
Towards Reliability Evaluation of AFDX
Avionic Communication Systems With Rare-Event Simulation

Armin Zimmermanna*, Sven Jägera, and Fabien Geyerb
aSoftware and Systems Engineering, Ilmenau University of Technology; Ilmenau, Germany

bAirbus Group Innovations, Dept. TX4CP; Munich, Germany

Reliability is a major concern for avionic systems. The risks in their design can be minimized by using
model-based systems engineering methods including simulation and mathematical analysis. However,
there are non-functional properties that are computationally expensive to evaluate, for instance when
rare events are important. Rare-event simulation methods such as RESTART can be used, leading to
speedups of several orders of magnitude. We consider AFDX (avionic full-duplex switched Ethernet)
networks as an application example here, where the end-to-end delay and buffer utilizations are
important for a safe and efficient system design. The paper proposes generic model patterns for AFDX
networks, and shows how very low probabilities can be computed in acceptable time with the presented
method and software tool.

Keywords: Rare-Event Simulation, AFDX, Avionic Networks, Stochastic Petri Nets

1. INTRODUCTION

Reliability and safety are important non-functional requirements of many man-made systems, especially
when failures may lead to catastrophic events. Common examples include automotive systems, train
control, and avionics. The resulting effect of local design decisions on overall system properties are
not obvious, because there are numerous specialists working on design details. Mathematical models
can help to describe such systems and to compute their system properties with the help of appropriate
software tools (“model-based design” and “model-based systems engineering” [1]).

Unavoidable faults may be masked or tolerated by static or dynamic redundancy measures. The main
task is to design a system such that its reliability and safety requirements are achieved with the least
amount of resources. Classic models and tools for static analysis such as Fault Trees and Reliability
Block Diagrams [2] are wide-spread in these domains, but are not able to cover systems in which the
complex behavior influences failures, or if dynamic reconfigurations are applied. In avionic system
design, fly-by-wire systems, flight control and management, maintenance processes, as well as future
communication architectures are examples in which dynamic reliability models are necessary.

Avionic networks are an increasingly important element of distributed sensing, processing, and control
architectures on board modern aircrafts [3]. A modern avionic communication system is AFDX ([4],
more details in Section 2). Its general reliability aspects based on hardware failures is important for
system design and certification, and can be analysed with models [5]. It uses a dual-layer hardware
redundancy setup (static redundancy) to survive single failures of hardware elements.

In this paper we are interested in the more complex question of network guarantees for the served
real-time applications, which require a model-based analysis of end-to-end delays [6, 7, 8]. There are
several methods for worst-case end-to-end delay analysis (simulation, network calculus, and model
checking [6]), all with their individual advantages and drawbacks. Besides the concentration on
guaranteed bounds on maximum end-to-end delays, an upcoming question for network and buffer

∗ Corresponding author, armin.zimmermann@tu-ilmenau.de

sizing are probabilistic end-to-end measures such as quantiles of the distribution [9]. For instance, the
pessimism of bounds may lead to system designs in which the guaranteed maximum delay may be
20ms, while the actually observed delay rarely exceeds 1ms.

The end-to-end delay evaluation can be reduced to an analysis of buffer levels and their probabilities
(c.f. Section 2), which this paper concentrates on. Buffer overflow with packets is guaranteed to not
happen in switches designed based on guarantees, but it is interesting to check buffer utilization and
what the actual probabilities of utilized buffers are. Switch design can benefit from knowing how many
buffer elements are needed. Moreover, if very rare packet losses or delays exceeding the guarantee
are acceptable by the served applications, how much buffer space can be saved? There is obviously a
trade-off between resource utilization (and cost) vs. end-to-end delays (c.f. Sections 2 and 4).

The necessary dynamic models need to consider discrete events, states, probabilistic choice and
stochastic delays. Depending on the complexity of the system behavior and the corresponding size
of the state space, simulation programs, Markov chains, and stochastic Petri nets (SPNs) are applied
to reliability problems in the literature [2], among others. The latter two are attractive as long as the
underlying assumption of a Markov behavior is realistic, because then a direct numerical solution is
possible [10]. Petri nets have been suggested for reliability engineering of complex systems in an
international standard recently [11].

