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Abstract: The efficient response to a disaster plays an important role in decreasing its impact on affected 
victims. In some cases, the high volume of potential casualties as well as the urgency of a fast response 
increase the complexity of the disaster response mission. Such cases have created a need for developing 
an effective and efficient disaster response strategy. This paper focuses on developing a multi-objective 
optimization model and an evolutionary algorithm as a first step to generate optimal emergency medical 
response strategies characterized by the selection of: (1) locations of temporary emergency units, (2) 
dispatching strategies of emergency vehicles to evacuate injured victims to the temporary emergency 
units, and (3) number of victims to evacuate to each unit. The objectives of the optimization model are to 
minimize response time and cost of the response strategy. The evolutionary algorithm is used to solve the 
model and find a set of Pareto optimal solutions where each solution represents a different emergency 
medical response strategy. This approach can help decision-makers to evaluate the trade-offs among 
different strategies. Three experiments are provided to discuss the model. 
 
Keywords: Resource Allocation, Disaster Response, Emergency Logistics, Multi-Objective 
Optimization, Evolutionary Algorithm.  
 
1.  INTRODUCTION 
 
During the past two decades, the volume of casualties and the size of population affected by natural 
disasters have surged. For example, during the first decade of the 21st century, over 3.65 million people 
were affected by disasters. This represents a sharp increase over the 1990s, when roughly 3.1 million 
people were affected by similar disasters [1]. This increase has raised international concerns about the 
emergency preparedness [2]. The ability of government agencies to quickly respond with medical needs is 
crucial for limiting the impact of disasters on the population. Failure to allocate needed medical resources 
in a timely manner may result in worsening the disaster situation and increasing the number of casualties. 
For example, a US Congressional investigation found that when Hurricane Katrina hit the southern US 
coast in 2005, federal, state and City Bgencies did not succeed on implementing decisive response 
actions. Many of the disaster management procedures were implemented improperly or were inapplicable, 
including the evacuation plan, leading to preventable deaths and further delays in disaster relief [3]. 
 
It has become common to define four phases of emergency operation management: mitigation, 
preparedness, response, and recovery [4]. Even though all phases are interrelated, this section only focus 
on the response phase as it is related to the approach presented in this paper. The response phase is post-
disaster plans conducted immediately after a disaster strikes. It includes activities such as implementing 
relief plans and providing all necessary emergency services. Whenever disasters strike, the critical need 
for effective and efficient emergency response and rapid deployment of resources (e.g. medical resources, 
food, clothing, shelter, etc.) creates an economically costly and complex planning paradigm. In this 
respect, many researchers have focused on: (1) improving emergency management performance [5] 
and/or (2) developing approaches dealing with allocation and deployment of emergency resources [6]. 
French [7] discussed methods to structure decision support systems for emergency response specifically 
for nuclear accidents. He pointed out the case of multi-attribute aspects of such decision where there are 
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conflicting objectives. With respect to disaster relief plans, Barbarosoglu & Arda [8] proposed a two-
stage stochastic programming model to plan the transportation of first-aid supplies in a disaster. Liu & 
Zhao [9] discussed a logistic relief network and proposed a multi-objective model for quick response to 
relief demands. Balcik & Beamon [10] proposed a mixed integer programming model for facility location 
and stock pre-processing for disaster relief. Ozdamar & Yi [11] proposed a model for vehicle dispatch in 
disaster relief planning. Other research projects have been conducted on the dispatch of emergency 
resources. Fiedrich et al. [12] presented an optimization model for allocating emergency resources after 
an earthquake. The objective of the model is to minimize the total number of fatalities during the Search-
and-Rescue period. The approach implemented a computer-based decision support system in order to 
improve the efficiency of the model. Kondaveti & Ganz [13] introduced a decision support framework to 
find the optimal deployment and dispatching of emergency resources. However, the activities in the 
response phase (dispatching of relief provisions and emergency resources) cause a major vehicle routing 
and scheduling problem, very well known in the field of transportation and logistics. The problem was 
first introduced by Dantzig & Ramser [14]. Since then, it has been widely analyzed in many research 
studies. Beck et al. [15] studied the differences between the vehicle routing and shop scheduling 
problems, and developed an understanding of the problem characteristics. The study showed that the 
routing technology is superior to the scheduling technology, which makes routing technology able to 
perform well on open shop scheduling problems. 
 
