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Abstract: The operation of nuclear power plants is supported by numerous analyses, both 
computational and experimental. Probabilistic risk analysis models attempt to quantify the risk of 
power plants, and implicitly use the supporting analyses during this process. The way in which these 
analyses are used in risk models is usually conservative, but could instead be represented as an 
uncertainty distribution. The conservatisms are often hidden, but affect every aspect of risk models; 
for example in the definition of success criteria. This paper uses operator reliability as an example to 
quantitatively demonstrate how conservative interpretations of supporting analyses can affect risk 
model predictions. 
 
The influence of human factors is recognised to be crucially important to risk models for nuclear 
power plants. Human error probability quantification is a key aspect in determining the relative risk 
importance of human actions in the context of a holistic probabilistic safety analysis model. However, 
there are large degrees of uncertainty in numerous aspects of human factors analysis and in the 
resulting quantification, many of which can be traced back to supporting transient analyses, such as 
thermal hydraulic and neutronic analyses. Risk models have historically used conservative 
judgements resulting from these analyses as an input into human reliability assessment. This paper 
presents a method for incorporating uncertainty distributions arising from phenomenological analyses 
into human reliability quantification. The method is illustrated using uncertainty in the timescale 
available to the operator for performing specified actions. This paper shows how to include 
uncertainty distributions over the time available to the operator and provides updated quantitative 
analysis. An illustrative example of operator initiated long term hold down of reactivity is presented. 
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1.  INTRODUCTION 
 
Previous studies have considered the effect of success criteria uncertainties (using auxiliary feedwater 
pumps as an example) on the risk model results [1, 2]. In summary, it was found that model 
uncertainty, for these case studies, was order of magnitudes larger than parameter (statistical) 
uncertainty. This type of result suggests there is an unmet need to properly characterise the model 
uncertainty in the results of risk models. This paper seeks to contribute to the issue of model 
uncertainty by considering the plant based source of uncertainty. Nuclear power plants (NPP) have 
numerous supporting nuclear analysis codes; the nuclear analysis codes cover a wide spectrum of 
knowledge domains. Assessing uncertainty is a key part of the scientific method, and computational 
advances have allowed quantitative uncertainty estimates to be routinely calculated in a number of 
contexts. However, frequently these estimates are only used within a small knowledge domain and the 
uncertainty information is often passed on to other experts in a summarised form, for example as a 
conservative estimate. This type of information reduction certainly features in the construction of 
Probabilistic Risk Analysis (PRA) models, which uses conservative success criteria estimates. In this 
paper, the effect of uncertainty arising from phenomenological analyses on human reliability 
estimates is considered.   
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In this paper the interaction of success criteria with operator actions is considered. Operator actions 
are typically assessed to be significant contributors to the overall estimated risk of operating nuclear 
power stations. The effect of operator actions on the predicted plant risk is typically a significant 
fraction of the total risk, although the precise figure is highly dependent on the specifics of the plant 
design and operation. The task of estimating human reliability, hence, has a very significant bearing 
on the results and insights of probabilistic risk models, and is a valuable example to use. 
 
Quantitative human reliability assessment has numerous open questions associated with it and is an 
active area of research. Many methods have been developed over a number of years to quantitatively 
estimate human reliability. For example, some early methods include Technique for Human Error 
Rate Prediction (THERP), Accident Sequence Evaluation Programme (ASEP), and Human Error 
Assessment and Reduction Technique (HEART) [3, 4, 5]. A 2009 review [6] by the UK Health and 
Safety Executive (HSE), identified 72 potential methods. Some of these methods are public domain, 
while others are proprietary methods. This paper is written without reference to any specific method, 
but it does draw upon ideas that have been developed by the human reliability quantification methods. 
In particular the concept of factors which modify human reliability is considered in this paper. 
 
