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Abstract: This paper studies the use of sensitivities to quantify the extent to which individual airline 

departments (stakeholders) contribute to the incident of runway overrun. For that purpose, we present a 

model of the incident runway overrun. The incident model is based on the dynamics of aircraft and 

describes the functional relationship between contributing factors leading to the incident. The incident 

model also takes operational dependencies into account. Model input are the probability distributions of 

the contributing factors, which are obtained by fitting distributions to data of a fictive airline. By 

propagating the probability distributions through our incident model, we are able to make statistical 

valid statements of the occurrence probability of the incident itself. Therefore, we use the subset 

simulation method. By estimating the design point using the samples of the subset simulation we obtain 

the sensitivities by applying the First-Order Reliability method. The sensitivities are used to quantify 

stakeholder contribution to the incident runway overrun by allocating the various stakeholders to the 

contributing factors. 
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1. INTRODUCTION 
 

Certain incidents (e.g. runway excursion) occur rarely if at all for a single airline. Yet, the probability 

of such an incident is also not equal to zero, making it difficult to calculate the incident probability based 

purely on historical rates. If the airline increases its sample size with data from worldwide statistics (e.g. 

annual safety reports), a second problem arises, namely when data is collected across multiple airlines, 

it is currently impossible to correct for the effects of airline-specific safety cultures, flight procedures, 

types of aircraft, routes, training, etc. 

 

Our hypothesis is as follows: even if the incident itself cannot be observed within the flight operation of 

the single airline, it is possible to measure the contributing factors leading to the incident. By modeling 

the contributing factors with probability distributions and knowing the functional relationship between 

them, we are able to calculate the probability that the actual incident will occur. We use the subset 

simulation method to compute the incident probability. 

 

However, the individual contribution of each factor to the incident has not yet been quantified. In 

addition, it is desirable for safety management systems to know the contribution of stakeholders (e.g. 

departments of an airline such as training, or flight operation) to the safety level of an airline. To 

overcome this fact, this paper studies the use of sensitivities obtained from the subset simulation method 

to quantify such contributions. By tagging the contributing factors with the stakeholders, we are also 

able to assess the contribution of stakeholders to the risk of experiencing an incident that is analyzed. 

 

The remainder of this paper is as follows: First, we describe in Sec. 2 the incident model including the 

physical and operational dependencies. Furthermore, we will describe the modeling process of the 

contributing factors that are the model input. In Sec. 3, we will present the method of subset simulation. 

Section 4 describes the estimation of the sensitivities and Sec. 5 concludes the paper.
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2. RUNWAY OVERRUN EXAMPLE 
 

2.1. General concept 

 

Runway excursion is one of the most frequently occurring incidents worldwide [1]. Therefore, many 

studies have focused on determining the typical contributing factors leading to runway overruns and 

analyzing the dependencies of the contributing factors [2, 3]. Examples of typical contributing factors 

are: high-speed deviations from the target approach speed, high tailwind component, landings on a short 

runway, long landings (touching down late), or a wet runway. All of these contributing factors can be 

measured based on the operational flight data of an airline. The physical relationship between these 

factors is known and equal for each airline. The statistical variance of each contributing factor, however, 

heavily depends on the flight operation of an airline. Figure 1 shows some contributing factors of the 

incident type runway overrun.  

 

Figure 1: General Concept 

 

  
 

As indicated on the left of Fig. 1, many of the contributing factors vary during flight operation (e.g. 

wind) or even exceed limits imposed by the airline. We input the measured distributions into the incident 

model that contains the functional relationships between the contributing factors. This allows us to 

quantify an estimate for the incident probability, even if an airline has not observed such an incident in 

their flight operation. 

 

First, we present an incident model of the runway overrun that is based on the dynamics of an aircraft 

(physical approach) and also includes operational dependencies. Then, we identify for each contributing 

factor a corresponding probability distribution that describes the contributing factor based on flight 

operational data. For that purpose, we present measures, which allow us to determine the goodness of 

fit. Third, we input the distributions of the contributing factors to the incident model in order to quantify 

the occurrence probability of an overrun. However, when using classical Monte-Carlo techniques, a 

large sample size is required for small probabilities since the sample size is inversely proportional to the 

failure probability that is to be obtained. To overcome this fact, we use the subset simulation method [4]. 