Although several studies have contributed to improving disaster response plans, specifically the 
emergency resources scheduling problem, there is still a lack of techniques for providing optimal 
strategies for emergency resources to respond effectively and efficiently to disasters. Also, the previously 
proposed approaches can be improved using state-of-the-art optimization methods to help decision-
makers assign medical resources optimally. It is important to develop a model that allows decision makers 
to become aware of response time and cost when they select their preferred disaster response strategy. 
 
As such, this paper proposes a multi-objective (MO) optimization model (along with an evolutionary 
algorithm for its solution) to facilitate the design of emergency medical response strategies characterized 
by the selection of: (1) TEU locations, (2) routes of emergency vehicles, and (3) number of victims to 
transport to each TEU. The multi-objective optimization model optimizes two objectives: (1) response 
time, defined as the total time it takes to evacuate all victims from the affected areas to the TEUs, and (2) 
cost, which is a function of the ambulances and TEUs procurement cost, and the operational cost of the 
strategy based on distance travelled by the emergency vehicles. To solve the multi-objective optimization 
model, an evolutionary algorithm (EA) called Probabilistic Solution Discovery Algorithm (PSDA), which 
was first used by Ramirez-Marquez and Rocco [16], is used to generate an approximate Pareto set of non-
dominated solutions. The algorithm is used to generate multiple emergency medical response strategies – 
where each strategy represents a solution – and find an approximate set of Pareto optimal solutions. This 
approach can help decision-makers to evaluate the trade-offs among strategies with different response 
time and cost values. 
 
The remaining sections of this paper continue as follows: Section 2 discusses the structure of the 
proposed response plan, introduces the equations used to assess the values of response time and cost, and 
explains the proposed multi-objective optimization model and the evolutionary algorithm. Section 3 
includes experiments with corresponding results. Finally, Section 4 summarizes and concludes the paper 
with future research directions 
 
2.  PROPOSED METHEDOLOGY	  
	  
2.1. Assumptions and notation: 
 
1. Each emergency vehicle can only transport one victim at a time 
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2. TEUs have unlimited capacity 
3. The model considers only transporting victims with non-life threatening injuries  
 

 
2.2. Mathematical formulation 
 
In scenes of mass-casualty incidents, health professionals need to sort and prioritize victims for 
emergency transportation and treatment. In general, victims are classified into four groups: (1) those with 
unsalvageable life-threatening injuries, (2) those with salvageable life-threatening injuries, (3) those with 
non-life threatening injuries, and (4) those not seriously injured. This research considers the third group 
whose victims need to be transported to Temporary Emergency Units (TEUs). For such group, the 
emergency response includes selecting the area where TEUs must be allocated, and dispatching 
emergency vehicles to the corresponding TEUs. Emergency vehicles then begin transporting victims from 
the scene to the TEUs until evacuating all victims.  
 
This paper considers two types of medical facilities: medical centers (MC) and temporary emergency 
units (TEU). MCs are established medical centers that operate 24 hours and include hospitals and 
Emergency Medical Services (EMS) from where emergency vehicles are dispatched. TEUs are temporary 
facilities created at stable areas to provide medical treatment to disaster victims. This paper only 
addresses victims with non-life threatening injuries who do not need major medical intervention, the role 
of MC is only to dispatch emergency vehicles and victims are not transported to the medical centers 
(MCs). When a mass-casualty incident occurs, an emergency medical response strategy must include: (1) 
allocation of TEUs to areas unaffected by the event, (2) dispatching of emergency vehicles from MCs to 
TEUs, (3) dispatching of emergency vehicles from TEUs to the incident sites, from which victims are 
transported to the TEUs, and (4) the number of emergency vehicles to be used as well as the number of 
victims to be evacuated. 
 
The mathematical model presented in this paper proposes that the region, where the event can potentially 
occur, is divided into N sections. The following binary variables are defined: 

Notation 
i, j, k indices representing a city section with 

coordinates (xi,yi), (xj,yj), (xk,yk) 
N  total number of sections 
tij time to travel from section i to section j 
dij               road distance between section i and section j 

(miles) 
MCi  binary variable defining if there is a medical 

center at section i 
TEUj binary decision variable defining if there is a 

TEU in section j 
Ek  binary variable defining if an event occurred 

in section k 
Ki  number of emergency vehicles available at 

medical center in section i 
Zj number of emergency vehicles assigned to 

TEU in section j 
Qk  number of victims in section k 
Vij decision variable defining number of vehicles 

dispatched from MCi to TEUj 
Sjk decision variable defining the number of 

victims to be evacuated from section k to TEUj 
aij  fraction of emergency vehicles sent from MCi 

to TEUj, aij ∈ [0,1] 

 
bjk     fraction of victims be evacuated to TEUj, bjk ∈ 

[0,1] 
 
