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Abstract: During the last decade, research works related to modelling and simulation of infrastructure 
systems have primarily focused on the performance of their technical components, almost ignoring the 
importance of non-technical components of these systems, e.g., human operators, users. In contrast, 
the human operator of infrastructure systems has become an essential part for not just maintaining 
daily operation, but also ensuring the security and reliability of the system. Therefore, developing a 
modeling framework that is capable of analyzing the human performance in a comprehensive way has 
become crucial. The respective framework, proposed in this paper, is generic and consists of two parts: 
an analytical method based on the Cognitive Reliability Error Analysis Method (CREAM) for human 
performance assessment and an Agent-based Modeling (ABM) approach for the representation of 
human behaviors. This framework is a pilot work exploring possibilities of simulating human 
operators of infrastructure systems through advanced modeling approaches. The demonstration of the 
applicability of this framework using the SCADA (Supervisory Control and Data Acquisition) system 
as an exemplary system is also presented.  
 
Keywords: Human Reliability Analysis, CREAM, Agent-based Modeling, Critical Infrastructure, 
SCADA 
 
1.  INTRODUCTION 
 
Modern infrastructure systems, e.g., power supply, telecommunication and rail transport systems, are 
all large-scale, highly integrated, particularly interconnected and show complex behaviours. These 
systems are so vital to any country that their incapacity or destruction would have a debilitating impact 
on the health, safety, security, economics and social well-being [1]. The operators of these systems 
must continuously monitor and control them to ensure their proper operation [2]. These industrial 
monitor and control functions are generally implemented using an industrial control system (ICS), 
e.g., the SCADA system. The fundamental purpose of this type of systems is to allow its users 
(operators) to collect data from one or more remote facilities and send control instructions back to 
those facilities [3]. Most research studies on infrastructure systems, especially on this type of ICS, 
have taken an engineering point of view, which often underestimate the importance of their non-
technical components, e.g., human operators [4, 5]. A number of studies have shown that human errors 
are major causes for accidents occurred in electric power, railway, aviation and maritime infrastructure 
sectors [6-8], highlighting the significance of examining the reliability of the human operators, which 
can be conducted using analytical methods and advanced modelling approaches.  
 
2.  RESEARCH STREAMS AND PROPOSED FRAMEWORK 
 
Over the years, many Human Reliability Analysis (HRA) methods have been developed to analyse 
human performance in either qualitative or quantitative ways. Qualitative methods focus on the 
identification of events or errors, while quantitative methods focus on translating identified 
events/errors into Human Error Probability (HEP) [9]. The Technique for Human Error Rate 
Prediction (THERP), one of first generation HRA methods, is probably the most widely used 
technique to date [10]. THERP aims to calculate the probability of successful performance of the 
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activities defined necessary for the accomplishment of a task. The calculations are based on pre-
defined error rates (HEPs) and success is defined as the complement to the probability of making an 
error. Appropriate HEPs from a list around 100 factors are selected for a nominal assessment [11]. The 
results of the task analysis are represented graphically in a so-called HRA event tree that is a formal 
representation of the required sequence of actions. The use of the THERP causes limitations during 
human performance analysis since this method is focused on errors of omission and intends to 
characterize each operator action with a binary path (success or failure). Moreover, the representation 
of Performance Shaping Factors (PSFs) influence on human performance is quite poor and highly 
judgmental based on assessor's experiences [10, 12]. Success Likelihood Index Method (SLIM), 
another example of first generation HRA methods, is used for the purposes of evaluating the 
probability of a human error occurring throughout the completion of a specific task [13]. It is a 
decision-analytic approach, which uses expert judgment to quantify PSFs. Such factors are used to 
estimate a Success Likelihood Index (SLI), a form of preference index, which is calibrated against 
existing data to derive a final HEP. This approach is a flexible technique and able to deal with the total 
range of human error forms. SLIM is a subjective method and the choosing of PSFs is quite arbitrary. 
Another disadvantage of this approach is that  there is a lack of valid calibration data [12]. A 
Technique for Human Event Analysis (ATHEAHA), one of second generation HRA methods, is 
designed to support the understanding and quantification of Human Failure Events (HFEs) [14]. This 
method is based on a multi-disciplinary framework that considers both human-centered factors and 
plant conditions creating operational causes for human-system interactions [10]. The human-centered 
factors and influences of plant conditions are dependent of each other, which are combined to create a 
situation in which the probability of making an error can be estimated. Such a situation is said to have 
an Error-forcing Context (EFC). The primary shortcoming of this technique lies in the fact that it is 
unable to produce final HEP meaning that the direct outcome of this analysis cannot be quantified 
[15].  
 