It is widely accepted that there are numerous variables that can affect the performance of operators. 
These factors can be coarsely split into internal station factors and external station factors. The 
internal station factors include issues such as familiarity with a task, the time available to complete a 
task, and clarity of feedback. External factors include all those aspects of life which will impinge on 
an operator’s state of mind, for example their personal life outside of work. Generally human 
reliability quantification methods consider only the internal to station factors. A description of the 
factors which can affect human reliability is provided in Reference 7. Quantitative techniques have 
been developed to estimate the impact of these factors on human reliability. However, uncertainty 
arising from these factors has not previously been considered quantitatively. Instead the implicit ethos 
adopted by human error quantification techniques has been the same as the ethos traditionally used 
throughout probabilistic safety analysis; that is to make conservative judgements whenever a 
judgement needs to be made. However, the tools used to estimate the impact of a given factor can 
usually be extended to incorporate the effect of uncertainty. For example the effect of available time 
on operator reliability has been characterised by several methods, and can be extended to consider 
uncertainty over the time available. This paper demonstrates how uncertainty over the time available 
for an operator to perform an action can be incorporated into risk models, and links the uncertainty in 
the time available to the underlying plant physics. 
 
2. NITROGEN EXAMPLE 
 
The large range of factors which affect human performance can each have several different sources of 
uncertainty. In this paper the problem is restricted to the time available to the operator to perform a 
specified task, and the uncertainty in the time available which is attributable to the underlying 
phenomenological modelling. For example, following a trip at a gas cooled reactor, the primary 
shutdown mechanism is to fully insert the control rods, thereby making the reactor subcritical and 
terminating the fission reaction. However, if some control rods fail to insert then nitrogen gas can be 
used to provide an additional safety margin for shutdown and to ensure the long term hold down of 
reactor reactivity [8]. The key parameter determining the timescale available for nitrogen shutdown, 
assuming a fixed number of rods fail to insert, is the Xenon-135 transient. Xenon-135 is a strong 
neutron absorber (~2.6E+06 barns) and reaches a steady state in an at power reactor [9]. Xenon-135 
formation and decay is primarily dictated by the processes shown in Figure 1 below. 
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Where ta and tb are the time available and a “baseline time” respectively. The baseline time is a 
nominal “normal” amount of time which should be available in order for the operator to perform the 
action successfully. ‘s’ is a scaling factor that can be used to adjust for the effect of the selection of 
the units. Deviations from the baseline time are weighted using a negative exponential factor. In this 
paper the baseline time will be taken as being the conservative time limit that would be used in 
existing risk modelling processes. Hence in this paper ta is always greater than or equal to tb. 
 
It is emphasised that the model described above does not have a basis in quantitative human reliability 
research, and is chosen primarily for simplicity. The curve does also satisfy the intuitive properties 
that increases in the available time increase reliability while increases in reliability decline as more 
time is made available, so that in a finite time it is not possible to achieve an arbitrarily low reliability 
using this model. Any alternative method for assessing the impact of time on human reliability could 
be substituted for this model without changing the overall method described, and without altering the 
overall message of the paper. 
 
4 INCORPORATING UNCERTAINTY 
 
Section 3 has provided a simplified method for incorporating time factors into quantitative human 
reliability assessment. Hence to create an uncertainty distribution based on the effect of time 
uncertainty only, we can assess the reliability at all of the possible time points. In general this is a 
continuous distribution, but practically we will restrict it to a discrete distribution over possible time 
states. This is demonstrated below in the context of the nitrogen injection example. 
 
To incorporate uncertainty in the time factor of nitrogen injection we need to estimate the probability 
distribution over the time to injection. This is a difficult task. Fortunately, known phenomena and 
transients that can occur at nuclear power stations invariably have already been subjected to rigorous 
analysis. From a risk analysis perspective we can simplify the task to collating existing analyses 
which provide estimates on uncertainty. In this example the information needs to be discretised into 
“reasonable” time chunks permit analysis. Each time period is assigned a probability mass, which in 
this case is nominal, but in practice can be based on existing analyses. This is illustrated with a 
hypothetical operator action which is assigned a nominal human error probability of 1.00E-03. This 
defines the human error probability in the baseline time, which is set to be 3 hours in this example. 
Table 1 below gives a breakdown of time periods and probability masses, together with the 
multiplicative factor calculated using our simple model, and the revised human error probability 
estimate for that time period. 
 