TC     total cost of response strategy 
RT     response strategy time 

€ 

CT  ambulance operating cost per mile ($/mile) 
Cj

F  fixed cost associated with creating a TEU at 
section j ($) 

€ 

CA   procurement cost of one ambulance ($) 
 
PSDA  
U      number of generations, u=1,…,U 
W     number of solutions per generation, w=1,…,W 
γ j
u    appearance probability of allocating a TEU in 

section j at generation u  
Pu Pareto set of optimal solutions at generation u 
Acronyms 
MC Medical Centers 
TEU  Temporary Emergency Unit 
EMS  Emergency Medical Services 
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€ 

Ek =
1     if a mass - casualty incident affects section k
0    otherwise
" 
# 
$ 

    (1) 

€ 

MCi =
1     if there is a medical center at section i
0    otherwise
" 
# 
$ 

     (2) 

€ 

TEU j =
1     if there is a TEU at section j
0    otherwise
" 
# 
$ 

      (3) 

 
The number of emergency vehicles available at each MC is represented by Ki, and is assumed known a-
priori by decision-makers. However, the actual number of emergency vehicles sent from MCi to TEUj is 
denoted by Vij, and is calculated as a fraction of Ki mapped to the largest previous integer value. The 
fraction aij is a random number, between 0 and 1, generated by the algorithm. 
 

⎣ ⎦)*( jiijij TEUKaV ∗=                   where ]1,0[∈ija       (4) 
 
Note that an MC can dispatch emergency vehicles to different TEUs, and a TEU can receive emergency 
vehicles from different MCs. Thus, the total number of emergency vehicles dispatched to a TEU is 
represented as Zj, and is obtained following Equation (5). 
 

Z j = Vij
i=1

N

∑           (5) 

 
The total number of victims (Qk) in such conditions is assumed to be a function of the population density 
impacted by the disaster. The fraction bjk is a random number, between 0 and 1, generated by the 
algorithm. Thus, Sjk, the number of victims to be evacuated from section k to TEUj, is equal to the largest 
previous integer of a fraction of the total number of victims at section k as shown in Equation (6).  
 

⎣ ⎦)*( jkjkjk TEUQbS ∗=        where ]1,0[∈jkb       (6) 

 
The objectives of the MO optimization model are to minimize: response time and cost. To solve the 
model, an EA is proposed. It produces an approximate set of Pareto optimal solutions where each solution 
represents a response strategy with different values of response time and cost. Each strategy is 
characterized by the selection of: (1) TEU locations, (2) routes of emergency vehicles, and (3) number of 
victims to transport to each TEU. The optimization model is comprised of three decision variables, two 
objectives, and two constraints.  
 
The decision variables were discussed in the previous section, and include: (1) TEU location (TEUj), (2) 
number of emergency vehicles to be sent from MCs to TEUs (Vij), and (3) number of victims to be 
evacuated from the section where the event happened to each TEU (Sjk).  
 
The objective functions are as follows: the first objective is to minimize the total cost (TC), and the 
second objective is to minimize the response time (RT). Apparently, those two objectives seem to be 
conflicting. Usually, for this type of problems a solution with less response time incurs higher cost and 
vice versa. In the proposed model, the total cost (TC) accounts for the operation cost of each ambulance 
(

€ 

CT ) including transportation from MCs to TEUs and evacuation of victims from events to TEUs, the 
procurement cost of each ambulance (

€ 

CA), and the initial cost of allocating a TEU in a given section 
(

€ 

C j
F ). The response time (RT) represents the average time it takes to send emergency vehicles from MCs 
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to TEUs plus the maximum of the average time needed to evacuate victims from the affected sections to 
each TEU.  
 
Each emergency vehicle can only evacuate one victim at a time. The constraint number one in the model 
is represented by Equation (7) and is used to ensure that all victims are evacuated. The constraint number 
two, shown in Equation (8), is used to guarantee that the total number of emergency vehicles utilized 
from a MC does not exceed the total number of emergency vehicles available at that unit.  
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€ 

Vij ≤ Ki
j
∑                ∀i =1,..,N        (8) 

where 

€ 

dij  and 

€ 

d jk  represent the distance between section i and j, and section j and k, respectively. 
 
