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Abstract: This paper presents a feasibility test on extracting HRA-relevant information form data 
collected at different plant/simulators. Newly proposed methodologies for HRA simulator-data 
collection are trying to overcome the aggregation and generalization problems that stranded previous 
attempts at the creation of HRA data banks. Common to the different methodologies is that they insist 
on the need to precisely characterize the performance conditions. The difference is on the type of 
information they aim to collect, some focus on failure probabilities, other on situational influences on 
the performance of the join human-machine system. This paper investigates whether further 
information of use for HRA, like timing and performance variability, could be added to and extracted 
from such databases. The data used in this test derive from three simulator experiments. Two 
experiments were conducted at the Halden Human-Machine Laboratory, while the third at a training 
simulator at a U.S. nuclear power plant. All together 23 crews of licensed operators from four plants in 
two countries participated, and ten emergency scenarios were run. The test considers the data as a 
subset from a larger database, selected by a HRA user as relevant for the target application. The test 
shows that it is possible to extract three types of HRA-relevant data from records obtained at different 
simulators and plants: mean times of actions and diagnoses, response-time variability for critical 
actions, and standardized margins-to-failure information. This paper shows the feasibility of including 
and re-using traditional types of HRA data in newly proposed approaches to HRA database 
construction. 
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1.  INTRODUCTION 
 
During the eighties several simulator experiments were organized in order to provide empirical data 
for development and validation of Human Reliability Analysis (HRA) methods [1]. However, large-
scale efforts directed at gathering HRA data were limited and mainly time reliability correlation data 
were acquired [2]. In the nineties the HRA discipline underwent a radical critique and new methods 
and practices were advanced, but without new systematic evaluations against empirical data. Efforts to 
build HRA databases were made at that time (e.g., the NUCLARR and HERA databases sponsored by 
the U.S. Nuclear Regulatory Commission) but are now discontinued. The result is that nowadays no 
publicly accessible data banks of HRA data exist. 
 
There is general agreement on the need for collecting and sharing human performance data for 
probabilistic safety analysis (PSA) but no standardized HRA data collection approach exists. There are 
conceptual challenges relating to the generalizability of the data from the plant, scenario and task were 
they are acquired to other plants, and even to other scenarios and tasks at the same plant. There are 
disagreements on the classification of the observations (e.g., error types, characterization of the 
context). And there are practical impediments relating to proprietary and sensitivity issues.  
 
These challenges are known and several international cooperative activities are addressing them in a 
renewed call for collection and exchange of HRA data. The Nuclear Energy Agency/Committee on the 
Safety of Nuclear Installations/R(2008)9 report [3] proposes a standardized HRA data collection 
approach for plant training simulators and provides a generic framework for collection and exchange 
of human performance data. The NRC has developed the Scenario Authoring, Characterization, and 
Debriefing Application (SACADA), a methodology and a software tool for creating a HRA database 
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of human performance data from plants’ routine training simulations [4,5], and a HRA Data Collection 
project is underway with a participating nuclear power plant (NPP). Electricité de France and the 
Institute for Energy Technology in Norway/Halden Reactor Project have started work on a 
classification system for Emergency Operating Systems (EOS), for allowing exchange and re-use of 
HRA data and information collected at different facilities [6].  
 
This paper builds on these efforts by taking a look at real simulator data from different plant/studies 
and trying out ways of aggregating the data for possible reuse. The paper capitalizes on data from 
three dedicated HRA experiments that together constitute a limited but workable sample of 
observations, resembling a selected set of records from a larger HRA database. In this way reuse of 
data collected at different plants (the main challenge that have historically hindered previous efforts at 
creating HRA databases) is investigated.  
 
2.  TRADITIONAL HRA DATA COLLECTION 
 
As soon as realistic simulations of control room operation became feasible, simulator studies became 
the natural arena for seeking nominal error probabilities (i.e., the probability that a given action will be 
performed erroneously when the task is not influenced by plant and situation specific factors). The 
idea was that from sets of scenarios containing the same human action, and from large samples of 
operators, it could be meaningful to at least count frequencies of the unsafe instances of the human 
actions. In this way, the reliability of the ‘human component’ could be estimated in basically the same 
manner as conventional reliability does for technical components. 
 