CREAM (Cognitive Reliability Error Analysis Method) is one of the best known second generation 
HRA methods, which offers a practical approach to both performance analysis and error prediction 
[16]. This method presents a consistent error classification system integrating all individual, 
technological and organizational factors, which can be used both as a stand-alone method for 
accidental analysis and as part of larger design methods for interactive systems. In this method, human 
error is not considered to be stochastic, but shaped by different factors such as the context of the task, 
physical/psychological situation of the human operator, time of day, etc. One of the main features of 
this method is its integration of a useful cognitive model and framework that can be used in both 
retrospective and prospective analysis [17]. CREAM is capable of providing the estimated HEP that 
can be used as part of overall system analysis. Compared to other HRA methods, CREAM seems more 
promising as an option to assess human performance for several reasons. First, it represents a second 
generation HRA method with improved applicability and accuracy compared to most of the first 
generation methods. It is able to extend the traditional description of error modes beyond the binary 
categorization of success-failure and accounts explicitly for how the (performance) conditions affect the 
performance. Secondly, it is originally developed from the Cognitive Control Model (COCOM)* and 
also uses it to organize some of categories describing possible causes and effects on human action. Last 
but not least, CREAM can be used for performance prediction since quantified results can be provided as 
the final outcome. This capability especially makes the integration of the CREAM-based non-technical 
component model with other technical component models possible, which is a critical requirement for 
modelling infrastructure systems.   
 
In recent years, a wide range of modelling approaches, e.g., Agent-based Modelling (ABM), Complex 
Network Theory (CNT), System Dynamic (SD), have been applied to represent technical components 
infrastructure systems. However, modelling efforts regarding the representation of the human 
behaviours remain on the adoption of classical analytical approaches, e.g., probabilistic modelling 
method, using a combination of fault and event tree techniques, making the analysis of the human 

* COCOM models human performance as a set of control modes: strategic, tactical, opportunistic and scrambled and proposes a model of 
how transitions between these control modes. 
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performance in a comprehensive way particularly difficult. Furthermore, it is not an easy task to 
integrate this type of model with other technical system models in case all components (technical and 
non-technical) of an infrastructure system need to be considered. Among these approaches, the ABM 
seems more promising. 
 
In this paper, a generic modelling framework is proposed and presented. The framework consists of 
two parts: First, an analytical method based on the CREAM for human performance assessment, 
which includes five working steps. In this method, a knowledge-based approach is developed in order 
to assess PSFs in a more efficient way. Second, an ABM approach for the representation of human 
behaviours. Within this approach, the human operators and uses of infrastructure systems are modelled 
as agents with capability of interacting with other agents, e.g., agents representing technical 
components. Using this advanced modelling approach, the human performance is able to be assessed 
and corresponding human error can be calculated in real-time dynamically based on current simulation 
environment, e.g., current time, simultaneous goals, etc.  
 