However, non-Markovian delay distributions are necessary, for instance, in the case of periodic events
typical of AFDX networks and embedded systems in general. The numerical analysis of models
incorporating them is very restricted, only allowing the application to special cases [10]. An alternative
evaluation technique is simulation, but the problem here is that the computational effort to generate
enough failure states to achieve statistical confidence in the estimated results is usually intractable — it
simply takes too long until significant events are generated.

This problem is well-known as rare-event simulation, and there are two main approaches used: im-
portance sampling and splitting. They have the common goal to increase the frequency of the rare
event in order to gain more significant samples out of the same number of generated events. Among
methods that can be automated and implemented in a software tool for industrial applications, the
splitting technique has the advantage of requiring less insight into the model details. A variant is the
RESTART algorithm [12], which has been shown to work robustly and efficiently for many applications.
Considerable speedups of several orders of magnitude can be achieved even for non-trivial system
models. Rare-event simulation of general communication networks with importance sampling is, for
instance, presented in [13].

A brief description of AFDX networks and related work on its model-based design and analysis is
given in the subsequent section. After a short coverage of stochastic Petri nets in Section 3, generic
patterns for AFDX network modeling with SPNs are proposed in Section 3.1. The topology of an
AFDX application example network is presented in Section 3.2 together with its SPN model, which has
been constructed modularly with the patterns. Section 4 explains how the used rare-event simulation
technique RESTART works, points out the used software tool TimeNET [14], and presents numerical
results of simulation experiments carried out for the example with it.

The contribution of the paper are realistic SPN model patterns for AFDX, and to show that existing
methods in rare-event simulation can help to compute reliability measures that are otherwise compu-
tationally intractable. To the best of the authors’ knowledge, this technique has not been applied in
avionics reliability evaluation before. Results are presented for an example with non-trivial size.

AFDX network modeling and performance evaluation using stochastic Petri nets has been tried be-
fore [15, 16]. However, no network structure has been taken into consideration; the transmission
delay is assumed to be a sequence of exponential transitions only, independent of the actual number of
links. The load model is assumed as a mix of periodic and sporadic message generations that alternate.
The mean end-to-end delay is analyzed based on this overly simplified model in [15]; however, more
detailed information about its distribution such as quantiles or maximum values are of much higher
interest.

2. MODEL-BASED DESIGN OF AFDX NETWORKS

AFDX (Avionics Full-DupleX Ethernet) is a data network based on Ethernet, developed by Airbus
and created during the development of the A380. It was standardized in Part 7 of the ARINC 664
specifications [4], and has since then been used in other Airbus projects.

This network technology is based on switched Ethernet twisted pair 100 Mbps full duplex technology.
It attempts at addressing the issue of non-deterministic network, best-effort and lack of bandwidth
guarantees of traditional Ethernet. It aims at providing a redundant deterministic network, adapted
to safety-critical applications used in aircrafts. The main differences compared to Ethernet, are the
redundancy property where frames are duplicated and sent on two separate networks, a frame identifier
at layer 2 to avoid packet duplication, and a verification of flow properties (packet size and frequency)
by the switches. The nondeterministic effect of message collisions on standard Ethernet is avoided
by connecting only two nodes with each physical link and using a dedicated link for each direction
(full duplex). Thus there will be no collisions on the physical level, and the only nondeterminism
can arise from the possible waiting times in output queues of switches because of temporary link
contention.

An AFDX network is composed of end-systems and switches as nodes. End-systems serve as source
and destination nodes in the network, over which applications may send data according to bandwidth
restrictions to avoid overloading. One fundamental building block of AFDX is the notion of virtual
link (VL), which can be seen as rate-constrained network tunnels. The parameters describing a VL are:
the emitter end-system of this VL, the list of receiving end-systems, static routes between emitter and
receivers, the Bandwidth Allocation Gap (BAG), as well as minimum and maximum frame length (smin

and smax). The BAG is defined as the minimum time interval between the first bit of two consecutive
frames from the same VL and has a value of 2kms with k ∈ {1..7}.

