the TNormal function, this represents the 

uncertainty in the value of the child nodes (represented by the shape of the CPDs) given the values of 

the parent nodes. The approach developed in [19] has been used, which aims at formally aggregating 

expert estimates on human error probabilities and provides the maximum confidence that can be given 

to each operational event evaluation. Operatively, in the development of the BBN model, the 

parameter σ was set to the value (Table 5) such that generally the standard deviation of the distribution 

of the EFI would not be higher than the limiting values provided in [19]. 

 

 

4. VERIFICATION OF THE DEVELOPED BBN MODEL 
 

This section presents the response of the BBN CESA-Q sub-model on the operational events: this 

allows evaluating how well the model reproduces the “known” results, and with which level of 

confidence. Figure 2 compares the BBN predictions in terms of the reliability index i, with the 

reliability index assessed in [13]; Figure 3 addresses the BBN predictions in terms of the conditional 

EOC probability. The operational cases are shown from left to right in decreasing order of the assessed 

i from [13]. The figures also include the BBN predictions on extreme cases, all positive factors 

(“All_pos”, i.e. with all factors assessed as “not error forcing” or “success forcing”) and all negative 

factors (“All_neg”, i.e. with all factors assessed as “error forcing” or “not success forcing”). The 

Figures show the means and the 25th and 75th percentiles of the predicted i’s on the continuous 

variables underlying the BBN ranked node (a linear relationship is established between the BBN 

output variable and the reliability index, ranging from 4 to 0 as the BBN output ranges from 0 to 1, 

respectively). 

 

First, the generally decreasing trend of the BBN predictions from left to right suggests that the BBN is 

able to represent and distinguish the increasing impact of the error forcing conditions across the 

events, ranging within different levels, from low impact (i around 3-4) to high impact (i around 1-0). 

Then, the assessments from [13] are within the 25th and 75th percentile bounds for all events with 

intermediate levels of error forcing impact (low, i=3 to very high, i=1). For the extreme levels very 

low (i=4) and extremely high (i=0), overestimation and underestimation of the error forcing impact are 

observed, respectively. While the underestimation of extremely high error forcing impact is certainly 

an issue for the use of the model in practical PSA applications, the relationships that correspond to 

these (and similar) combinations of input factors can be easily modified (manually) to represent the 

higher impact. A brief discussion of these results is presented in the next section.  
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Table 4: Excerpt of the CESA-Q database of 26 operational events involving EOCs [13] 

 

Case 

ID 

Event Title VH  VM VD VE TP BP DP PR i p(EOC│i) 

AE.2 Fire and Loss of Offsite 

Power (Diablo Canyon 1, 

1995) 

1 1 1 0 1 1 1 1 2 7.2E-2 

AE.4 Loss of Coolant through RCS 

Hot Leg (Oconee 3, 1991) 

1 0.5 0.5 0 1 1 0 0 2 7.2E-2 

AE.5 Loss of Coolant through 

RHR Discharge Isolation 

Valve (Wolf Creek, 1994) 

0 0.5 0.5 0 1 1 0 0 0 1.0 

MI.2 Loss of Coolant through 

Faulted Steam Generator 

(Ginna, 1982) 

0.5 1 0.5 1 0.5 0  0 1 1 2.7E-1 

MI.3 Reactor Overheating due to 

Degradation of Safety 

Injection (Ft. Calhoun, 1992) 

0.5  1 0.5 1 0.5 1 0 1 2 7.2E-2 

MI.4 Core Damage due to 

Termination of Safety 

Injection (TMI 2, 1979) 

0 0.5 0.5 1 0 0 0 1 1 2.7E-1 

AD.2 Damage of High Pressure 

Injection Pumps (Oconee 3, 

1997) 

0.5 0.5 0.5 1 0.5 1 0 1 2 7.2E-2 

The eight CESA-Q adjustment factors: VH: Verification Hints, VM: Verification Means, VD: Verification 

Difficulty, VE: Verification Effort, TP: Time Pressure, BP: Benefit Prospect, DP: Damage Potential, PR: 

Personal Redundancy.  