3.  A CLOSER LOOK AT CREAM 
 
CREAM is derived from the method of COCOM, the purpose of which is to provide the conceptual 
and practical basis for developing operator performance models. In both methods, the cognition is 
regarded as not only an issue of processing input(s) and producing a reaction, but also an issue of the 
continuous revision and review of goals/intentions [18]. Therefore, the cognition should not be 
described as a sequence of steps, but rather a controlled use of available competence and resources 
[16]. The basic assumption of CREAM is that human performance is an outcome of the controlled use 
of competence adapted to the requirements of the situation, rather than the result of pre-determined 
sequences of responses to events. Four characteristic control modes are defined in the CREAM 
method : scrambled control, opportunistic control, tactical control, and strategic control mode [16]. 
Instead of PSFs, the method of CREAM uses CPCs (Common Performance Conditions) to determine 
sets of error modes and probable error causes. Total nine CPCs are proposed by Hollnagel: adequacy 
of organization, working conditions, adequacy of MMI (Man-Machine Interface) and operational 
support, availability of procedures/plans, number of simultaneous goals, available time, time of day, 
adequacy of training and experience, and crew collaboration quality. Various levels are also assigned 
to each CPC. For instance, three (CPC) levels are assigned to the CPC “working conditions”:  
advantageous, compatible, and incompatible. The main difference between the CPCs and the PSFs is 
that the CPCs can be applied at the early stage of the analysis to characterize the context for the task as 
a whole, rather than a simplified way of adjusting probability values for each event. Therefore, the 
influence of CPCs is closely linked to the task analysis. Advantage working conditions such as the 
level "compatible" (CPC level) of "working condition" may improve the performance reliability, while 
disadvantage performance conditions such as the level "incompatible"  may reduce the performance 
reliability. If the performance reliability is reduced, operators could fail more often. Relations between 
all nine CPC levels and their expected effects on the performance reliability can be determined based 
on author's general knowledge and experiences. In most first generation HRA methods, it is always 
assumed that PSFs are independent. This assumption raises concerns since even a cursory 
investigation is able to show that it is not possible that all PSFs are independent to each other. This 
concern has been taken into consideration by most second generation HRA methods. In the CREAM 
method, all the CPCs have influences on each other. For instance, the CPC "working conditions" (e.g., 
ambient lighting, noises from alarms, interruptions, etc) have direct impacts on both of "number of 
simultaneous goals" and "available time". Improved "working conditions" can be assumed to increase 
"available time" and decrease "number of simultaneous goals". It is very important to take these 
dependencies into account when applying the CREAM method (see[16] for more information). 
 
4.  FRAMEWORK PART 1-1: AN ANALYTICAL METHOD 
 
Human error is defined as "Any member of a set of human actions or activities that exceeds some limit 
of acceptability, i.e. an out of tolerance action (or failure to act) where the limits of performance are 
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defined by the system" in [19]. In our daily life, the human error is extremely common since everyone 
could commit at least some everyday. However, the human error has become a cause of great concern 
to the reliability of interactive infrastructure systems, since most these systems depend on the 
interaction with operators in order to maintain their appropriate function. A general analytical method 
based on the method CREAM is proposed in this chapter. To demonstrate the feasibility and 
applicability of the proposed framework, SCADA system is used as an exemplary system. This 
method can be divided into five working steps: 

• Step 1: Constructing event sequence 
• Step 2: Determining COCOM functions 
• Step 3: Identifying most likely cognitive function failures 
• Step 4: Assessing CPCs 
• Step 5: Determining failure probability 

 
In step 1, a task needs to be specified and corresponding event sequence can be constructed. In this 
case, a simplified task of general alarm handling is selected (see [20] for more details about 
introduction of the alarm handling). The overall operation of the task (task 0) involves four sequential 
subtasks. First, operators need to check whether or not the alarm monitor system is ready to work 
properly (subtask 0.1). The monitor system could include devices such as monitors, alarms, etc. Then 
operators start to keep checking the monitor system regularly to ensure that the new generated alarm 
will not be missed (subtask 0.1.1). If a new overload alarm is generated and sent by corresponding 
devices to the alarm monitor system, operators will be notified meaning that this identified alarm will 
be handled (subtask 0.1.1.1). Finally, a control command will be sent by operators (subtask 0.1.1.1.1).    
 
