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Abstract:  
 

A methodology is presented to evaluate aging degradation of passive components under uncertainty. 

Stress corrosion cracking (SCC) degradation is selected as the example aging phenomenon and the 

methodology is implemented on the pressurizer surge line pipe weld of a pressurized water reactor. 

The degradation is described as a multi-state model consisting of six differential equations with system 

history dependent transition rates. The input data to the model include operating temperature, weld 

residual stress, stress intensity factor, thermal activation energy for crack initiation and crack growth. 

The associated uncertainties are represented by probability distributions derived from historical data, 

experimental data, expert elicitation, physics, or a combination of these. Latin Hypercube Sampling is 

used to generate observations from the distributions governing these parameters with a two-step 

approach that distinguishes between aleatory and epistemic uncertainties. The degradation model is 

solved by a semi-Markov approach using the concept of sojourn time to account for system history 

dependence of transition rates. The results are compared to a single step sampling process. The results 

show highest sensitivity of damage to weld residual stress.  
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1.  INTRODUCTION 

 
Long term reliability of systems, structures and components (SSCs) in the existing fleet of operating 

reactors should be ensured to prevent a reduction in component and system safety margins due to 

aging. In order to address multiple aging mechanisms involving large numbers of components (with 

possibly statistically dependent failures) in a computationally feasible manner, a methodology is being 

developed where the sequencing of events leading to damage is conditioned on the physical conditions 

predicted in a simulation environment [1].  

 

A state transition model [2] was selected as a case-study to implement the methodology. This model is 

applied to the pressurizer surge line pipe weld of a pressurized water reactor (PWR) to model primary 

water stress corrosion cracking (PWSCC) degradation during extended operation life (80 years) of the 

plant. The degradation model described in this paper was originally developed in [2] and later 

improved by using the sojourn time approach [3] with operational history-dependent transition rates 

[4].  The model has many input parameters including temperature, weld residual stress, stress intensity 

factor, and thermal activation energy for crack initiation and crack growth.  The associated 

uncertainties are represented by probability distributions derived from historical data, experimental 

data, expert elicitation, physics, or a combination of these.  The model output is pipe rupture 

probability as a function of operating time. 

 

Although the separation of uncertainties as aleatory versus epistemic can be subjective, it can be 

helpful in supporting decision-making. In this paper, the uncertainty in the PWSCC model (Section 2) 

input is propagated using Latin hypercube sampling (LHS) while distinguishing between the aleatory 
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and epistemic uncertainties (Section 3). The results are compared to a single step approach that does 

not make such a distinction (Section 3.1). A sensitivity analysis is performed using the response 

surface methodology (RSM) to identify the most important model parameter that affects the rupture 

probability (Section 3.2). Conclusions of the study are given in Section 4. 

2.  THE MULTI-STATE SEMI-MARKOV MODEL  

 

The state transition model to predict piping system reliability that is used in the paper was originally 

proposed by Fleming [5] and later adapted for system history dependent transition rates by Unwin et 

al. [2].  This 6-state state transition model is implemented for a PWR pressurizer surge line pipe weld 

(Alloy 182) for the case of a PWSCC scenario. Section 2.1 describes the model and Section 2.2 

describes the procedure that is used to convert the model to a semi-Markov process using the concept 

of sojourn time [3]. 

2.1.  Multi-State Model and Transition Rates 

 

The state transition model [2] that was selected as a case-study for passive component degradation 

involves six ordinary differential equations which are solved by a semi-Markov approach to account 

for system history and local thermal operating condition-dependent transition rates [3,4].  Fig. 1 shows 

the Markov model states for the crack initiation and growth. State evolutions are described through 

 

dS/dt = –   S + ω1 M+ ω2D + ω3C + ω4L                                                        (1) 

dM/dt =   S – ω1M –   M –   M                                                                     (2) 

dC/dt =   M – ω3C –   C                                                                                 (3) 

dD/dt =   M – ω2D –   D                                                                                 (4) 

dL/dt =   D – ω4L –   L                                                                                   (5) 

dR/dt =   C +   L                                                                                             (6) 

 
where S(t), M(t), C(t), D(t), L(t), R(t) denote the probability of being in the states shown in Fig.1 at 

time t.  The transition rates    ,    and repair rates ωi (i=1, 2, 3) are constant. Other transition and 

repair rates in Eqs.(1)-(6) are as defined below  

 