Incorporating simulator data into probability safety analysis (PSA) and HRA in such a direct way 
proved unfeasible. When quantification was sought at the level of actions modeled in the PSA event 
trees, such as depressurizing the primary system or isolating a ruptured steam generator, two problems 
arose. First, it was noted that an extremely high number of sessions and crews (sample size) would be 
needed to observe these kinds of failures. For instance, Dougherty [7] refers to simulator studies 
performed in the late 1980’s where, out of 1600 simulator opportunities, zero 'significant deviations' 
were recorded. Second, it was not trivial to define nominal conditions, whether similar actions 
observed in different scenarios and conditions could be combined for the calculation of the failure 
rates. Moray [8], who studied human performance for informing HRA, summarized the problem in the 
following way: “The attempt to find a single number is an attempt to establish a context-free universal 
fact about human performance. No such thing exists.” 
 
The importance of the situation for human performance is recognized by several research directions in 
the fields of psychology and human factors, such as situated cognition [9], ecological psychology [10, 
11] and cognitive system engineering [12,13], to name a few. Vicente, working within the Rasmussen, 
Goldstein and Hollnagel research tradition developed at the RISØ laboratory in Denmark, has termed 
the importance of the situation for human performance “context-conditioned variability” [14]. The 
impact of context-conditioned variability to HRA is that the parallel with component reliability where 
the context is more or less irrelevant and statistical data are available, cannot be fully maintained for 
the calculation of the reliability of the human component. HRA data are context laden, and therefore 
information about the context need to be captured. 
 
One attempt at avoiding the sample and the context-conditioned variability problems in one single 
move was to collect human error probabilities for lower-level operator’s tasks, i.e., tasks having a 
more defined context and higher failure probabilities (and therefore failure would be observed in 
smaller samples). This was the strategy followed by Swain and Guttman in THERP [15]: “Our general 
approach is to divide human behavior in a system into small units, find data (or use expert judgment to 
obtain appropriate estimates) that fit these subdivisions and then recombine them to derive estimates 
of error probabilities for the tasks performed in NPPs”. 
 
The fact that control room operation is performed by a team and the observation that most errors on 
small tasks were in fact corrected by other team members, or self corrected when the operators had 
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enough time [16, 17], required the introduction of new concepts: recovery and dependency. Recovery 
has to consider the possibility that errors on one or several sub-tasks in a sequence could be detected 
and corrected in time (before an irreversible state is reached). Dependency accounts for the possibility 
that failing a task might influence the probability of failing another task later in the sequence. 
Recovery and dependence are in a sense ways of taking into account the team and dynamic aspects of 
accident operation without explicit models of team cognition and behavior. 
 
Quantifying the building blocks of the tasks represented in the PSA, instead of these directly, could 
address the sample size problem, and data were provided to validate and extend decompositional 
methods like THERP. On the other hand, context-conditioned variability issues remained, and 
impaired the generalizability of the data. The standards of performance that define the failure of the 
basic actions refer to the given plant technology, the actual procedures, the organization of work, as 
well as other plant and situation specific aspects. This is an obstacle to direct generalizability of the 
failure data to other tasks, scenarios, and plants, with the additional drawback that the data might 
obsolete even at the same plant when the specific features are changed. In general, by collecting error 
data defined as behavior that diverges from plant-specific standards, specific contexts are imposed on 
the empirical material so that contextual differences need to be accounted for when re-using the data: 
for instance, if the procedures’ steps are taken as standard of correct performance, data on the number 
of deviations form a step might be unusable if the step is modified or deleted. Even for error data on 
smaller bits of operator performance the context needed to be accounted for. 
 