In step 2, all possible COCOM functions need to be determined for each identified subtask. The model 
assumes that there are four basic cognitive functions: observation, interpretation, planning, and 
execution. Each defined typical cognitive activity can be described in terms of which combination of 
these four cognitive functions it requires. For example, the "monitor" activity involves "observation" 
as well as "interpretation". Therefore, all subtasks (cognitive activities) identified in step 1 are 
assigned with corresponding COCOM functions. Furthermore, it is important to determine a dominant 
function if the defined cognitive activity involves more than one COCOM functions. For example, 
subtask 0.1 (ensure the monitoring system is working) is assigned with COCOM activity "verify" that 
involves two COCOM cognitive functions: "observation" and "interpretation". Based on the 
description of the alarm handling task, this subtask involves more "observation" function and less 
"interpretation" function. In this case, the "observation" is the dominant COCOM function. Table 1 
lists all possible cognitive functions defined for each subtask and one dominant cognitive function of 
each subtask is highlighted in red colour.  
 

Table 1: Determination of cognitive functions 
Subtask Goal Cognitive activity Obs Int Plan Exe 

0.1 Ensure the alarm monitoring system is working Verify • •   

0.1.1 Monitor overload alarm Monitor • •   
0.1.1.1 Identify a new overload alarm Identify  •   
0.1.1.1.1 Send command Execute    • 

Obs: observation, Int: interpretation, Plan: planning,  Exe: execution 
  

For each cognitive function, generic cognitive function failures have been defined in [16]. It is 
possible to use all pre-defined cognitive function failures for each cognitive activity. However, in 
order to make the CREAM more practical in use, one most likely cognitive function failure should be 
identified and used. This can be done based on the understanding and knowledge of the corresponding 
task in step 3. For example, three cognitive function failures can be defined for the subtask 0.1: 1) the 
observation of a wrong object, 2) the wrong identification made, and 3) the observation not made. 
According to the description of this task, it is more reasonable to assume that the possibility of missing 
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an overload alarm is higher. Therefore, the third cognitive function failure can be identified as the 
most likely function failure for subtask 0.1.  
 
Step 4, assessing CPCs, is the essential step among all 5 working steps, which is also the most 
challenging step. The purpose of this step is to examine and assess the CPCs under which the 
corresponding task is performed. Some of these CPCs can be easily assessed, e.g., the time of day (day 
time or night time depending on the time when the corresponding task is performed), the number of 
simultaneous goals, while the assessment of some CPCs can be difficult, e.g., the adequacy of 
organization, working conditions. In order to simplify the overall assessments of CPCs, it is necessary to 
assign some CPCs with a fix level. It should be noted that increasing number of CPCs with fixed levels 
will affect the output accuracy of the model. The effects of the CPCs on performance reliability can be 
quantified using the weighting factor. For instance, in the case where the expected effect is "not 
significant", the weighting factor is set to be 1. In the case where the expected effect is "improved", the 
weighting factor can be set to be less than 1 meaning that the final calculated HEP will likely be 
decreased. Lower weighting factor value indicates better performance.  For instance, the weighting factor 
for level of “compatible” of CPC “working conditions” can be set to 1 and the weighting factor for level 
of “incompatible” can be set to 2.  
 
To determine the CFP†, each identified most likely cognitive function failure is firstly assigned with a 
nominal CFP, which can be conducted in step 5 using the information from [16]. Then, these nominal 
CFPs are adjusted considering the effects of the CPCs using weighting factors obtained from step 4. 
Table 2 lists the adjusted CFP for each subtask including best case scenario and worst case scenario.   
 