 

Table 5: Quantification of the BBN relationships: data for the application of the algorithm in 

[12] (BBN Applicable for situational features AD, AE, MI) 

BBN Node Function  Weights 

Verification  WMax 
= 5, = 2.5; = 2.5; = 1; σ

2
 = 2e-2

(2)
 

Benefit_Damage WMin for 

BP=NEF = 5; = 5; σ
2
 = 2e-2 

 WMax for 

BP=EF = 5; = 5; σ
2
 = 2e-2 

EFI WMax 
= 5, = 2.5; = 2.5; = 2.5; σ

2
 = 2e-2 
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Figure 2. Comparison of the predictions (reliability index i with confidence bounds) of the BBN 

sub-model with the operational events from [13] (LEA 09-302 in the figure) (sub-model for 

“Misleading Indications”: MI, “Adverse Exception”: AE, “Adverse Distractions”: AD). 
 

 
 

Figure 3. Comparison of the predictions (EOC probability with confidence bounds) of the BBN 

sub-model with the operational events from [13] (LEA 09-302 in the figure) (sub-model for 

“Misleading Indications”: MI, “Adverse Exception”: AE, “Adverse Distractions”: AD). 
 

4.  DISCUSSION AND CONCLUSIONS 

 

This paper has focused on an important aspect of the use of BBN in data-poor applications such as risk 

analysis and, in particular HRA: the derivation of the quantitative model relationships. When expert 

judgment is the main (or sole) source of information, it is important to limit the effort required to the 

experts. Indeed, eliciting all relationships can be impractical and may lead to inconsistencies; also, one 

may lose track of the overall model properties. The transparency of the elicitation process is also one 

important element for the acceptability of BBNs. 

 

The paper has presented the application of an approach from the literature for the assessment of the 

BBN relationships, based on associating weighted functions relating the parent and the child nodes 
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[12]. The approach allows building the CPDs automatically (ie. by an algorithm) based on the general 

tendency of the effect of the factors – in contrast to the approach in which all CPDs need to be 

separately elicited. An attractive feature of the approach is that the general tendency can be informed 

by statements by experts on specific combinations of the parent node states (e.g., of the type “if factor 

1 is low and factor 2 is high, then the output is high). In this paper, the tendencies used to build the 

CPDs are those observed in a database of pre-evaluated situations (by expert judgment).  

 

The approach has been applied in the HRA domain to the development of a model-based (BBN-based)  

version of the CESA-Q method for quantifying EOCs, currently under development. The adoption of 

the model-based EOC quantification is generally motivated by the need to decrease the element of 

judgment required of analysts in the application of the original CESA-Q. In the model-based approach, 

the analyst is only required to assess the input factors of the model (the corresponding error probability 

is produced by the model). The database of pre-evaluated situations is the CESA-Q database (a set of 

26 operational events including EOCs analyzed and quantified in earlier work).  

 

The use made in the present paper of the database of pre-evaluated situations to inform the model 

relationships (compared to the expert statements suggested by the original BBN building approach 

formulation) is expected to enhance the traceability of the model development. Indeed, the database 

evaluations are independent on the BBN building approach and can be reviewed and accepted by 

experts external to those developing the models, thus providing the established foundation on which 

the model should build.  

 

While the use of the independent database is expected to enhance the model development traceability, 

the conversion of the information from the database into the choice of appropriate weighted functions 

and of the values of their parameters can be quite subjective (no hard rules connecting elicited 

information and these functions exist). The approach used in the present paper to compare the BBN 

output with the CESA-Q database analyses can allow a partial verification of the model (because of 

the independence of the database analyses with the model development process) and provide some 

confidence on the chosen functions and their parameters. Of course, the question remains of evaluating 

the model prediction outside the input combinations addressed by the database. To improve 

confidence on the response of the model for these combinations as well, it would be beneficial to 

address future research to establish guidance (or, ideally, some level of automation) in the conversion 

of the database information into model relationships.  