 

2.2. Runway Overrun Model 

 

In this section, we present the runway-overrun model. The first step is to define a metric that describes 

the closeness of a single flight to ending in a specific incident. We call such metrics incident metrics. 

Put it another way, the incident metric describes a safety margin of a single flight with respect to a 

certain incident. If that incident metric is less than zero, an incident occurred. Examples for such metrics 

could be the tail clearance in case of the incident tailstrike, or the vertical speed prior to touchdown with 

respect to hard-landing. For the runway overrun, we use the stop margin SM that is defined as follows:  

 

 SM = LDA - ALD  (1)  
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Here, LDA is the Landing Distance Available (runway length) and ALD refers to the Actual Landing 

Distance. Our incident model will compute the ALD. An overrun occurs if the SM is negative (Eq. 2): 

 

 
𝐹𝑙𝑖𝑔ℎ𝑡 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 {

 
𝑁𝑜 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡  𝑖𝑓 𝑆𝑀 > 0

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡         𝑖𝑓 𝑆𝑀 ≤ 0 
 

(2)  

 

In order to calculate the safety margin, we use the aforementioned incident model 𝑓𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡  

 

 𝑆𝑀 = 𝑓𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝐶𝐹) (3)  

 

The function 𝑓𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 includes the relevant functional relationships between the contributing factors 𝐶𝐹 

such as flight dynamics (physics), flight procedures, and aircraft systems. The output is the incident 

metric based on the input samples of the 𝐶𝐹, here the stop margin. 

 

The following Fig. 2 illustrates the concept. The red and dotted incident area equals the probability of 

the incident, which is unknown and has to be quantified. The aircraft symbols equal samples. If a sample 

is not within the incident area, no incident occurred. The distance between a sample and the incident 

area represents the incident metric (safety margin . The greater the distance between the incident area 

and the sample, the greater is the value of the incident metric. The aim of this paper is to quantify the 

size of the incident area that equals the incident occurrence probability by applying the subset simulation 

method and use its samples to estimate sensitivities of the each contributing factor. 

 

Figure 2: Estimating Incident Probabilities 

  
 

The deceleration of an aircraft can be expressed as follows by using Newton’s second law of 

motion [5],  

 
�̇� =

1

𝑚
[𝑇 − 𝐷 − 𝑚𝑔 ∙ sin 𝛾 − 𝜇𝐹(𝑚𝑔 ∙ cos 𝛾 − 𝐿)] 

(4)  

where �̇� equals the deceleration of the aircraft, 𝑚 expresses the aircraft mass, 𝑔  is the gravitation 

constant, 𝛾 equals the flight path (here it is assumed to be equal to the runway slope). The forces within 

this Eq. (4) are the propulsion (thrust) forces T, the aerodynamic drag 𝐷 and the aerodynamic lift 𝐿. The 

friction coefficient during braking is a function of the runway condition and brake application (Eq. 5).  

 

 𝜇 = 𝑓(𝑟𝑢𝑛𝑤𝑎𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑏𝑟𝑎𝑘𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) (5)  

 

We use the following expressions to model the lift and drag:  

 

 𝐿 = �̅� ∙ 𝑆 ∙ 𝐶𝐿 =
𝜌

2
𝑉𝐴

2 ∙ 𝑆 ∙ 𝐶𝐿 =
𝜌

2
(𝑉𝐺𝑆 − 𝑉𝑊)2 ∙ 𝑆 ∙ 𝐶𝐿 

(6)  

 𝐷 = �̅� ∙ 𝑆 ∙ 𝐶𝐷 =
𝜌

2
𝑉𝐴

2 ∙ 𝑆 ∙ 𝐶𝐷 =
𝜌

2
(𝑉𝐺𝑆 − 𝑉𝑊)2 ∙ 𝑆 ∙ 𝐶𝐷 

(7)  

 

In Eq. (6-7), �̅� represents the dynamic pressure, S the reference area of the aircraft, 𝐶𝐿 the aerodynamic 

lift coefficient and 𝐶𝐷 the corresponding aerodynamic drag coefficient. The dynamic pressure can be 

expressed by using the air density 𝜌 and the aerodynamic speed 𝑉𝐴.  