Table 1: Discrete Probability Distribution Over the Human Error Probability Estimate 

ID Time Available Probability Multiplicative Factor Human Error Probability Estimate
1 3-6 hours 0.1 0.94 9.39E-04 
2 6-12 hours 0.2 0.78 7.79E-04 
3 12-18 hours 0.5 0.61 6.07E-04 
4 18-24 hours 0.2 0.47 4.72E-04 

 
In each case the midpoint of the range has been used in estimating our multiplicative factor. The 
greater the number of intervals used the more detailed the resulting uncertainty distribution will be. 
The method is just as well demonstrated using a small number of intervals as using many intervals, 
since it still provides the shift from a conservative assessment to a best estimate plus uncertainty case. 
It is in making this shift that the greatest difference is observed, rather than by increasing the number 
of intervals further. Beyond a 24 hour time horizon there is likely to be significant offsite support 
available and the problem fundamentally changes character from predicting the reliability of a single 
team or single operator. For this reason the simple model presented above is considered wholly 
inapplicable for times beyond 24 hours and times on longer scales are not considered in this paper.  
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Table 3: Model Failure Parameters Table 

Parameter 
Name 

Description Mean Uncertainty 
Distribution 

Error 
Factor 

Median 5th 
Percentile 

95th 
Percentile 

Base Case 
HEP 

Base Case 
Conservative 
Value for 
Human Error 
Probability 

1.00E-03 None N/A 1.00E-03 1.00E-03 1.00E-03 

Uncertainty 
HEP 

Human Error 
Probability 
Inc Time 
Uncertainty 

6.48E-04 Discrete See 
Table 1 

6.07E-04 9.39E-04 4.72E-04 

Pump CCF Pump CCF 1.00E-04 Lognormal 5.00 6.20E-05 1.24E-05 3.10E-04 

PumpFS Pump Fails 
to Start 

1.00E-03 Lognormal 2.00 9.15E-04 4.58E-04 1.83E-03 

Tankfail Structural 
Failure of 
Storage 
Tanks 

1.00E-05 Lognormal 5.00 6.20E-06 1.24E-06 3.10E-05 

ValveFC Valve Fails 
Closed 

9.00E-04 Lognormal 2.00 8.23E-04 4.12E-04 1.65E-03 

 
 
The model has been analysed using RiskSpectrum PSA v1.1.4.3, using standard analysis settings, to 
provide an estimate of the probability of failure on demand of the top gate shown in Figure 2. The 
software has been used to find the minimal cutsets of the fault tree, calculate importance metrics and 
estimate the uncertainty distribution of the top gate. The minimum cutsets for the base case are shown 
in Table 4 below: 
 

Table 4: Minimum Cutsets for the Base Case 

ID Sequence Probability Percentage Contribution Event 1 Event 2 

1 1.00E-03 49.8 OP2  

2 9.00E-04 44.8 PB1  

3 1.00E-04 4.98 PUMP CCF  

4 1.00E-05 0.5 PB2  

5 1.00E-06 0.05 PB3 PB4 

 
The percentage contribution is a standard importance measure used to evaluate cutset results. Note 
that the percentage contribution has the property that the sum of all cutset percentage contributions is 
not (usually) 100. The formula used for calculating fractional contributions is copied below for 
reference. 
 
 
ܥܨ  ൌ 1 െ

்ܳை
்ܳைሺܳ ൌ 0ሻ

 
(2) 

 
Where FCi is the fractional contribution of the ith component, QTOP is the probability of failure on 
demand of the top event (or unavailability in some problem setups), and QTOP(Qi=0) is the probability 
of failure on demand of the top event with the probability of failure of the ith component set to zero.  
 