   : Repair transition rate from micro-crack 

   : Repair transition rate from radial macro-crack 

   : Repair transition rate from circumferential macro-crack 

   : Repair transition rate from leak 

   : Leak to rupture transition rate 

   : Macro-crack to rupture transition rate 

 

A simplified model of the transition rates       (i=1,…,4) as presented in [2] are as follow: 

 

                                                                                                        (7) 

 

 

      

{
 
 

 
                   

  

 ̇  

                  ̇                ̇                ̇     
    

              
               

  

 ̇  
             ̇  

    (8) 

 

 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

         

{
 
 

 
                   

  

 ̇  

                  ̇                 ̇                ̇     
    

              
                

  

 ̇  
             ̇  

    (9) 

 

 

         {
                          ̇    

                      
                                                             (10) 

 
In Eqs.(8) - (10), u is a time after crack initiation and w is time after macro-crack formation (see 

Fig.1).  The other parameters in Eqs.(7) - (10) are the following 

 

   : Crack length threshold for radial macro-crack 

   : Probability that micro-crack evolves as radial crack 

   : Crack length threshold for circumferential macro-crack  

   : Probability that micro-crack evolves as circumferential crack  

   : Crack length threshold for leak 

 
 

Figure 1: Multi-state transition model for PWSCC [2]. 

 
 

2.1.1.   Crack Initiation and Growth Rate Equations  

 

Of the alternative models that have been used to characterize initiation, the Weibull model is the most 

widely adopted [6] in which the cumulative probability P(t) of crack initiation by time t is quantified 

through, 

 

                                                                                                           (11) 

                                                         

                                                                                                             (12)            
 
where 

 

b   : Weibull shape parameter for crack initiation model 

τ    : Weibull scale parameter for crack initiation model  

A   : Fitting parameter 

σ    : Explicit stress factor 

n    : Stress exponent factor 
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Q   : Crack initiation activation energy 

T    : Absolute temperature at crack location  

R    : The universal gas constant. 

 

Table 1 below defines the units for the variables in Eqs.(11) and (12), as well as their 

values/distributions as used in different studies.  Base case values refer to the data which were used in 

[3].   

Table 1: Definition of the Inputs in Crack Initiation Model 

Crack Initiation (Weibull Model) Inputs 

Symbol Unit Value 

xLPR [7] Unwin[8] Base Case [3] 

 

T K Distribution  Type Normal  

617 

 

610 

 

 

 

Mean 617.9 

Std. Deviation 0.0882 

Deterministic 618 

b ND 3 Distribution Type  Triangular 2 

 

 
Minimum 3.915 

Mode 4.35 

Maximum 4.785 

  MPa Distribution  Type Normal Distribution Type Normal 106 

Mean 300.3 Mean 300.3 

Std. Deviation 110 Std.  

Deviation 

110 

Deterministic 150 Deterministic 150 

n ND -4 Distribution Type Triangular -7 

Minimum -7.7 

Mode -7 

Maximum -6.3 

A  ND 0.04 2.524 ×10
5 

 

2.524 x 10
5 

 

   kJ/mole 182.908 Distribution Type Triangular 130 

Minimum 116.73 

Mode 129.7 

Maximum 142.67 

 

The maximum crack growth rate,   ̇    (see Eqs. 8-10) is calculated by using MRP-115 Model [9] 

 

           ̇                 
  

 ((
  
 

)              
   )

                                                (13) 

 

where 

 

α      : Fitting constant – crack growth amplitude 

T     : Absolute operating temperature at crack location  

Tref    : Absolute reference temperature used to normalize data (         ) 
QG   : Thermal activation energy for crack growth  

R     : The universal gas constant  

K     : Crack tip stress intensity factor  

falloy  : 1.0 for Alloy 182 and 1/2.6 for Alloy 82 

forient : 1.0, except 0.5 for crack propagation that is perpendicular to dendrite solidification direction. 

β       : Stress intensity exponent 
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Table 2 below defines the units for the variables in Eq.(13) as well as their values/distributions as 

used in different studies.   