The following points summarize the traditional approaches to HRA data collection: 
1. Data are collected on human errors for NPP tasks in nominal contexts. 
2. ‘Core damage’ failures in nominal contexts are rarely observed in training or research simulators, 

therefore failure data for smaller tasks are more often obtained in the data collections.  
3. The results cannot easily be generalized to different plants, scenarios and tasks, since the context of 

performance for the source data is not sufficiently and systematically described.  
 
The same considerations apply to time reliability data, in fact the most collected type of traditional 
HRA data [2]. Response times can be collected for both high level tasks and for small units of 
behavior, and may be used to estimate probability of non-response curves, i.e., probabilities of human 
errors as a function of time available. The problems of generalizing to different tasks and contexts are 
similar for time reliability data as for human errors for required tasks. 
 
3.  CURRENT APPROACHES TO HRA DATA COLLECTION 
 
Conscious of the limitations of the previous attempts to create HRA data banks, as well as the needs of 
second-generation HRA methods and emerging applications (e.g. HRA for not-at-power, external 
events) new approaches are being developed and tested for collecting, storing and exchanging HRA 
data. The SACADA [4], EOS [6] and the “Methodology for Conducting Simulator Experiments for 
HRA” developed at the Idaho National Lab [18], although from different theoretical perspectives and 
aiming at different end uses of the data in the HRA process, have all abandoned the notion of a 
nominal context. Instead they agree on the need to precisely characterize the performance conditions, 
in order to overcome the generalizability problems that have jammed the old attempts at the creation 
of HRA data banks. 
 
This has important implications for the methodology used to generate and code human reliability data. 
Scenarios and contexts should be representative of the needs for PRA and the different performance 
conditions that operating crews may encounter. For subsequent use of the data it is therefore necessary 
to ensure that important information on the conditions of performance accompanies the data in order 
to prevent its potential aggregation with other data that reflect dissimilar conditions. This requires 
describing, with specificity, the characteristics of the join human-machine system (e.g. the plant, 
interfaces, procedures, crews, conduct of operations), and the kinds of cognitive and human 
performance demands present in the simulated scenarios that are used for data collection. It also 
requires such characteristics to be described consistently, following an approach that may be 
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standardized, as well as applying associated, accepted models of human performance and accident 
operation. Characterizing plant, crews, scenarios and contextual conditions systematically is also an 
important part of understanding the data, not only the means of identifying and selecting data for 
future use and study.  
 
The SACADA and EOS approaches to HRA data collection employs different ways to solve the 
limitation of classical HRA data where it comes to generalizing the data. The type of data and end-use 
considered by the two approaches are also different. SACADA collects success and failure data on 
tasks performed in simulator training (hence most actions are at a lower level of granularity compared 
to the Human Failure Events (HFEs) typically modeled in PSA event trees). Failure rates are obtained 
and re-used by matching tasks on their cognitive demand profile, i.e., a type of cognitive task analysis 
of the simulated tasks, assuming similar human error probabilities for similar cognitive demand 
profiles.     
 
The EOS method focuses on reusing information in rich qualitative task analyses. The plant and 
simulation settings are systematically profiled in terms of the characteristics of the join human-
machine system, i.e. the ensemble of crew, interface, and procedures, by describing the system 
according to standardized categories, e.g., the crew composition, the prescribed way of working, the 
communication style, the procedures type. The EOS will then help assessing the similarity and 
differences of the systems (plants) and consequently the relevance of the empirical material to the 
target application. The EOS approach is more focused on reusing qualitative information for the 
purposes of second-generation HRA methods. The EOS approach also considers other HRA analyses 
as data (knowledge) that can be reused, as they contain information and reasoning about possible 
system failure elaborated by other experts.  
 
In these approaches types of information that are still widely used by HRA are left out. One example 
is timing information. Another is procedure progression variability. In this paper we concentrate on 
showing how timing information and performance variability information could also be collected in 
HRA simulator experiments and reused via data-banks, by benefitting form the context-of-
performance characterizations provided, e.g., by the SACADA and EOS methods. 
 