The packet structure follows Ethernet and contains 67 Bytes overhead (including the inter-frame gap)
in addition to the possible 17 . . .1471 Bytes payload (between which smin and smax can be chosen).
Assuming a transmission bandwidth of 100 Mbps, each packet will thus require a per-link transmission
time between 6,72µs and 123.04µs.

The elements of the AFDX network are deterministic, the only source of randomness is in the times
that end-systems have to send packets (or the offsets between them). Even if every application would
be sending periodic messages only with the maximum frequency given by its BAG value, there is no
globally synchronized clock and thus any offset between end-systems may occur already because of
clock drift. Sporadic message generations can happen at arbitrary times, as they can be sent immediately
after generation if the last message has been sent more than the BAG value before.

Important properties of an avionic network are safety against packet loss (by avoiding buffer overruns
and redundant hardware) as well as a maximum end-to-end delay (specified dependent on the network
architecture [4]). The guaranteed worst-case behavior of AFDX comes from the encapsulation of every
network flow in a VL, and the fact that the VL properties are enforced by the switches in the network.

If an end-system does not send packets according to the VL specifications (BAG and frame size), the
packets are dropped, which avoids overloading the network and guarantees the end-to-end latencies of
the other flows.

Elements of the end-to-end delay that a packet experiences are discussed in [17]. There are unavoidable
deterministic parts: 1) the transmission delay over the statically predefined set of links for a VL and 2)
processing delays in switches between their input and output ports (hardware- and implementation-
dependent, but guaranteed not to exceed 16µs). The sum of these delays constitutes a minimum
transmission delay in the case of no queuing.

However, temporarily the network may be populated because of resource sharing: if a packet is put
into a switches’ output buffer and finds the subsequent transmission link busy, or even other packets
in front of it in the queue, there will be a delay before the packet may be transmitted. These delays
lead to jitter in the overall end-to-end delay, and are thus the subject of several analysis approaches in
the literature. The most important property for a certification of an AFDX network for flight-critical
applications is a guaranteed maximum end-to-end delay.

The most prominent method are standard and stochastic network calculus, which allow to compute safe
upper bounds on the maximum end-to-end delay for industrial-size network topologies [7, 18, 6]. The
algorithm can be improved with the trajectory approach [8]. For small-size systems the state space may
be manageable, allowing to compute an actual maximum delay with model checking [19]. Simulation
is another choice [20, 17], but there is no guarantee that the visited parts of the stochastic process will
include the worst-case delay. It will, however, give a lower bound on possible maximum delays.

The quality of computable bounds is discussed in the literature [7]: simplified, the derived bounds
are less tight (the pessimism increases) when the network topology becomes larger, and with higher
network loads [17]. They are best if only one switch is used, but may be off by a factor of up to 20
otherwise. However, industrial-size networks contain paths with up to 4 switches [17]. Unfortunately,
the worst case cannot be derived by simply assuming worst-case input values; the end-to-end delay
increases for some cases, when the BAG occupation of another VL is decreased [7].

The downside cost of a provably safe network setup with some remaining pessimism that is never
needed in reality leads to a bad utilization of network resources. The maximum utilization of real-life
AFDX networks is usually around or below 20%. Another issue is that even if a computed bound is
tight, the probability that a packet will actually experience it may be marginally small and acceptable
for the applications waiting for it. There is thus an interest in not only computing bounds on the
worst case, but also the actual end-to-end delay distribution or its quantiles, as well as the connected
probabilities of a certain buffer utilization [21]. It is, however, still an open problem how resources can
be better utilized depending on how rare the computed maximum delays are [9]. A possible solution
approach is presented in this paper in Section 4.

3. AFDX NETWORK MODELING WITH STOCHASTIC PETRI NETS

Stochastic Petri nets (see [22, 23], e.g., for an overview) represent a graphical and mathematical method
for the specification of processes with concurrent, synchronized and conflicting or nondeterministic
activities. The graphical representation of Petri nets comprises only a few basic elements. They are
therefore useful for documentation and a figurative aid for communication between system designers.
Complex systems can be described in a modular way, where only local states and state changes need to
be considered. The mathematical foundation of Petri nets allows their qualitative analysis based on
state equations or reachability graph, and their quantitative evaluation based on the reachability graph
or by simulation.