Table 5 below shows summary results for the basic events in the base case: 
 



Table 5: Basic Events Importance and Sensitivity for the Base Case 

ID Basic 
Event 

Mean Fractional 
Contribution 

Risk Decrease 
Factor 

Risk Increase 
Factor 

Sensitivity 
(RIF/RDF) 

1 OP2 1.00E-03 4.97E-01 1.99 4.98E+02 9.90 

2 PB1 9.00E-04 4.47E-01 1.81 4.98E+02 8.41 

3 PUMP 
CCF 

1.00E-04 4.97E-02 1.05 4.98E+02 1.51 

4 PB2 1.00E-05 4.97E-03 1.00 4.98E+02 1.05 

5 PB3 1.00E-03 4.97E-04 1.00 1.50E+00 1.00 

6 PB4 1.00E-03 4.97E-04 1.00 1.50E+00 1.00 

 
The risk decrease factor is the ratio of the top event failure probability with the defined model 
parameters to the top event failure probability if that specific basic event has a zero failure probability. 
In simple examples, such as this one, this is easily relatable to the fractional contribution: for example 
OP2 contributes ~1/2 of the probability of top event failure, and the risk decrease factor is hence 2. 
The risk increase factor is the same ratio but with the specific basic event failure probability set to 
one. Sensitivity is the ratio of the risk decrease and risk increase factors. 
 
The analysis has then been repeated but replacing the point estimate of 1.00E-03 with the discrete 
distribution given in Table 1 above. The minimum cutsets in this case are shown in Table 6 below: 
 

Table 6: Minimum Cutsets for the Uncertainty Case 

ID Sequence Probability Percentage Contribution Event 1 Event 2 

1 9.00E-04 62.1 PB1  

2 4.38E-04 30.2 OP1  

3 1.00E-04 6.9 PUMP CCF  

4 1.00E-05 0.69 PB2  

5 1.00E-06 0.07 PB3 PB4 

 
Table 7 below shows the fractional contributions of basic events in the uncertainty case: 
 

Table 7: Fractional Contributions of Basic Events for the Uncertainty Case 

ID Basic 
Event 

Mean Fractional 
Contribution 

Risk Decrease 
Factor 

Risk Increase 
Factor 

Sensitivity 
(RIF/RDF) 

1 PB1 9.00E-04 6.21E-01 2.64 6.90E+02 14.9 

2 OP1 4.38E-04 3.02E-01 1.43 6.90E+02 5.11 

3 PUMP 
CCF 

1.00E-04 6.89E-02 1.07 6.90E+02 1.73 

4 PB2 1.00E-05 6.89E-03 1.01 6.90E+02 1.07 

5 PB4 1.00E-03 6.89E-04 1.00 1.69E+00 1.01 

6 PB3 1.00E-03 6.89E-04 1.00 1.69E+00 1.01 

 
Comparing Table 4 and Table 6 it can be seen that the importance ranking of the operator action is 
altered when uncertainty is included in the estimate. This type of permutation in the importance of 
cutsets is very significant since the analysis of cutsets is a primary method for understanding the plant 
risk, and providing input into risk informed decision making. In the list of fractional contributions of 
basic events (Table 5 and Table 7), there is a corresponding permutation in the ordering of basic event 
importance in the uncertainty case compared to the conservative case. 



 
6. DISCUSSION 
 
PSA models are filled with hidden examples of uncertainties that arise from uncertainties in the 
underlying analyses of physical processes that have been performed. The incorporation of 
uncertainties is not always as straight forward as in this case. For example some uncertainties could 
only be incorporated through changes to the structure of the model. For example if using a fault tree 
paradigm, then some uncertainties could only be incorporated by structural changes to the number of 
inputs to gates.  
 