2.  TEST DATA 
 
The data analyzed in this paper derive from experiments that were originally arranged for evaluating 
aspects of HRA practice, including assessing the predictive capabilities of commonly used HRA 
methods [19], intra-method consistency [20], and for investigating teamwork and procedure following 
in complex emergency operation [20, 21]. The studies provided useful insights to the specific research 
questions addressed, but it became apparent that there was no agreed methodology to extend the use of 
the collected data beyond the specific scopes that motivated their generation, as for instance recording 
the results in central data bank. This is a typical situation when it comes to the use of research 
simulators for collecting HRA data. It is in fact not uncommon for individual plants to use the results 
of simulator observations to support aspects of their plant-specific PSA. Yet, collected data are rarely, 
if ever, used to verify or validate HRA methods, or to improve the HRA discipline at large.  
 
The data used in this test derive from three simulator experiments. Two experiments were conducted 
at the Halden Human-Machine Simulator, while the third at a training simulator at a U.S. nuclear 
power plant. All together 23 crews of licensed operators from four plants in two countries participated, 
and ten emergency scenarios were run. Table 1 below shows the details of the dataset used, including 
the experiment name and references, the simulated plant type, the number of crews in the experiment, 
and the number of design basis scenarios run. All crews used similar versions of the emergency 
operation guidelines developed by Westinghouse Owner Group. The test imagines that the data are a 
subset from a larger database, created according to the prescripts of modern approaches to HRA data 
base creation, and that therefore it was possible for the HRA user to select a sample that matched the 
target application. 
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Table 1: Sources of the data used 

Experiment name Ref. # Simulated plant # of crews # of scenarios 
PSF/Masking [19] Framatome PWR 900 MW 14 4 
US training simulator [20] Westinghouse PWR 4 3 
HRA-2011 [21, 22] Westinghouse PWR 5 3 

 
4.  RESULTS 
 
Three types of information have been extracted from the data set. The first type of information is about 
mean times for diagnosis and actions. The second type of information is response time distributions 
for critical tasks, i.e., tasks that impact the plant process, and likely the likelihood of subsequent 
Human Failure Events in the event sequences. The third type of information is margin-to-failure 
scores, a measure of human performance variability to normalize different tasks outcomes on a 
common scale. 
 
4.1.  Timing of Actions 
 
Time is a factor of uppermost importance for HRA. Some approaches use time as a surrogate cause of 
failure and allow the time factor to incorporate the effects of most, if not all, drivers of performance. 
For these approaches the estimation of the timing of actions in a scenario is essential and it is not 
limited, as for all other HRAs, to the correct estimation of the maximum allowable times from 
thermohydraulic calculations (i.e. the times when irreversible state arise and the required operators’ 
actions are not longer useful). Typically, these methods have to differentiate between the time required 
for the actions to be completed, the time available for formulating the correct diagnosis of the 
situation, the time available for recovering errors, and the time for eventual delays. All these timings 
are connected to each other, but in most time-reliability methods the single most important estimation 
is the diagnosis time, since it is often the case that the HEPs are derived from time response curves for 
diagnosis of abnormal events in the control room, or outside. 
 
The HRA analysts calculate the timing of action based on the qualitative information obtained for the 
task analysis. An important source for timing determinations is the estimated entry and progressions in 
the emergency procedures set. Scenario specific factors also play a role, for instance the combination 
of events might create cumbersome progressions in the procedures or cause reasons for delaying 
important actions (e.g. tripping the reactor). HRA data collected at research and training simulator can 
constitute a valuable source for timing information determinations. 
 