Table 2 Adjusted CFPs for cognitive function failures  

Subtask Task step or activity 
 
Nominal 
CFP 

Best case scenario Worst case scenario 

weighting 
factor 

adjusted CFP weighting 
factor 

adjusted CFP 

0.1 Ensure the alarm monitoring 
system is working  0.07 0.2 0.014 9.6 0.672 

0.1.1 Monitor overload alarm  0.07 0.2 0.014 9.6 0.672 

0.1.1.1 Identify a new overload alarm 0.01 0.25 0.0025 6 0.06 
0.1.1.1.1 Send the command 0.003 0.2 0.0006 9.6 0.0288 

 
The final CFP can be obtained by choosing the maximum one from all calculated adjusted CFPs using 
the Equation 1: 

𝐂𝐅𝐏𝒇𝒊𝒏𝒂𝒍 = 𝒎𝒂𝒙(𝐂𝐅𝐏𝒊), 𝒊 = 𝟏,𝟐, . .𝒏   (1) 
                         
Where CFPi represents the adjusted CFP value and n represents the number of values calculated.  In 
the case of best case scenario, three out of nine CPCs have "improved" effects on the performance 
reliability and none of the CPCs have a "reduced" effect (∑ 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 3,∑𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 0 ). The 
corresponding control mode is "Tactical" and the probability interval is from 0.001 to 0.1. The 
calculated final CFP, shown in Table 2, is 0.014, which falls into the interval. In the case of worst case 
scenario, one out of nine CPCs have an "improved" effect on the performance reliability and three of 
the CPCs have "reduced" effects (∑ 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 1,∑𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 3 ). The corresponding control 
mode is "Scrambled" and the probability interval is from 0.1 to 1. The calculated final CFP, shown in 
Table 2, is 0.672, which falls into the interval.  
 
5.  FRAMEWORK PART 1-2: A KNOWLEDGE-BASED APPROACH FOR CPC 
ASSESSMENT 
 
As mentioned above, step 4 (assessing CPCs) is the essential step of the proposed analytical method, 
which are challenged by following reasons. First, it is difficult to set a numerical threshold, by which 

† Within the CREAM method, the final error probability is also referred as Cognitive Failure Probability (CFP) instead of HEP.  
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the corresponding level can be decided. Second, the assessment depends on the knowledge and 
experiences related to the specific task. Furthermore, many other issues could also have direct effects 
on the assessment of specific CPCs. The challenges could be solved easily for assessment of some 
CPCs. For example, the CPC 'Time of Day" can be assessed by examining the current time of the 
model assuming that “if current time is between 8 am and 20 pm, then the CPC level is set to Day 
Time. If not, then the CPC level is set to Night Time”. However, it is not an easy task to assess some 
CPCs. For example, both the number of current simultaneous tasks and time left for operators to 
handle one task could have significant influences on the assessment of “available time”. In order to 
assess this type of CPC, a knowledge-based approach using the fuzzy logic theory is proposed and 
developed. Fuzzy logic theory, first developed by Zadeh in [21], almost four decades ago, has 
emerged over last several  years as a useful tool for modelling processes which are too complex or 
fuzzy for conventional quantitative techniques or when the available information from the process is 
qualitative, inexact or uncertain [10]. Fuzzy logic fills a gap between purely mathematical approaches 
and purely logic-based approaches. Instead of requiring accurate equations to model real-world 
behaviours, fuzzy logic is capable of accommodating the ambiguities of real-world human language 
and logic with its inference techniques. Fuzzy inference systems (FIS), developed based on fuzzy logic 
theory, have been successfully applied in fields such as automatic control, data classification, expert 
system, and decision analysis [22]. Unlike other regular mathematical systems, the FIS is related to the 
classes with unsharp boundaries where the output is only the matter of degrees. It is primarily about 
linguistic vagueness through its ability to allow an element to be a partial member of set, so that its 
membership value can lie between 0 and 1 [23]. Using the approach of FIS for the study of the HRA is 
also not a new concept. In 2006, a modelling application of CREAM methodology based on fuzzy 
logic technique has been developed by  Konstandinidou  and his colleagues [10], which can be 
regarded as a pilot application demonstrating the successful 'translation' of the CREAM into the 
language of fuzzy logic.  
 