 

 �̅� =
𝜌

2
𝑉𝐴

2 (8)  
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Here, we express the aerodynamic speed using the ground speed 𝑉𝐺𝑆 as well as the wind speed 𝑉𝑊. 

 

 𝑉𝐴 = 𝑉𝐺𝑆 − 𝑉𝑊 (9)  

 

This overrun model also incorporates operational dependencies. The touchdown behaviour of pilots 

heavily depends on the runway length. Specifically, it depends on the difference between LDA and the 

Required Landing Distance (RLD). The RLD can be obtained from aircraft manuals. The expected value 

of the touchdown distance 𝜇𝑇𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛, i.e. the distance from the runway threshold until the aircraft 

touches the runway, can be obtained in feet by the following relationship [6]: 

 

 
 𝜇𝑇𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛 =   {

 
12.5𝛿 + 1300  𝑖𝑓 𝛿 < 55

2000         𝑖𝑓 𝛿 ≥ 55 
 

 

(10)  

Here the buffer is computed as follows:  

 
𝛿 =

𝐿𝐷𝐴 − 𝐿𝐷𝑅

𝐿𝐷𝐴
 

(11)  

 

Eq. 10 shows that the smaller the buffer, i.e. the more critical a landing in terms of a runway overrun, 

the smaller the touchdown distance. However, as shown in [6], the standard deviation of the touchdown 

distance remains the same. If the buffer is greater than 55, the mean value for the touchdown distances 

does not change anymore.  

 

2.3. Contributing Factors 

 

In order to estimate the occurrence probabilities of incidents, we have to describe the statistics 

(distributions) of their contributing factors. For that purpose, we evaluate the operational data that can 

be obtained from an airline, e.g. by one’s flight data monitoring (FDM) system. We distinguish between 

continuous and discrete contributing factors. Examples for discrete contributing factors are: the flap 

configuration for landing, or the runway condition (e.g. dry or wet). In contrast, examples for continuous 

contributing factors are: landing mass, or touchdown point. For the continuous ones, we fit continuous 

probability distributions to the data. Hence, we have a probabilistic model of each contributing factor.  

 

As shown in the Fig. 1, many contributing factors vary during flight operation or even exceed airline-

specific limits. Examples for such violations are tailwind components, late touchdowns, etc. As 

mentioned above, the incidents are usually the result of combined “extreme” contributing factors, such 

as landing out of the touchdown zone, late start of braking, or low runway friction. We account for this 

fact, by taking these “extreme” deviations from the nominal values into account. During the fitting 

process, we also consider that the probability distribution does not only have to represent values around 

the data’s mean value but also describe the data in their boundary areas (left and right tail). This means, 

that the occurrence of such extreme values of contributing factors, such as the before mentioned 

touchdown distances or low friction coefficients are not underestimated. Due to the large amount of 

data, the following figure presents our algorithm approach to identify the distribution type that fits to 

the data best (Fig. 3).   
 

Figure 3: Fitting Algorithm 
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Depending on the domain Ω of each contributing factor, a set of distribution candidates is selected. 

Hence, we make sure that our probabilistic model for each contributing factor is valid. For example, 

values of the friction coefficients can only be positive and are in the range of zero and one, i.e. Ω = [0; 

∞). Then we fit each of the distribution candidates to the data of the current contributing factor and 

calculate its goodness of fit. For that purpose, we use two measures, as used in Ref. [7], the first measure 

is the Integrated Quadratic Distance (IQD) which is defined as follows, 

  
dIQ(F,G)=∫ (F(t)-G(t))

2
w(t) dt

∞

-∞

 
(12)  

where G is the empirical distribution function (obtained from the data) and F the cumulative distribution 

function of the distribution candidate. In principle, a weighting function w(t) can be included that allows 

us to emphasize certain areas of interest, e.g. the tails of a distribution. The integration is adapted to the 

valid domain of the contributing factor. Recalling the friction coefficient example, the domain would be 

changed to Ω = [0; ∞). In order to counteract an over-fitting due to the weighting function, we also 

evaluate a second measure dMV that is called the Mean Value Divergence. 