These points can be illustrated by reference to the International Empirical Study, where various HRA 
analyst where asked to predict the outcome of simulated emergency scenarios [19].  Tables 2 and 3 
below summarizes the different timing estimates made for two HFEs in two steam generator tube 
rupture scenarios, and the assumed impact for task success. The first HFE (1A) is the identification 
and isolation of the ruptured steam generator in a scenario without added complications (base 
scenario), given a maximum available time defined by study’s assessment group in 20 minutes (from 
rupture to isolation). The second HFE (1B) is again the identification and isolation of the ruptured 
steam generator, but in this case in a scenario complicated by a steam line break concurrent with the 
tube break and by the lack of radiation indications (partly due to the steam line isolation that follows 
the steam line break and partly to failures in other radiation sensors). The study defined the maximum 
available time for isolating the ruptured SG in this scenario in 25 minutes.     
 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Table 2: Timing estimates for HFE1A: ruptured steam generator isolation 

Team Method Delay Diag
nosis 

Requ
ired 

Ava
ilab
le 

Impact of time to failure 

NRC ASEP-THERP 7  13 20 Time as main HEP driver. 
EPRI CBDT+THERP 7   20 From RX trip, but main error cause is missing the 

first transition step to E-3. Some time for recovery. 
INL SPAR-H  10  20 Based on 10 minutes to reach E-3. Sufficient time 

if Rx is tripped manually. 
NRC SPAR-H  8-10 13-15 20 The remaining 5 to 7 minutes to manually trip the 

reactor are sufficient. 
PSI CESA    20 Limited time for recovery. But failure mainly due 

to random execution errors. 
NRI DT+ASEP    20 Time not a limiting factor for the HFE. 
EDF MERMOS    20 Lack of urgency main factor for failure. 20 min 

criterion seen as arbitrary. 
Ringhals HEART   16-18 20 Time from trip to isolation. Time shortage is the 

main HFE difficulty. 
IRSN PANAME  13-15 18-20 20 Time is tight and the main HEP driver for an easy 

diagnosis. 
VTT B-THERP  10-12 13-15 20 Time sufficient for HFE success.  
NRC ATHEANA 11  18-26 20 The crews might wait up to 11 min. to trip the 

reactor and then the time will bee too short. The 
allowed 20 min. considered as arbitrarily defined. 

KAERI K-HRA 5 11  20 Delay: 5 minutes to trip the reactor. Time is tight 
and the main driver. 

NRI CREAM    20 Adequate time but with small margin. 
 

Table 3: Timing estimates for HFE1B: ruptured steam generator isolation in a scenario with 
complications 

Team Method Delay Diag
nosis 

Requ
ired 

Ava
ilab
le 

Impact of time to failure 

NRC ASEP-THERP  9-12  25 Time sufficient to reach a transition to the right 
procedure. 

EPRI CBDT+THERP  18-20  25 Time minor contributor, even if no time for 
recovery. 

INL SPAR-H >5  20 25 Time insufficient, HEP = 1.   
NRC SPAR-H    25 Limited time and limited time to recover, but rated 

nominal. 
PSI CESA    25 Short time but not a determining factor. 
NRI DT+ASEP    25 Short time (and unrealistic), but not main factor. 
EDF MERMOS    25 Lack of urgency as main factor together with short 

available time. 
Ringhals HEART    25 Shortage of time as second most important factor. 
IRSN PANAME  15-20 20-25 25 Time is short and one of two main factors. 
VTT B-THERP  15 18-25 25 Time available close to time required and other 

negative PSFs determine a high HEP for the HFE. 
NRC ATHEANA 15 6 18-26 25 No diagnosis in the first 15 minutes (delay) due in 

part to masking. The crews may simply run out of 
time to meet the “arbitrary” 25-minute time frame. 

KAERI K-HRA 15   25 Delay: no signs of SGTR for 15 min after Rx trip. 
Time is the most important factor for HFE failure. 

NRI CREAM    25 Delayed interpretation one of failure types 
identified. 

 
The table shows that although the analysts received the same information regarding the scenarios, the 
HFEs, the crews, the simulated plant, and even detailed printouts of plant status parameters at different 
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points in the scenarios, there was variation in the timing estimates. Furthermore, the timing evaluation 
had in many cases a significant impact on the quantification of the HEPs, and not only for methods 
that employed time-reliability curves.  
 