Petri nets contain places (depicted by circles), transitions (depicted by boxes or bars) and directed arcs
connecting them. Places may hold tokens, and a certain assignment of tokens to the places of a model
corresponds to its model state (called marking in Petri net terms). Transitions model activities (state
changes, events). Just like in other discrete event system descriptions, events may be possible in a state
— the transition is said to be enabled in the marking. If so, they may happen atomically (the transition
fires) and change the system state.

In stochastic Petri nets, activities may take some time, thus allowing the description and evaluation
of performance-related issues. Basic quantitative measures like the throughput, loss probabilities,
utilization and others can be computed. A firing delay is associated to each transition, which may
be stochastic (a random variable) and thus described by a probability distribution. It is interpreted
as the time that needs to pass between the enabling and subsequent firing of a transition. In the net
class extended deterministic and stochastic Petri nets (eDSPN [10]) that is used here, transition delays
may be zero (immediate), exponentially distributed, deterministic, or a general distribution can be
specified.

The dynamics of a Petri net are defined as follows. A transition is said to be enabled in a marking, if
there are enough tokens available in each of its input places. Whenever a transition becomes newly
enabled, a remaining firing time (RFT) is randomly drawn from its associated firing time distribution.
The RFTs of all enabled transitions decrease with identical speed until one of them reaches zero (race
enabling semantics). The fastest transition (in case of multiple ones, a probabilistic choice decides)
will fire, and change the current marking to a new one by removing the necessary number of tokens
from the input places and adding tokens to output places.

3.1. Petri Net Patterns for AFDX Network modeling

One of the advantages of Petri net models over, e.g., automata, is their modular way of describing
complex systems. The following text proposes generic Petri net patterns for AFDX elements along
their functional details as described in Section 2.

Wait1 BAG Wait2 Offset Queue

Message IPStack

EnqueueScheduleWait1 BAG Wait2 Offset Queue

Periodic with

max. bandwidth

Sporadic with

traffic shaping

Figure 1: Petri net model variants of AFDX source end-system with packet regulation

Figure 1 introduces two variants of source end-systems. The left part shows how applications and
virtual links generating periodic messages should be modeled. Every time both transitions BAG and
Offset have fired sequentially, one packet will be generated and the according token is added to
place Queue. FIFO behavior of queuing is not significant here, as there is no way of (and no need to)
differ between tokens resp. messages under certain simplifying assumptions.

It may seem strange at first that a periodic behavior is modeled by a deterministic plus an exponential
transition. This is however necessary to create a stochastic process covering all possible end-system
offsets in a steady-state simulation run. The exponential transition Offset models drift and other

possible inaccuracies between end-system clocks in the overall distributed system, because there is no
global time synchronization [24].

The right part of Figure 1 shows a model variant in which an application sends sporadic messages
over a virtual link (transition Message adds a token to IPStack), and thus the end-system needs
to apply traffic shaping to ensure a minimum BAG time between messages. This is done similarly
to the left-hand side model. When a message may be added to the output queue of the end-system,
a token is in Schedule, and transition Enqueue will fire immediately when a message arrives
in IPStack. After that, transitions BAG and Offset have to fire subsequently before a new
message may pass.

In the case of a VL carrying periodic messages, but with a longer time between subsequent message
generations than the BAG, the left-hand model in Figure 1 can still be used, but the firing delay of
transition BAG would have to be set to this fixed time between messages. In any case, as long as the
period does not exceed the allowed BAG value, traffic shaping will not change the behavior and is thus
not explicitly modeled.

In general, transition delays in the models have to be set according to the chosen model time as
well as the delays of the described actions. We assume a base time of 1 model time unit equal to
1µs in the following. Possible BAG values in the range 1ms . . .128ms will then result in transition
delays 1,000 . . .128,000. The actual value of the random offset is not that important, but should be
small compared to the BAG1. The average time between sporadic message generations in this case is
associated with transition Message.