In order to demonstrate the applicability of the knowledge-based approach assessing CPCs, “available 
time” is used as an exemplary CPC. It is assumed that this CPC is mainly affected by two parameters:         
• Time left: in the task analyzed using this model, each overload alarm must be handled in a 

predefined time period. If operators fail to process on time, the overloaded line will be 
disconnected automatically in order to prevent the thermal damage to the transmission line. In this 
task, it is assumed that the moderate overloads can be tolerated for up to 20 minutes [24, 25].  

• Number of simultaneous goals: if there would be a number of simultaneous alarms, then the time to 
handle some of these alarms will be delayed.  
 

Assessing "Available time" through a knowledge-based approach using a FIS can be conducted as 
follows: 
Input: 

1) Timeleft: the remaining time of each alarm to be handled 
2) Simgoals:  the number of simultaneous alarms that is required for operators to handle 

Output: The cognitive level: "Available time": adequate, temporarily inadequate, continuously 
inadequate 
Membership Functions (MF): 
The MF essentially embodies all fuzziness for a particular fuzzy set [26]. The shape of membership 
functions used for both input and output are triangular. Three MFs are selected for both inputs, with 
linguistic values: "insufficient", "sufficient", and "more sufficient" for input "Timeleft" and "fewer 
than capacity", "match current capacity", and "more than capacity" for input "Simgoals". The range for 
each MF is shown in Table 3 and the graph is shown in Figure 1. It should be noted that the 
membership functions defined below are based on the understanding and knowledge of the analyzed 
task.  

Table 3 Ranges of MFs for both inputs 
Input insufficient sufficient more sufficient 
TimeLeft (min) <10 >6 and <16 >10 
Input fewer than capacity match current capacity more than capacity 
Simgoals <3 >1 and <5 >3 
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Figure 1 MF graphs of both inputs 

 
Three output (consequence) functions are selected. The purpose of these functions is to determine the 
likelihood of the conclusion which is true, given a premise. The range for each MF is shown in Table 
4 and MF graph is shown in Figure 2. 
 
Table 4  The range of MF of output                                 

                    
                                                                                                   Figure 2 The graph of consequence of MFs                                                                                           
Rules:  
Table 5 displays all fuzzy decision-making rules derived from knowledge base, developed based on 
the understanding and knowledge of the analyzed task. For example, the rule highlighted in the table 
can be read as “If Time Left is sufficient AND the number of simultaneous goals is matching current 
capacity, then the level of "Available time" is set to adequate” 
 

Table 5 The rule table 
Level of "Available time" Number of simultaneous goals 

Fewer than capacity Match current capacity More than capacity 
Time left Insufficient Inadequate Inadequate Continuous inadequate 

Sufficient Adequate Adequate Inadequate 

More sufficient Adequate Adequate Inadequate 

 
Defuzzification method:  
Centre of Gravity (COG) method is implemented as the defuzzification method for combining all the 
consequences to make decisions, which is illustrated in the equation below. Basically this method 
calculates the weighted average of the centre values of the consequence membership functions 
(Equation 2).  

∑ ∫
∑ ∫=

i i

i iicrisp
b

u
)(

)(

µ

µ
  (2)   

 
Where bi denotes the centre of consequence membership and µ(i) denotes the MF. In order to test the 
applicability of this knowledge-based approach, several test runs are performed. In the first test run, it 
is assumed that time left for operator to handle an overload alarm is 12 minutes and the number of 
simultaneous tasks is 2. Therefore, the inputs to the developed FIS are 12 for "Timeleft" and 2 for 
"Simgoals". The output of the FIS after the defuzzification is 7.24. All corresponding membership 
function graphs are shown in Figure 3. In this case, the level of "Available time" can be set to 

Level of 
"Available 
time" 

Continuously 
inadequate 
 

Temporarily 
inadequate  

Adequate 

 Consequence <4 >2 and <6 >4 
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adequate. In the second test run, it is assumed that time left for operator to handle an overload alarm is 
5 minutes and the number of simultaneous tasks is 4. Therefore, the inputs to the developed FIS are 5 
for Timeleft and 4 for Simgoals. The output of the FIS after the defuzzification is 2.87. In this case, 
the level of "Available time" can be set to continuous inadequate. 
 