4.2.  Average Times 
 
Observing simulator sessions is a good HRA practice and would have obviously benefited the 
analyses. Table 4 below, reporting the timing information observed in the data, shows that many 
analysts’ time estimates were realistic, but some were not and in many cases strongly influenced 
quantification. For instance, there were no significant delays in tripping the reactor in the base 
scenario, as by some assumed. Also, it took on average double as long in the complex scenario to enter 
the SG isolation procedure compared to the base scenario. This information would have resulted in 
very different HEP estimates for some analyses (e.g. K-HRA and ATHEANA in the base scenario). 
 

Table 4: Time responses in SGTR scenarios 

 Base N=14  Complex N=14  U.S. crews N=8  All N=36 

SGTR to: Mean Max  Mean Max  Mean Max  Mean 

RX trip 02:23 06:29  At SGTR -  02:11 03:39  02:19 
E-0 At trip 07:06  At trip 01:11  At trip -  At trip 
Stop AFW to ruptured SG 06:44 09:41  13:27 22:42  02:52 04:43  08:59 
Enter E-3 10:15 16:08  20:46 40:32  12:58 18:12  15:18 
SG isolated 15:32 21:29  26:54 45:27  21:13 33:42  21:34 

 
The table also reports the corresponding timing information regarding U.S. crews that run a base 
SGTR scenario in their training simulator and other U.S. crews that run a multiple SGTR scenario in 
the Halden Man Machine Laboratory (HAMMLAB). The times are in line with those observed with 
Swedish crews, considered the differences in scenario specifics, simulated plants, and emergency 
procedures details. The table also shows the averages for the entire sample: if these data where 
provided with standardized context of performance information they could be used as generic timing 
data (conservative in this case, as over half the scenarios are SGTR with complications) for cases 
where the analysts do not possess specific plant/scenario data, if comparable in terms of context-of-
performance characteristics to target plant. 
 
For methods that use time reliability curves, one of the most important information is the time 
available for diagnosis, as this can be associated with an HEP – once other contextual considerations 
are made (e.g. type of event, familiarity). In the case of SGTR events, the diagnosis is formally 
completed by entering the tube rupture isolation procedure (E-3 for Westinghouse plants). The 
complete sample of 36 SGTR observations across the three studies indicates an average time of about 
15 minutes to enter this procedure from the initial cues associated with the tube rupture (i.e. radiation 
alarms or automatic reactor trip in these simulations). Again, an analyst working on a SGTR scenario 
for a Westinghouse PWR plant could benefit from access to such empirical information.  
 
4.3  Response-Time Variability 
 
A second type of data important in many HRA applications is response-time variability. For a given 
task in a given scenario and for a given plant, an extensive data collection could result in empirically 
informed non-response time distributions. If a data sample of the same size collected at different plants 
was available the same could not be done easily, as different plant PRA criteria, procedural criteria 
and other plant/simulation specific aspects would likely strongly reduce the relevant sample. However, 
the data from different plants can provide very useful information to HRA analyses at other plants.  
 
Figure 1 below is based on data from the three studies collected on total loss of feedwater (TLFW) 
scenarios. In this event the crews have to trip the reactor as early as possible after feedwater flow to 
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the steam generators is lost, in order to keep secondary water inventory longer in the steam generators, 
and hence increase the time available before the occurrence of fuel damage. This action is critical as it 
has direct consequences on the evolution of the plant process and likely impact the failure probabilities 
of the HFEs in the event sequence. Figure 1 shows the crew variability for this action and that 
significant delays are possible. In the specific case, the crew that tripped the reactor 51 seconds after 
total LOFW had less than 30 minutes available to establish Feed and Bleed before core damage, 
compared to about 90 minutes for the fastest crews.     
 

Figure 1: Seconds from TLFW to reactor trip (percent of crews) - N=29 

 
 
Another example, from the same total loss of feedwater scenarios is depicted in figure 2. After the 
crews trip the reactor, they will be directed to the relevant emergency guidelines for the event. One of 
the steps in the heat sink procedure will instruct the crews to stop the reactor cooling pumps (RCPs). 
Also this action has consequences for the plant process and the available time to core damage: the 
earlier the RCPs are stopped the longer the time available. Figure 2 shows that two of 29 crews 
significantly delayed this action, thereby consuming available time to avoid core damage.  
 