Queue
StartE1S1

IdleE1S1

BusyE1S1
EndE1S1

Switch1In1

Switch1In2

Switch1D1

Switch1D2

Switch1out

IdleS1E2

BusyS1E2
StartS1E2 EndS1E2

E2In

Receiption

Link E1 to S1

Switch 1

Link S1 to E2 End System 2

Figure 2: Link, switch, and destination end system model

Petri net patterns for links between nodes, switches, and destination end-systems are proposed in
Figure 2. Larger models can be constructed by merging corresponding places such as Queue from
both model figures. A link is simply a mutually exclusive resource for queued waiting messages. It is
either in state Idlexy or Busyxy. A transmission begins immediately (Startxy fires), when a
message is waiting and the link is idle. The transmission time for each message is modeled by the delay
of the deterministic transition Endxy, which is selected based on message length and bandwidth. For
the minimum and maximum message lengths (84 and 1538 Bytes), the delay has thus to be chosen as
6.72 and 123.04 in our µs-based timing. We assume identical message lengths here.

The switch has input and output ports (places SwitchInx and SwitchOutx in Figure 2, for
instance). Any number of input ports for incoming links can be added similar to the two shown in

1 For an even better approximation, the mean delay could be chosen depending on the variance in the end-system clocks, and
its half subtracted from the BAG to compute the firing delay of transition BAG.

the model. The 16µs delay inside the switch to process a message and enter it into an output port is
modeled by transitions SwitchDx. A second link connects the switch in the model with a destination
end-system.

3.2. An Application Network Setup

Figure 3 sketches a sample topology of an AFDX network that has been chosen as an application
example. Its design resembles network architecture examples in the literature [8] with a little longer
switch sequence but without VL paths that split away from the considered flows at switches2.

S1 S2 S3E1

E2

E8
VL2

VL1

VL3

VL4

E3VL5

E4VL6

E5VL7

E7VL9

E6VL8

VL1..VL4 VL1..VL6 VL1..VL9

Figure 3: Topology of a sample AFDX network

A real-life topology would not necessarily contain longer paths (a real-life size avionic network with
several thousand VLs analyzed in [17] had only four switches on the longest paths), but many more VLs
and paths. However, following the findings of [17], only VLs on paths that directly influence the VL or
path under consideration have to be taken into account, as the others do not influence the end-to-end
delay distribution. This allows to ignore all VLs which do not share an output port with the analyzed
VL at any switch in the network, and decreases the size of the significant network substantially.

The example topology contains 8 end-systems E1. . .E8, 3 switches S1. . .S3, and 10 links between
them. 9 virtual links V1. . .V9 are carried by the network, their association to end-systems and links is
obvious from Figure 3. The overlined virtual links VL1, VL5 and VL7 symbolize periodically sending
applications; i.e., a packet is sent with every BAG. The remaining VLs carry sporadic traffic, which is
assumed to be requested by the application randomly (at a lower rate than 1/BAG to avoid overloading),
but needs to be controlled and possibly delayed before entering the network.

Figure 4 depicts the full eDSPN model constructed with the tool TimeNET [14]. It is designed in a
modular way using the building blocks proposed in Section 3. BAG values are set to the minimal value
of 1ms equal to a transition delay of 1000 (with an additional jitter of 5µs at transitions Offset).
Messages on sporadic virtual links are sent on average every 1.2ms. Packet lengths are chosen as
8000bits, corresponding to a transmission delay of 80µs. The delay spent by each message in a switch
between arrival and queuing or transmission is 16 (transitions Switchx).

4. RARE-EVENT SIMULATION FOR AFDX BUFFER SIZING

We are interested in probabilities that the number of packets in a network buffer exceeds certain values
in stationary operation, and these states of interest only happen rarely in comparison to the rapid
state changes inside the network. Thus a regular simulation would have to execute huge numbers

2 The reason for this choice is that for such a system setup, packets arriving from one input of a switch but belonging to
different VLs would have to be queued at different output queues. This would require additional information which is not
available with the standard Petri nets chosen here.

Switch1 Switch2 Switch3

Figure 4: A Petri net model of the example avionic communication system

of events until a sufficiently large number of significant events has been collected and the estimated
performability values have converged with a predefined error margin.

The section briefly touches the RESTART method used in this paper to solve this issue, and shows how
it can be applied to our application model.