             
Figure 3 MF graphs of both inputs and the output for test run#1 

 
One of advantages of integrating the approach of FIS into HRA lies in the fact that it provides a 
fundamentally simple way to handle complex problems without making itself exceedingly complex. It 
is straightforward, flexible, and easy to develop and understand. However, the FIS is a data-driven 
approach, meaning that the accuracy of the output depends on the quality of expert knowledge and 
experiences. Therefore, the membership functions, as well as developed rules, need to be carefully 
calibrated. 
 
6.  FRAMEWORK PART 2: MODELING HUMAN BEHAVIORS USING ABM  
 
The ABM approach describes a whole system by its individual parts (bottom-up). Each component of 
the system is normally defined and modelled by an agent, capable to modify its own internal data 
(parameter and variable), its behaviours (function), its environment, and even adapts itself to 
environmental changes. An agent can be used to model both technical and non-technical components 
while different agents interact with each other directly or indirectly. One of the major advantages of 
this approach is the possibility to integrate various elements such as physical laws, Monte Carlo 
techniques, etc, into the overall simulation (see [27] for more details about the ABM). 
 
In [24], a pilot human operator model is developed based on the ABM approach. The purpose of 
developing such a model is to assess the influences of human operator performance on the reliability 
of an Electricity Power Supply System (EPSS). The most critical shortcoming of this model is that the 
HEP is simply calculated by generating a random number between 0 and 1. Moreover, the model 
ignores the influences of the PSFs, restricting its applicability and accuracy. In order to overcome 
these shortcomings and be able to analyse the performance of the operator in a more comprehensive 
way, a further improved and agent-based human operator model is created using the proposed 
analytical method including the knowledge-based approach for CPC assessment. This model, 
developed as part of a SCADA model, is then integrated with an SUC (System Under Control) model 
in an experimental simulation platform that is built to assess interdependency-related vulnerabilities 
between two systems (SUC and SCADA)‡ [28, 29]. During the simulation, if there is a request for the 
operator to handle an alarm, CPCs will be assessed automatically according to current simulation 
environment, e.g., time of day, simultaneous goals, etc, and corresponding CFP will be calculated as 
an input to other agents, e.g., MTU (Master Terminal Unit) agent from the SCADA model.  
 
To simplify this assessment, it is necessary to make assumptions for following CPCs: 

• working conditions (in control centre) are compatible 
• the adequacy of organization is efficient 
• the availability of procedures/plans is acceptable 
• the adequacy of training and preparation is adequate with high experience 
• the crew collaboration quality is efficient 

‡ It is assumed that the SUC and SCADA are parts of the EPSS. 
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This is the first effort to develop a human operator performance model that is capable of assessing 
CPCs dynamically using the ABM approach. Four CPCs are assessed and five CPCs are assumed to 
be fixed without further assessment due to limited data sources, which will affect the accuracy of 
output (CFP)§ of this model. With the help of this model, several in-depth experiments have been 
developed for the identification and assessment of hidden vulnerabilities due to interdependencies, 
e.g., substation level single failure model experiment and small network level single failure mode 
experiment. The results from these experiments seem promising, highlighting the importance of 
human operator in the control center of the SCADA system. The lack of responses from human 
operators might not be the cause of failures of substation level devices, negative consequences caused 
by the failures of these devices could become worsen significantly. Figure 4 shows results from two 
case studies of the small network level single failure mode experiment. As seen from this figure, more 
components from both SUC and SCADA fail to function if performance of the human operator is 
assumed to be poor (see [28] for details and results of these experiments). This is only a pilot 
application demonstrating the possibility of assessing human performance using advanced modeling 
approaches. Motivated by these promising results, more experiments considering human operators as 
parts of the overall system are currently being developed, e.g., the experiment analyzing resilience 
related behaviors of infrastructure system. 
 