 

 

dMV(F,G)= [𝜇𝐹 −
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

]

2

 

(13)  

 

Here, 𝜇𝐹 is the mean value obtained by the distribution candidate F. This measure equals the difference 

between 𝜇𝐹 and the empirical mean value based on the data. This ensures that also the first moment (i.e. 

mean value) of the distribution candidates fit closely to the empirical mean value.  

 

The following figures (Fig. 4a, b) show an example of fitting various distribution types to the measured 

touchdown distances. The touchdown distance is defined as the distance between the runway threshold 

(begin of the runway) and the point at which the aircraft touches the ground. The fitting was performed 

without any weighting function. For this example, the Gamma distribution fits the data best. 

 

Figure 4: Fitting Example 

a) Probability density function b) Cumulative distriubtion function 

The following table shows the measures obtained for the five best fitting distributions of the touchdown 

distance that are shown in Fig. 4. 

 

Table 1: Fitting Measures 

Rank Distribution Type Integrated Quadratic Distance  Mean Value Divergence 

1 Gamma 0.005 < 10e-4 

2 Generalized Extreme Value 0.0176 0.0202 

3 Nakagami 0.0260 0.0362 

4 Lognormal 0.0392 0.0142 

5 Birnbaum-Saunders 0.0397 < 10e-4 
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The fitting of the Normal (also known as Gaussian) distribution as shown in Fig. 4 was ranked as number 

ten, with an IQD of 0.1044. In addition, Figure 4b shows that large values of touchdown points (long-

landings) are underestimated even if such long landings can be observed within the data. 

 

3. SUBSET SIMULATION 
 

3.1. General Principle 

 

As described in Sec. 2, we want to estimate the occurrence probabilities of incidents 𝑝𝐼, here of the 

runway overrun. As shown in Fig. 2, the probability 𝑝𝐼 equals the size of the incident, and 𝜋(Θ) equals 

the probability density function of our incident metric SM. Hence, we can write 

 

𝑷(𝑆𝑀 < 0) = Ε[𝑝𝐼] = ∬ 𝕀(𝜃)𝜋(𝜃) 𝑑𝜃 = ∬ 𝜋(𝜃) 𝑑𝜃

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐹𝑙𝑖𝑔ℎ𝑡 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 

(14)  

With the indicator function 𝕀 

 𝕀(𝜃) = {
1 𝑖𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(15)  

In most of the cases, the probability density function of the incident metric is unknown and we have to 

estimate 𝑝𝐼 . A possible and straightforward method to obtain an estimate �̂�𝐼 for the probability is the 

Monte-Carlo approach, as follows. 

 

𝑝𝐼 ≈
1

𝑁
∑ 𝕀(𝜃𝑖)

𝑁

𝑖=1

= �̂�𝐼 

(16)  

However, for rare events, with small occurrence probabilities, the number of required samples increases. 

In order to reduce the number of samples, we apply the subset simulation method [4]. The idea is to 

express the failure domain as a subset of multiple larger failure domains. If the intermediate failure 

domain is chosen properly, the intermediate probability 𝑝𝑗 can be large (e.g. 𝑝𝑗 = 0.1). 

 

 

The probability of the system failure then is determined as the product of the conditional probabilities 

of each subset.  