 

Table 2: Definition of the Inputs in Crack Growth Model 

Crack Growth (MRP-115) Model Inputs 

 

Symbol Unit Value 
xLPR [7] Unwin [8] Base Case[3] 

 

  ND 1.6 Distribution Type Triangular 1.6 

Minimum 1.44 

Mode 1.6 

Maximum 1.76 

   (m/s) 

(MPa-m
0.5

)
1.6

 

9.82 x 10-13 Distribution Type Normal 1.5 x 10-12 

Threshold - 

Mean 8 x 10-13 

  
Std. Deviation - 

   kJ/mole Distribution  Type Normal Distribution Type Normal 130 

Mean 130 Mean 130 

Std. Deviation 5 Std. Deviation 5 

Deterministic 130 Deterministic 130 

       ND Distribution  Type  Lognormal 1.0 1.0 

Mean 0.99894 

Std. Deviation 1.83475 

Deterministic 1.074897 

        ND 1.0 1.0   1.0 

 
 

2.2. Sojourn Time Approach  

  

The variables u and w in Eqs.(8)- (10) represent the residence time of the system in States M and C or 

D, respectively (see Fig.1). In that respect, Eqs.(1)-(10) do not have the Markov property of being 

independent of state history. These equations are converted into a semi-Markov process using the 

sojourn (or expected residence) time approach determined through 

  

        

  
         [      ∑        

 

   
   

  ∑        

 

   
   

            ]                          

 

where          is sojourn time of state n and for kth time interval,       is the probability of being in 

State n at time t, and        is the transition rate from State n to State m as a function of sojourn 

time.  

 

A sensitivity analysis of the aging model on local thermal operating conditions has been performed [4] 

since the transition rates       through       in Eqs.(7)-(10), respectively, are affected by the 

thermal-hydraulic conditions as they affect the time constant. Thermal-hydraulic data for this analysis 

have been obtained using the transient code RELAP/SCDAMSIM [10] for a simplified model of a 

four loop PWR. 
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3.  QUANTIFYING UNCERTAINTY FOR THE STATE TRANSITION MODEL 
 

As indicated in Tables 1 and 2, the multi-state transition model described in Section 2 is subject to 

considerable uncertainty and/or variability in both initial conditions and parameters. Most numerical 

approaches address such challenges by: a) computing local sensitivity indices (partial derivatives of 

the solution with respect to the input variables) [11], b) solving the model for a statistically large 

ensemble of random or quasi-random input values [12-14], or, c) by approximating the functional 

relationship of the input and output [15-17].  In this paper, Option (b) is used for uncertainty analysis, 

and Option (c) is used for sensitivity analysis, as described in Sections 3.1 and 3.2, respectively.   

3.1.  Uncertainty Analysis 

 
Several random variable sampling techniques are employed in the literature [7], such as random 

sampling, Latin hypercube sampling (LHS), and discrete probability distribution (DPD) sampling 

schemes. The output of interest is the probability of rupture, which is expected to be extremely low for 

primary piping systems. Therefore random sampling may generate many runs without any rupture.  In 

such a situation, a common strategy is to use Latin hypercube sampling to propagate the effects of 

aleatory uncertainty [12]. 

 

In this study, all parameters in Eqs.(1)-(13)  except T and σ are treated as invariant. The T and σ were 

assigned uncertainty distributions based on the results of  a preliminary sensitivity screening process 

among the parameters  T,σ, n, b, QG and α in Eqs.(11)-(13)  to identify those with the most significant 

effect on rupture probability. 

 

In the initial analysis, temperature T and residual weld stress σ were importance sampled without 

distinguishing between epistemic and aleatory uncertainties. Confidence levels on the output variables 

were estimated as a function of time.  The estimation was accomplished by computing the 95
th
 and 5

th
 

percentiles of the distribution on the probability of leak L(t) and rupture R(t) at each time point.  

Figure 2 shows the results of this one-step uncertainty analysis with the 95
th
 (red line) and 5

th
 (blue 

line) percentiles. 

 

As indicated in the xLPR study [7], when it is possible to differentiate between aleatory and epistemic 

uncertainties in a model, additional information can be obtained that could affect the interpretation of 

results by performing a two-loop simulation in which the inner loop and outer loop address the 

aleatory uncertainties and the epistemic uncertainties, respectively.  In the outer loop, parameter values 

are sampled from epistemic uncertainty distributions and passed on to the inner loop. For each sample 

in the outer loop, LHS draws from aleatory uncertainty distributions are performed in the inner loop 

over the time-frame of interest accounting for the aleatory uncertainty.  From these results an average 

rupture probability can be calculated over the variability associated with the input parameters. From 

the outer loop analysis, it is therefore possible to obtain an uncertainty distribution of the variability-

averaged rupture probabilities.  This distribution provides measures of the uncertainty in rupture 

probability that could be reduced by further experimentation or model development.  As LHS is also 

used to generate epistemic uncertainty, the simple arithmetic mean of the rupture probability over 

epistemic uncertainty can be used to estimate an over-all expected value <R> of the rupture 

probability from 

 