 

The comparison of the model predictions on the operational events has shown that the BBNs are able 

to represent and distinguish the increasing impact of the error-forcing conditions across the events, 

ranging within different levels, from low to high impacts. For the extreme levels ‘very low’ and 

‘extremely high’, overestimation and underestimation of the error forcing impact are observed, 

respectively. The relationships that correspond to these (and similar) combinations of input factors can 

be easily modified (manually) to represent the higher impact. However, the latter represents an 

additional, subjective intervention on the model, which may be avoided by using alternative functional 

relationships which represent the expected effect of HRA factors over their entire range.  

 

Finally, it is worth noting that, while being promising for the HRA domain, the approach for BBN 

building used in the present paper is one among different alternatives. Given the mentioned 

importance of building BBNs while limiting the information required from the experts, it seems 

worthwhile to systematically investigate the attractiveness of these alternatives for their application to 

HRA, addressing different aspects such as the type and amount of information required from the 

expert, handling of uncertainties, possible limitations on the number of node states.    
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APPENDIX  

 
The appendix presents some details of the approach used for derivation of the BBN CPDs. For a more 

comprehensive treatment, see [12]. The CPDs of the child node are derived associating a doubly 

truncated normal distribution (“TNormal”) to the continuous variable underling the factor labels and 

discretizing it on the range associated to each label.  Then, the probability density for each child is the 

function TNormal(µ, σ), where  µ is a weighted function of the input values (on the underlying 

continuous scale) and σ the standard deviation, representing the degree of uncertainty on the child 

node value. Four weighted functions are introduced: Mean Average (Wmean), Minimum (Wmin), 

Maximum (Wmax), Mix of Minimum and Maximum (Wminmax). The decision of which function to 

use depends on the effect of the parent nodes values on the child node value. As presented in [12], this 

can be inferred from limited information, e.g. specific evaluations in correspondence of combinations 

of input values (typically, the cases where the nodes have their extreme states). For example, in the 

case of one child node Y with two parents X1 and X2, if the following statements are elicited from 

experts [12]: 

• when X1 and X2 parent nodes are both ‘very high’ the distribution of Y child node is heavily 

skewed toward ‘very high’,  

• when X1 and X2 parent nodes are both ‘very low’ the distribution of Y child node is heavily 

skewed toward ‘very low’, 

• when X1 is ‘very low’ and X2 is ‘very high’ the distribution of Y is centered below ‘medium’, 

• when X1 is ‘very high’ and X2 is ‘very low’ the distribution of Y is centered above ‘medium’,  

 

then it is appropriate to use the weighted average function (with possibly different importance weights 

for the two parents). A simple weighted sum model is used to measure the contribution of each parent 

node to explaining the child node as a ‘credibility weight’. The higher the credibility value, the higher 

the correlation between the parent node and the child node. The weights are derived from judgment. 

Mathematically, for child node Y, having X = {X1, X2, …, Xn} causal ranked nodes as parents and 

each Xi parent node having wi contribution weight, the TNormal distribution with weighted mean 

average function will have the following form: 

 
As mentioned before, also other weighted rank node functions can be used to derive the probability 

values in CPDs. The following observation, for example, will lead to the use of weighted minimum 

function :  

• When X1 and X2 parent nodes are both ‘very high’ the distribution of Y child node is heavily 

skewed toward ‘very high’.  

• When X1 and X2 parent nodes are both ‘very low’ the distribution of Y child node is heavily 

skewed toward ‘very low’. 

• When X1 is ‘very low’ and X2 is ‘very high’ the distribution of Y is centred toward ‘very low.  

• When X1 is ‘very high’ and X2 is ‘very low’ the distribution of Y is centred toward ‘low’.  

The corresponding function will have the following form: 

 

With Wmin: 

 
 

If all the weights are large, then Wmin is close to the minimum value of the inputs, and if all the 

weights are 1, then Wmin is the average of the parent nodes (Wmean). Mixing the influence of the 

weights gives result between MIN and AVERAGE. Function Wmax operates analogously.  