3. ILLUSTRATIVE EXAMPLE AND RESULTS 
 
This study considers City B, which is divided into 25 sections, enumerated as shown in Figure 1. The city 
has four Medical Centers (MCs): one is a hospital, located at section 23, and the other three are EMSs, 
located at sections 7, 10, and 24. These medical centers have ambulances used for transporting injured 
people. Public records show that the number of ambulances operated by MCs around the world tends to 
vary between 3 and 20. Based on these figures, an estimated total of 50 ambulances would be available 
across City B medical centers, distributed as illustrated in Table 1.  
 

 
Figure 1 – City B sections and medical centers (MCs). 
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Table 1 – Number of emergency vehicles at Medical Centers (MCs) 

Medical Center (MC) Number of available ambulances 

EMS at section 7 10 
EMS at section 10 10 

Hospital at section 23 20 
EMS at section 24 10 

Total 50 
 

The proposed emergency response plans to disasters affecting City B are designed using an MO 
optimization model and include (1) allocating temporary emergency units (TEUs) at city sections, (2) 
dispatching emergency vehicles, and (3) evacuating disaster victims to the TEUs. It is important to 
mention that the cost of a TEU is not the same in all sections because of differences in the cost and 
availability of facilities, and because of potential area issues at each section. The cost of a TEU in each 
section, shown in Figure 2, is estimated based on several factors, including population density as many 
studies have associated land prices with population [17]. Furthermore, the operating cost associated with 
travelling from one section to another is assumed to be $5 per mile. Each ambulance incurs a fixed 
procurement cost of $400, regardless of its travel distance. In addition, travelling speed is assumed to be 5 
minutes per mile. 
 

	  
Figure 2 – Initial cost of a TEU at each section in thousands of dollars 

Two experiments are discussed in this section in order to illustrate how the model is applied. In these 
experiments, it is assumed that City B could be affected by disasters in different locations. Experiment 1 
assumes a disaster has affected three sections. The MO optimization model is designed for this case and 
solved with PSDA to generate nearly optimal response strategies characterized by different values of 
response time and cost. The second experiment discusses 7 scenarios. Each scenario assumes a disaster 
affecting three different sections in order to investigate possible behavior in the response strategies. 
 
3.1. Experiment 1 
 
In this experiment, it is assumed that a disastrous event affected sections 18, 19, and 20 of the city, 
causing damage and leaving 900 people with injuries that need immediate medical attention, as illustrated 
in Table 2. It is important to mention that these numbers are initial estimates and can never be guaranteed 
to be accurate. But, designing response strategy needs these estimates as inputs into the MO optimization 
model.  
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Table 2 – Events data 
Event Location Injured victims 

Event 1 18 510 
Event 2 19 290 
Event 3 20 100 
Total - 900 

 
The emergency response strategy for this experiment was generated through the implementation of the 
PSDA. The algorithm was coded in Mathematica and run on a laptop computer with Intel Core I5-550M, 
2.66 GHz processor, 4 GB RAM, and a Windows 7 operating system. In the implementation process, five 
generations were run with 1000 solutions in each generation. A total of 41 Pareto solutions were obtained, 
as shown in Figure 3. Each solution corresponds to an emergency response strategy with a unique 
combination of response time and cost values. Figure 3 also shows that the total cost increases as 
response time decreases. 
 

500 1000 1500 2000 2500
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45000

50000

55000

60000

Cost

 
Figure 3 – Pareto Solutions for Experiment1 

 
As solutions evolve, they converge towards the same TEU allocation. Interestingly, some solutions with 
more than one TEU appeared in the Pareto set in the earlier generations. However, these solutions were 
too expensive and the response times were not short enough. Consequently, in the latter Pareto set, new 
solutions, with one TEU, have replaced the old solutions, with more than one TEU, as they incur lower 
costs and deliver the same or even lower response times.  
 
According to the final results, only one TEU should be allocated at section 7, and all victims from the 
three events should be transported to this TEU. Table 3 contains the solution characteristics of a sample of 
the Pareto solutions. For instance, solution number 25 has a response time of 432.6 minutes, and costs 
$49,821, and utilizes a total of 19 emergency vehicles. Out of those 19 emergency vehicles, 9 are from the 
MC at section 7, 1 from the MC at section 10, 8 from the MC at section 23, and 1 from the MC at section 
24. Figure 4 illustrates graphically the locations of the incidents and the TEU location. 