The observation arising from Section 5 is essentially a very simple one; that is that using a best 
estimate plus uncertainty to represent a failure parameter value can have significant effects on the risk 
profile of a model, and of the risk importance of cutsets. This is an obvious statement, but the insight 
and contribution of the paper really comes from the source of the re-assessment of the value of the 
failure parameter. The source is one that falls between domains of knowledge; the Relap analyst 
typically knows little about human factors analysis, and the human factors analyst rarely considers the 
details and implications of Relap analysis. The uncertainty that would be considered by quantitative 
human reliability methods is that associated with statistical uncertainty in the data used; and that 
uncertainty is only considered in the latest methods. This clearly misses the uncertainty considered in 
this paper, and as a result provides a misleading representation of having assessed the uncertainty; as 
noted by Zio and Aven [10], recourse to a quantitative evaluation method without detailed 
understanding of the underlying factors can easily lead to a misrepresentation of the risk results, and 
may place an unwarranted level of certainty about the results of the analysis 
 
Hence the significant uncertainty considered included here would normally fall between the gaps of 
knowledge domains. The need for multi-disciplinary teams in general is, of course, well established, 
but appeals for multi-disciplinary collaboration are often vaguely justified or even presented as an end 
in itself, rather than serving a specific useful purpose. The type of observation made in this paper is 
one specific justification for increased interaction between diverse domain experts to allow high level 
understanding of how domains of knowledge interact. This gestalt understanding is important to 
nuclear safety. 
 
7. CONCLUSION 
 
There are many hidden conservatisms within the model structure of probabilistic risk models. The 
source of these conservatisms can often be traced back to a conservative interpretation of a supporting 
physical analysis. Often the conservative interpretation is a simplification of the actual analysis 
available and uncertainty is routinely calculated in many domains. This paper provides a joined up use 
of uncertainty for the purposes of risk assessment. This paper has presented a method to quantitatively 
incorporate uncertainty in human reliability due to underlying uncertainties in physical analyses. This 
type of uncertainty has not been quantitatively assessed before, but probabilistic models have instead 
relied on conservative judgements. Indeed this uncertainty remains largely hidden from view in 
probabilistic models, unless a joined up view of the analysis processes involved, including an 
understanding of the basic physical processes and how uncertainties in one sphere of knowledge can 
propagate through to other analyses in the course of risk analysis.  
 
The uncertainty analysed here is also an example of how quantitative human reliability analysis can 
unwittingly hide uncertainties. This is true of all existing methods, even those which purport to 
estimate the uncertainty of operator reliability. The methods surveyed which do provide an estimate of 
uncertainty provide only an estimate of statistical variation between responses to controlled 
conditions. This is a useful factor to try to estimate but it is a misleading to portray this as a full 
characterisation of the uncertainty associated with the problem. Aleatory uncertainty is only the tip of 
the iceberg in terms of the uncertainties that contribute to human reliability. There is a significant 



body of work to be performed in identifying and, where possible, quantifying, latent uncertainties in 
human reliability assessment that have, to date, been masked by conservative judgements.  
 
More generally the method presented here can be extended to conservatisms latent throughout 
probabilistic risk models. A model with numerous hidden conservatisms limits itself to make 
statements of the form “the risk is at least better than X”. Iteratively re-assessing conservatisms is a 
vital part of transforming risk analysis of hazardous plants and the type of statement that risk models 
can be used to make. This work is likely to modify our understanding of the overall risk profile of 
nuclear power plants, and as shown in this paper it can significantly affect our understanding of the 
risk importance of operator actions.  
 
The contribution made here is one part of assessing model uncertainty. The assessment of model 
uncertainty in this sense could be expanded to all parts of PRA models using existing uncertainty 
estimates. This is similar in spirit to the uncertainty analysed in the case study of success criteria 
uncertainty for auxiliary feedwater pumps in Reference 2. 
 
In addition to the uncertainty induced by time uncertainty, there is also uncertainty in the “effects 
model” used to represent the effect of time. That is, the correct form of equation 1 is unknown. This is 
another area for further work. 
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