This ensures that it is easier for samples to reach the incident domain. The first subset can be obtained 

by applying straightforward Monte-Carlo. A Markov Chain is used to generate the samples for each the 

following subset levels:  

 

 𝑆𝑢𝑏𝑠𝑒𝑡 𝑗 = 1 𝑝1 = 𝑃(𝐹1|𝐹0) (𝑃𝑙𝑎𝑖𝑛 𝑀𝑜𝑛𝑡𝑒 − 𝐶𝑎𝑟𝑙𝑜)

𝑆𝑢𝑏𝑠𝑒𝑡 𝑗 ≥ 2 𝑝𝑗  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝜋(∙ |𝐹𝑗−1) 
 

(19)  

 

The intermediate failure domains are defined adaptively [4]. For that purpose a fixed conditional 

probability 𝑝𝑗 = 𝑝0 is defined (here: 𝑝0 equals 0.2). Based on the conditional probability the number of 

samples in the subset failure domain is determined as:  

 

 𝑛𝐹 = 𝑁 ∙ 𝑝0 (20)  

 

In other words, an incident (failure) would occur if the SM is not less than zero but less than a certain 

threshold value 𝑦𝑖. So if the stop margin of a sample is less than the intermediate threshold this sample 

lies in the intermediate failure domain.   

 

 
𝜃𝑛+1  = {

𝑆𝑀 <  𝑦𝑖 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

𝑆𝑀 > 𝑦𝑖 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑎(𝜃𝑛, 𝑦)
  

(21)  

 ℝd = F0 ⊃ F1 ⊃ ⋯ ⊃ Fm = F (17)  

 
𝑝𝐼 = ∏ 𝑃(𝐹𝑗|𝐹𝑗−1)

𝑚

𝑗=1

= ∏ 𝑝𝑗

𝑚

𝑗=1

 
(18)  
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3.2. Metropolis Algorithm 

 

In the original subset simulation method, the authors used the Metropolis Hastings algorithm [4] in order 

to create a Markov Chain. Due to the fact, that we have to consider multiple contributing factors with 

different domains and different distribution types, we perform the sampling in the standard normal 

space. This simplifies the sampling since we do not have to consider for multiple proposal distributions. 

In order to generate new samples, we can use the original Metropolis algorithm [8]. 

 

This means that we can use a symmetric proposal distribution that further simplifies the sampling. Given 

a sample 𝜃𝑛in the failure domain of subset j, we draw a sample candidate y according to q(𝑦|𝜃𝑖). The 

next step is to compute the acceptance ration a: 

 
𝑎 = (𝜃𝑛|𝑦) = 𝑚𝑖𝑛 {1,

𝜋(𝑦)

𝜋(𝜃𝑛)

𝑞(𝜃𝑛|𝑦)

𝑞(𝑦|𝜃𝑛)
}  

(22)  

Then we assign new sample 𝜃𝑛+1 as follows 

 
𝜃𝑛+1  = {

𝑦 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎(𝜃𝑛, 𝑦)

𝜃𝑛 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑎(𝜃𝑛, 𝑦)
  

(23)  

 

Now, we have to evaluate if a new sample 𝜃𝑛+1 lies in the failure of the current subset, otherwise we 

have to reject this new sample. 

 
𝜃𝑛+1  = {

𝜃𝑛 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎(𝜃𝑛, 𝑦)

𝜃𝑛 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑎(𝜃𝑛, 𝑦)
  

(24)  

 

We apply the steps from Eq. (22) until Eq. (24) until we have obtained N samples which are distributed 

according to 𝜋(∙ |𝐹𝑗−1) and lie within the next failure domain. In this paper, we used the uniform 

distribution as the proposal distribution q with a spread of 1.4.  

 

4. DESIGN POINT AND SENSITIVITIES 
 

4.1. Method  

 

The design point DP is the most likely point in the failure domain, i.e. the distance from the design point 

to the origin in the standard normal space is the shortest. The following Fig. 5 illustrates the concept. 

 

 Figure 5: Design Point in U-Space 

 
 

Here, the DP is the shortest distance of the failure domain to the origin of the U-space. For illustration, 

only two contributing factors are shown. The sensitivities are indicated by the component of the 

vector 𝒖𝑫𝑷 .  