8 

	  

 
Figure 4– Incident and TEU locations 

 
Table 3 – Samples of Pareto solutions 

Solution  
Number 

Response 
Time 

(minutes) 

Total 
Cost 
($) 

Number of ambulances from MC at section j to 
TEU at section 17 

MC7 MC10 MC23 MC24 Total 
1 178.84 61205.5 10 9 18 10 47 
5 203.75 58753.8 9 7 19 6 41 
9 224.534 57107.8 10 7 19 1 37 

13 251.258 55491.5 5 10 18 0 33 
20 317.442 52653.5 10 6 10 0 26 
25 432.684 49821 9 1 8 1 19 
28 512.672 48602.8 8 1 7 0 16 
34 817.5 46175 10 0 0 0 10 
35 908.611 45777.5 4 3 2 0 9 
39 1632.6 44163 1 4 0 0 5 
40 2037.75 43751 4 0 0 0 4 
41 2716.33 43349 2 1 0 0 3 

 
 
3.2. Experiment 2 
 
In Experiment 2, seven incident scenarios, in which disastrous events affected City B in various locations, 
are examined and analyzed in order to discuss and uncover possible trends in the nearly optimal response 
strategies. Each scenario represents an incident affecting three sections and causing damage and injuries 
in these sections as illustrated in Table 4. For example, scenario 2 indicates that the incident affected 
sections 1, 2 and 3. Each incident causes a total of 900 injured people. Scenario 1 is the one discussed in 
the previous experiment. It is assumed that when an incident occurs at a section having an MC, such as 
sections 7, 10, 23, and 24, emergency vehicles operated at the MC are still functioning and can be 
dispatched.  
 

Table 4 – Locations of the incident scenarios 
Scenario no. 2 3 4 5 6 7 8 

Affected Sections 1,2,3 4,5,6 7,8,9 10,11,12 13,14,15 16,17,18 21,22,25 
 
Ten generations were run for each scenario with 1000 solutions in each generation. An average of 35 
Pareto solutions per scenario was obtained for the 8 scenarios. The characteristics (min, max, and 
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average) of the solutions for each scenario are illustrated in Table 5. The table shows that scenarios 1 and 
6 shared the same TEU location (at section 17). However, the response time and cost vary considerably in 
all of the scenarios, and that apparently because of the various aspects (i.e., location, population, cost of 
the land, etc.) associated with each scenario. Scenario 5 is the cheapest one as it costs an average of 
$44064.32. Whereas, scenario 3 is the most expensive one (average cost is $148,444.39). Scenario 1 has 
the shortest response time (average RT is 505.82 minutes) while Scenario 2 has the longest response time 
(average RT is 505.82 minutes). 
 

Table 5 - Solution characteristics of scenarios 1-8 
Scenario 

No. 
TEU 

location 
Cost  Response Time 

Avg Max Min  Avg Max Min 
1 17 52164.31 61205.5 43751  505.82 2037.75 178.84 
2 8 96869.82 109331 83828  2042.2 4813.40 1124.45 
3 1 148444.39 157446 136784  1126.6 2344.63 589.39 
4 4 98035.18 107366 89699  1211.33 4127.67 509.32 
5 6 44064.32 52362 36825.5  722.20 1975.07 314.71 
6 17 88802.76 97641 81740.7  1134.52 2403.81 540.50 
7 21 47581.49 55314.50 39899.70  769.43 2062.47 363.36 
8 23 68317.06 75165.30 62230  972.95 1952.50 535.57 

 
Figure 5 illustrates the TEU locations for the 8 scenarios. In each scenario, the response strategy calls for 
the allocation of only one TEU. Two scenarios (1 and 7) share one location as a TEU location. In general, 
the TEUs, MCs, and incident locations show that the best location of a TEU is close to incident locations, 
rather than to MC locations. A total of 7 sections have been chosen as best TEU locations for the 8 
scenarios 
 

 
Figure 5 - TEU and incident locations for each scenario 

 
4. CONCLUSIONS AND FUTURE RESEARCH 
 
This study presented a MO optimization approach that helps with design of response strategies to a 
disastrous event with the intention to optimize the response time and cost. The model temporarily locates 
emergency units in stable areas and dispatches emergency vehicles to evacuate affected victims, who 
have non-life threatening injuries but need medical attention. An evolutionary algorithm called PSDA was 
used to obtain the approximate Pareto set of optimal solutions where each solution represents an 
emergency response strategy. This approach enables decision-makers to tradeoff response strategies based 
on values of response time and cost. The future extension of this study is to consider some criteria: 
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finding shortest path from medical/emergency centers to events, taking into account path failures, victim 
classification based on the level of injuries, and considering stochastic events. 
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