Figure 2: Minutes from reactor trip to RCPs stop (percent of crews) - N=29 

Response-time distributions of the type presented here cannot obviously be used to uncritically derive 
HEPs or to obtain non-response time curves. They are nonetheless a valid source of empirical 
information, and the value of the data is not limited to analysts that do not have access to direct 
observation of operator performance for their analyses. For instance, the presence in the data of 
significant delays and their relative frequency cannot be disregarded by the fact that similar delays 
have not be observed at the analyzed plant. There is in fact no guarantee that the performance 
conditions and task demands the crews have been trained for and evaluated on in their simulator 
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sessions were fully representative of the conditions encompassed by a PSA scenario, and of those that 
could arise in a real accident.  
 
A critical aspect is therefore that the database allows access to the individual data records in order to 
determine the circumstances surrounding the delays (e.g. plant conditions, procedures, crew 
composition, training) thus allowing the user to assess the relevance to the analyzed context. Likewise, 
the user should be allowed full sorting and filtering access of the data, in order to obtain the most 
relevant sub-sample for further analysis. In this respect, coding the observations according to the EOS 
and SACADA classifications, would not only provide the data required for these methodologies, but 
also facilitate the re-use of timing information in new contexts.  
 
4.4.  Margins to Failure 
 
A proposal for generalizing HRA data from one plant/scenario to different plants/scenarios is to score 
human performance on different tasks on a common scale. The notion of success/failure is already a 
normalized measure of human performance. However, such a binary characterization limits the ability 
to draw useful insights from even substantial amounts of observed trials. For example, it is possible 
that all crews in a simulation session complete the needed actions to mitigate a design basis event. 
This would indicate only successes on the HFEs and no conclusion regarding the relative difficulty of 
the tasks could be obtained. However, performance quality variability typically exists, and the 
information indicating that some crews succeed with substantial ‘margin’ to spare while others did 
not, is lost by the dichotomous measure.  
 
For this reason Hallbert and al. [18] propose a continuous measure to characterize performance that 
capture issues such as available or remaining margin to failure and variability in performance amongst 
crews. The approach is called the “limit state concept” and includes a data analysis technique that 
normalizes the raw performance measurement in terms of the limit state. “This means that the raw 
performance measures are adjusted using their relationship to the limit state as a notionally common 
scale” [18, p. 40].  
 
Figure 3 below, show the application of this data analysis approach to performance data from the three 
studies considered in this paper. The crew performances of four HFEs in three different design basis 
events have been analyzed according to the limit state concept. The limit states (i.e. success criteria for 
the HFEs) are defined, with some specificity and uncertainty, by the PRA of the design basis 
accidents. One HFE was “establish Feed and Bleed before core damage” in total loss of feedwater 
events. The second HFE was “isolate the ruptured steam generator before it overfills” in SGTR 
scenarios. The third and forth HFEs are in a RCP Seal LOCA scenario (one requiring to stop the RCPs 
and the other to start the positive displacement pumps before irreversible damage states).  
 
The 73 crew performance observations of the four HFEs are scored on a scale ranging from 0 margins 
(i.e., failure) to 1 (i.e., maximum success margin possible), based on the timing of their actions in the 
scenario, the status of plant parameters at the time of actions, and the limit states (success criteria) 
provided by the PSA model. For instance, in the case of the HFE “Feed and Bleed”, the success 
margin would represent the percentage of remaining available time before core damage at the time 
Feed and Bleed was established, based on the time the crew tripped the reactor. In this scale 0 would 
correspond to the action executed after the core began to melt, and 1 the action was executed at the 
same time as reactor trip (100 percent time available). A curve relating time form reactor trip to core 
damage (obtained form the PSA) is adopted for calculating the available time. Similar calculations are 
made for the other HFEs. 
 