 

In order to approximate the DP we use the samples obtained from the subset simulation. Therefore, we 

look for all samples that lie in the failure domain. Then we transform the samples into the standard 

normal space using the following transformation: 
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 𝑢 = 𝑈−1(𝐹(𝑥)) (25)  
 

Here, 𝑢 represents the sample in the standard normal space (𝑈 -space), 𝑈 is the cumulative distribution 

function (CDF) of the standard normal distribution, and 𝐹 equals the CDF of the contributing factor 

with its value 𝑥. The following figure (Fig. 6) shows the samples of the wind component vs. the stop 

margin in the 𝑋 -space as well as the corresponding samples in the 𝑈 -space. 
 

 Figure 6: Wind versus Stop Margin 

a) X-space b) Standard normal space 

 

Each sample is a vector with n elements corresponding to n contributing factors. We use these samples 

and compute their distance to the origin of U-space by computing their norm. 

 
‖𝒖‖ = √𝑢1

2 + ⋯ + 𝑢𝑛
2  

(26)  

The sample with the smallest norm equals the design point 𝑢𝐷𝑃. It has the greatest joint probability of 

the contributing factors [9]. 

 𝒖𝑫𝑷 = argmin‖𝒖‖ (27)  
 

By applying the First-Order Reliability method (FORM), we are able to estimate the sensitivities for 

each contributing factor. The sensitivities are obtained by normalizing the negative gradient vector: 

  

 
𝜶 = −

∇G(𝒖𝐷𝑃)

‖∇G(𝒖𝐷𝑃)‖
 

(28)  

 

The relationship between the sensitivity vector 𝜶, the design point 𝑢𝐷𝑃, and the reliability index 𝛽 

 

 𝒖𝑫𝑷 =  𝜶 ∙ 𝛽 (29)  
 

By solving Eq. (29) for the sensitivity vector 𝜶, we obtain the sensitivity factor 𝛼𝑖 for each contributing 

factor. The sensitivity factor takes values from -1 until 1. The greater the absolute value of the sensitivity 

factor of a contributing factor, the greater its influence on the incident probability. A sensitivity factor 

close to zero indicates almost no impact on the incident probability. If the sensitivity factor of a 

contributing factor is positive, the incident probability increases with higher values of the contributing 

factors and vice versa. 
 

4.2. Application Example 
 

Now, we tag the contributing factors with the following stakeholders (flight operation, ground operation, 

training, and environment) and/or postholder (human, maintenance, environment, and organization). 

This allows us to quantify the contribution of stakeholders to the incident runway overrun. For the 

runway-overrun example, we allocate the following stakeholders to the following contributing 

factors (Table 2):  
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Table 2: Postholder Allocation 

 

Due to the fact that we did not have any operational flight available, our analysis is based on artificial 

flight data. This means, that we generated samples of fictive flights performed to various airports by one 

aircraft type. So, the values for the sensitivities of the contributing factors are based on artificial 

distributions. The distribution type for each of the contributing factor is shown in the appendix A.1. 
 

For this application example, we used 130000 samples out of which 4259 samples fell in the incident 

domain. The following Fig. 7 shows the norm of each sample that lies in the failure domain sorted by 

their length. The norm of the vector of the design point 𝒖𝑫𝑷 equals 5.49. However, multiple samples 

had the same length, and these samples were not concentrated at single point but spread (widely) within 

the domain. By using the sample with the lowest distance to the origin of the standard normal space 

some values for the sensitivity of some contributing factors were not reasonable from a physical point 

of view. Therefore, we included more samples. We used hundred samples with the lowest value of the 

norm. 
 

Consequently, we obtain for each contributing factor one hundred values for its sensitivity. Figure 8 

shows a histogram of sensitivities that are calculated by using the one hundred samples closest to the 

origin of the standard normal space. The values vary within a range of -0.366 to 0.0045.  
 

Figure 7: Norm of u-Vectors 
 

Figure 8: Headwind Sensitivity 

 
Table 3 shows the average sensitivity of each contributing factor. 
 