      〈 〉  
 

 
∑ (

 

 
∑    

 
   ) 

                                                                             (15) 

 

where M is the number of aleatory draws, N is the number of epistemic draws and     are the rupture 

probabilities calculated from the state transition model for each draw combination. In general, it is 

expected that the overall average value will be the same regardless of whether the sampling is 

performed in a single-step or a two-step process. However, to test whether the overall average is 

affected by the sampling approach, a comparison was made of the two-step LHS versus single step 

LHS. Uncertainty in T and σ were characterized using normal PDFs: T  Normal (617.9, 0.0882), σ 
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Normal (300.3, 30)) for both cases. In the two-step LHS, the uncertainty for T and σ were 

characterized as epistemic and aleatory, respectively, instead of both as epistemic. Equation (15) was 

implemented with N=100 and M=100 resulting in a total of 10,000 realizations. The single step LHS 

realization was also performed for 10,000 draws to obtain 〈 〉. Fig. 3 shows the comparison of single 

step and two-step LHS sampling processes and Fig. 4 shows 〈 〉 as a function of time for the single-

step and two-step LHS. The temperature draws TN  in Fig. 3 are for every 2 years. As can be seen in 

Fig. 4, difference between two methods is extremely small (on the order of 10
-5

). 

 

Figure 2: Leak (L) and Rupture (R) probabilities of PWR pressurizer surge line pipe (Alloy 182) 

for a PWSCC scenario over 80 years.  The red line indicates 95
th

 and blue line indicates 5
th

 

percentile. 

 

3.2.  Sensitivity Analyses 

 
In order to determine whether T or σ had more impact on the rupture probability, a response surface 

approach was used.  The fitting was done by using the method of least squares and a second order 

fitting using 

 

 
2

0211
2

20011000),(  pTpTppTppTf                            (16) 

 

Coefficients of Eq. (16) are listed in Table 3 and statistics goodness-of-fit data are summarized in 

Table 4. 
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Figure 3:  Illustration of single step and two-step LHS comparisons 

          
   a. Single Step LHS        b. Two-Step LHS 

 

As can be seen in Fig. 4, difference between two methods is extremely small (on the order of 10
-5

). 

 

Figure 4: Illustration of single step and two-step LHS comparisons 

 
 

Table 3: Fitting equation coefficients and 95% confidence bounds 

  Coefficients        95% confidence bounds 

  p00 = -24.39 -363.2, 314.5 

  p10 = -7.953 x10
-5

 -0.003004, 0.002845 

  p01 = 0.07899 -1.017, 1.175 

  p20 = 3.302 x10
-7

 3.228 x10
-7

, 3.375 x10
-7

 

  p11 = -7.747 x10
-8

 -4.81 x10
-6

, 4.655 x10
-6

 

  p02 = -6.394 x10
-5

       -9.51 x10
-5

, 8.231 x10
-4

 

 

 

Table 4:  Statistic goodness-of-fit data 

Goodness of fit 

SSE: 2.457 x10
-7

 

R-square: 0.9995 

Adjusted R-square: 0.9995 

RMSE: 5.113 x10
-5
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Fig. 5 shows the impact of weld residual stress and temperature variations on the rupture probability at 

t=40 years in case of 100 realizations and clearly indicates greater sensitivity of rupture probability to 

the uncertainty in stress than to the uncertainty in temperature. 

 

Figure 5: Response Surface of Rupture Probability 

 
 

4.  CONCLUSION 
 

Using a state-transition model to describe (PWSCC), uncertainties in the input data for crack initiation 

and crack growth are represented by probability distributions.  LHS is used to generate observations 

from the distributions governing T and σ with a two-step approach that distinguishes between aleatory 

and epistemic uncertainties. Comparison of the results to a single-step quantification process indicates 

that the differences between one-step and two-step approach are negligible with regard to the mean 

rupture probability (on the order of 10
-5

).  However,  the separation into sources of aleatory and 

epistemic uncertainty could enable the decision-maker to determine the potential value of activities to 

reduce the epistemic uncertainty, such as by the performance of research. Indeed, for this example, 

nearly all of the uncertainty shown in Fig. 2 arises from the “epistemic” uncertainty associated with 

the weld residual stress σ.  
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