Figure 3 shows the margin to failure scores obtained by the crews relative to the time available for the 
four HFEs. The interpolated polynomial curve resembles typical “probability of non-response” curves 
for the considered time region, although the upper and lower bounds would likely be larger here, as 
failures and near failures were seen also with extensive time available. It should be stressed, however, 
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that the Y-axis here represents the margin to failure scores on a linear scale and not human error 
probabilities on a logarithmic scale.  
 

Figure 3: Margins to failure by available time - N=73 

 
 
This approach permits insights to be drawn regarding three properties related to performance 
reliability: 

1. Whether the actions meet the success criteria for the defined HFE; 
2. The amount of margin available between task performance and the limit state for the task 

as defined by the HFE; 
3. Variability among crews in performing the task(s). 

The measure would also permits estimation of measures of central tendency and calculating statistics 
that can be used in reliability analysis. 
 
5. CONCLUSIONS 
 
Several international cooperative activities are addressing the need of collecting and sharing human 
performance data for probabilistic safety analysis (PSA). New methodologies for data collection, 
classification and storage have been proposed, and some are being tested. Common to the different 
methodologies is that they insist on the need to precisely characterize the performance conditions, in 
order to overcome the aggregation and generalization problems that stranded previous attempts at the 
creation of HRA data banks. 
 
The paper follows on such developments and assumes that by means of these classification systems a 
HRA user has extracted a sample of relevant data from the database. The test investigates whether a 
HRA user could extract further relevant information, beyond the primary uses assumed by the 
methodologies. The data used in this trial are real simulator observations from three dedicated HRA 
experiments performed with three different simulators, and with crews from four different plants in 
U.S. and Europe. 
 
The first type of information that is extracted is about timing of actions. The paper shows that average 
response times from the entire sample could be used as generic timing data, provided the data match 
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the target application. Given the nature of the data, with over half the records from design basis 
scenarios with extra complications, such mean values could be assumed to be conservative estimates.  
 
The second type of information is response time distributions for critical tasks, i.e., tasks that impact 
the plant process, and likely the likelihood of subsequent HFEs in the event sequences. This 
information does not allow direct derivation of HEPs or non-response time curves. Rather, it is a 
source of empirical information about crew variability and of the possibility and relative frequency of 
significant delays that need to be taken into account in the qualitative and quantitative HFE modeling. 
This information cannot be disregarded even by analysts that have collected performance observations 
on-site, since there is no guarantee that the performance conditions and task demands the crew have 
been trained for and evaluated on in their simulator sessions were fully representative of the conditions 
encompassed by a PSA scenario, and of those that could arise in a real accident. 
 
The third type of information extracted applies a methodology for scoring human performance on 
different tasks on a common scale, on the lines of the “limit state” concept for generalizing HRA data. 
This approach permits insights to be drawn regarding three properties related to performance 
reliability: (1) whether the actions meet the success criteria for the defined HFE; (2) the amount of 
margin available between the task performance and the failure criteria for the task as defined by the 
HFE; and (3) variability among crews in performing the task(s). The measure would also permits 
estimation of measures of central tendency and calculating statistics that can be used in reliability 
analysis. 
 
A critical assumption for this test is that the database allows access to the individual data records in 
order to determine the circumstances surrounding performance (e.g. event description, plant 
conditions, procedures, crew composition, training) thus allowing the user to assess the relevance to 
the analyzed context. Likewise, the user should be allowed full sorting and filtering access of the data, 
in order to obtain the most relevant sub-sample for analysis.  
 
This paper shows that timing and standardized performance data coded according to the new 
classification systems for HRA simulator data collection could not only provide the data required for 
these methodologies, but also facilitate the extraction and re-use of other types of information of 
critical importance to HRA, like timing, margins-to-failure, and crew variability information. This data 
can be naturally collected at research simulators, while raw data collected at training simulators could 
be later analyzed, formatted, and stored in a publicly available data bank. 
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