Table 3: Sensitivities 
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These sensitivities values are reasonable. For example, the headwind’s sensitivity is negative that means 

smaller values for the headwind increase the likelihood of an overrun. This is plausible as a negative 

headwind equals tailwind that increases the kinetic energy of the aircraft at touchdown, which has to be 

absorbed. In contrast, the approach speed deviation has a positive sensitivity that means the greater the 

approach speed the greater the distance the aircraft requires to stop. Due to the fact, that the runway 

length in our analysis was quite low, the touchdown distance in this scenario is the main driver. 

 

In order to calculate the individual sensitivity 𝜶𝒋 of a stakeholder j, we sum up the absolute values of 

each contributing factor that belongs to the individual contributing factor 𝐶𝐹𝑗.  

 

𝜶𝒋 = ∑|𝜶𝒊(𝑪𝑭𝒋)|

𝒊

 

(30)  

The following table shows the result of the contribution of each stakeholder.  

 

Table 4: Sensitivities 

   

 

 

 

 

 

In Table 4, the stakeholder contribution 𝑆𝐶𝑗 to runway overrun is computed as 

 𝑆𝐶𝑗 =
𝛼𝑗

∑ 𝛼𝑖,𝑗𝑖
 

(31)  

The stakeholder ENV contributes most to the incident type runway overrun, based on the contributing 

factors being analysed. 

 

5. SUMMARY AND CONCLUSION 
 

This paper studies the quantification of stakeholder contribution to runway overrun. Therefore, a model 

tailored to the incident type runway overrun is presented. Then, based on data from a fictive airline, we 

fitted probability distributions that represent the contributing factors. The occurrence probability is 

estimated by using the subset simulation method. We used the samples that we obtained through subset 

simulation method to identify the design point. 

 

By applying FORM, we derive estimates for the sensitivities for each individual contributing factors 

that include the functional dependencies as well as the deviations based on their distribution. By tagging 

each contributing factor with its stakeholders, we were able to quantify the contribution of the various 

stakeholders to the incident runway overrun. However, all the obtained sensitivities are based on 

artificial flight operation data. This means, that dependencies within the data, which might exist within 

an airline are not captured at all. Furthermore, the distributions of each contributing factor might not be 

close to reality. Nevertheless, this paper shows that, if such information would be available, the 

stakeholder’s contribution can be quantified.  

 

However, we also found out, that using only the sample with the lowest distance to the origin of the 

standard normal space does not necessarily provide sensitivities that are reasonable, especially from a 

physical point of view. Therefore, we used multiple samples that are close to the origin of the standard 

normal space and calculated sensitivities using an average. The results are much more reasonable and 

are in line with the physical and probabilistic knowledge of the contributing factors and their functional 

relationship. Furthermore, it also becomes clear, that the stakeholder contribution heavily relies on a 

proper allocation of the stakeholder to the contributing factors and all relevant factors have to be taken 

into account. 

 

Stakeholder j Sensitivity 𝜶𝒋 Contribution 

TRA 1.7671 44.2% 

ENV 1.5788 49.5% 

FOPS 0.2257 6.3% 
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Consequently, the next step is to apply this approach to data obtained from a real flight operation of an 

airline. Then, the allocation of stakeholder might change as well as additional stakeholder needs to be 

included. In addition, other contributing factors, such as flap setting or runway condition have to be 

taken into account. 

 

 

 

Appendix 

A.1 

Table A.1 Distribution of the Contributing Factors 
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Contributing Factor Distribution Type Distribution Parameter 

Headwind Generalized Extreme Value k = 0.0243, σ =3.4585, μ = -5.4383 

Landing weight Generalized Extreme Value k = -0.6716, σ =4.7701, μ = 67.4481 

Air pressure (QNH) Burr α = 1025.38, c = 235,38, k = 4,38 

Temperature Weibull a = 21.6713, b = 3.7698 

Approach speed deviation  t Location-Scale μ = 0.0207, σ = 3.1942, ν = 36.6177 

Time of spoiler deployment Generalized Extreme Value k = -0.0633, σ = 0.4288, μ = 0.5848 

Start of braking Generalized Extreme Value k = -0.0007, σ = 1.0430, μ = 1.9173 

Reverser deployment Generalized Extreme Value k = -0.0123, σ = 0.8448, μ = 3.6858 