 
Figure 4 Affected components due to dependency between SCADA and SUC in two case studies [28]. Left: the human operator 

performance is assumed to be poor; Right: the human operator performance is assumed to be acceptable   
 
7.  OUTLOOK 
 
HRA methods have been widely developed and improved during last several decades in order to 
provide a more applicable way to assess human performance. However, these methods are challenged 
by their inherent limitations, e.g., the lack of objectivity, inability to model tasks that consist of highly 
nested, concurrent cognitive activities, etc. These limitations hinder the possibilities of analyzing 
behaviors of infrastructure systems in a comprehensive way. In order to improve capability of current 
human operator model based on HRA method and take more contexts into consideration other than 
CPCs (e.g., emotion, learning ability, experiences, etc.), a conceptual agent-based hierarchy human 
model is proposed and currently under development, illustrated in Figure 5. This model consists of 
three levels. The upper level includes the components sensor and perception, which can be regarded as 
the input of the model. The information such as interactions with other agents, influence of 
environment, signal sent by technical components, predefined goals, are first processed by the sensor 
component. After that, the information will be further interpreted by the perception component. For 

§ The calculated CFP value in this case is between 0.0014 and 0.672. 
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example, if an alarm is received by the operators in the control room, it needs to be first received by 
the sensor and then interpreted by the perception in order to exact more detailed information, such as 
the severity of the alarm, etc. The middle level includes four components: physic status, emotion 
status, social status and cognition. These components contain parameters, state variables, states, rules, 
which can be used to determine states and behaviors of the agent. The lower level includes the 
components of behavior and actor, which can be regarded as the output of the model. The execution 
order of the agent action/behavior is determined by the component behavior, while the execution is 
carried out by the component actor. The information that has influence potentially on other 
agents/objects will be sent out by the component actor.  
 

 
                                          

Figure 5 Overall structure of further improved agent-based human model 
 
 

 
 

Figure 6 The structure of the cognition component  
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The cognition component is the most important component of the agent-based human model. The 
information received from outer environment and other agents will be mainly processed by this 
component and the corresponding behaviours will then be decided by this component. The overall 
structure of the cognition component is illustrated in Figure 6. Five subcomponents are included in it: 
rules, memory, experience, learning capability, and analyse. Compared to previous model, all the 
properties of an agent have been taken into account. Furthermore, this model is capable of making 
decisions according to previous experience, predefined rules, interaction with other agents, and outer 
environment.  
 
8.  CONCLUSION  
 
Humans play an important role in the operations of vital engineered infrastructure systems. The lack of 
careful consideration of influences of these “non-technical components” of infrastructure systems 
often results in poor system performance and high costs. Their roles and impacts need to be 
strengthened by developing advanced approaches for human performance assessment that take more 
factors into consideration and focus more on the ways to analyze human behaviors efficiently in 
varying contexts. During the last decade, a number of research works have been developed and 
applied to analyze human performance and assess negative effects due to human errors, limited to 
errors of omission. Most of these works are based on the implementation of classical analytical 
approaches and seem not sufficient, which is the most critical shortcoming compared to research 
works focused on technical components of infrastructure systems. Full mapping of the complexity of 
infrastructure systems depends on continued development/ improvement of human performance 
models. 
 
In order to explore the possibilities of adopting advanced modeling approaches for human 
performance assessment and bridge the gap between these two research communities, this paper 
proposes a generic modeling framework, including an analytical method for the performance 
assessment and an advanced modeling approach for the behavior representation, which is mainly 
focused on infrastructure systems, i.e. the electric power supply system. The analytical method is 
based on the second generation HRA method CREAM. In order to be able to assess CPCs more 
efficiently, a knowledge-based approach using the concept of Fuzzy Logic is proposed. The analytical 
method is further implemented as part of the human operator model, which is developed using the 
ABM approach.  
 
The first results from the application seem promising, demonstrating the feasibility of the proposed 
modeling framework, not just due to its capability for representing the complexity of human 
performance of infrastructure systems, but also its modeling flexibility and adaptability. Thus, more 
application and simulation experiments based on this framework will be expected in the near future.  
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