4.1. The RESTART Algorithm

The RESTART algorithm [12] cuts the reachability space of a model into enclosing regions of increasing
probability to hit a rare event or state. Upon entering a state in a region of higher probability (“closer”
to the region of interest), the state is stored and may be restored later when the simulation state is about
to leave the region. Applying this simple rule on every border between regions leads to a simulation that
hits the rare events of interest much more often. Some changes have to be applied to the accumulation
of performance measures during the simulation to reverse the bias introduced by this way of controlling
the simulation trajectory. A weight is maintained by each simulation path, which starts with 1.0 and is
divided by the splitting factor whenever the path crosses a region border upwards. The factor equals
the number of times that the path is retried from a stored state, which leads to a setup similar to the
splitting of particles. The final surviving path after a split will be continued, and regains the previous
weight.

A user-specified importance function returns a number for each state, which should be related to
the distance of the current state from the region of interest. In our application model, simply the
number of tokens in the buffer Switch3Out is used, which is actually not a very good measure
for our RESTART application, but it turns out that the speedup is still very high - underlining the
robustness of the approach. RESTART for stochastic Petri nets has been proposed in [25] and improved
later [23, 26].

The issue of rareness in simulation is comparable to the problem that has been identified in the literature
for improvements of network calculus that considering trajectories with expected long delays [6, 27].
An interesting question for future research is how the existing knowledge about trajectories leading
to near-worst-case behavior could be used for the definition of a better importance function for
RESTART.

We use the tool TimeNET [14, 23] here, which implements several model classes of stochastic Petri nets
and their analysis and simulation, as well as RESTART splitting for reliability measures [28, 26].

4.2. Evaluation of the Application Example

This section presents some performability results for the AFDX network model shown in Figure 4. All
simulations have been carried out on an Intel core i5 2.4GHz laptop computer running Windows 7 64bit.
Simulation accuracy has been chosen as confidence level 95%; the maximum allowed relative error is
10%, and detection of the initial transient is activated in the TimeNET simulation algorithms.

All traffic ends at end-system E8 in our model, and thus the most heavily loaded link is the one
from switch S3 to it. Regular simulation computes the link utilization to be 0.6507, and the mean
number of messages waiting in the queue (tokens in place Switch3Out) as 0.2963 (i.e., waiting in
addition to a currently transmitted message). To validate the results, the utilization can be compared
to a theoretical approximation: there are 3 VLs sending (almost) periodically, occupying the link for
80µs within a time period of 1005µs. In addition, there are 6 sporadically sending VLs, transmitting
an 80µs-packet every 1200µs on average. This corresponds to a theoretical joint utilization of 0.6376,
resulting in an error of about 2% compared to the simulation result.

For our buffer sizing problem and an analysis of the variable waiting time of messages because
of queuing, we are interested in the probabilities of having at least n messages waiting in place
Switch3Out. The results of this analysis are shown in Table 1.

Number of Standard Simulation RESTART
Messages Probability CPU time Probability CPU time

1 2.6221E-01 0:00:01 2.30463E-01 0:00:03
2 4.3991E-02 0:00:05 3.00958E-02 0:00:15
3 2.1414E-03 0:04:56 2.32636E-03 0:04:39
4 — >24h 8.54219E-21 1:04:37

Table 1: Probabilities of buffered messages exceeding bounds (time in h:min:sec)

The table shows the net required CPU time computed by normal and RESTART simulation. As the tool
uses a master/slave process architecture with 3 slaves to decrease variance with multiple independent
replications, the multiple cores of the computer can be utilized, and thus the actual run time of each
simulation experiment is only about a third of the shown value.

The results show that up to three tokens / messages, the probabilities are getting smaller but stay in
a range that is not rare. Therefore, both normal and RESTART simulation are able to compute the
values with comparable and acceptable CPU times. The reason for this is that this value is related
to the probability of having an arriving packet on a subset of the four input links to switch 3 during
overlapping time intervals. However, for token numbers above three, the probability drops considerably,

and cannot be computed with normal simulation in an acceptable time3. The probability that the
number of waiting messages at switch 3 is bigger than 3 is less than 10−20, and this very rare value
can be derived by the RESTART simulation method after about one hour with the same convergence
requirements as for the other experiments. This shows that even for complex system models which are
unfavorable for the RESTART algorithm, considerable speedups can be achieved.

The results show that while for certification purposes of safety-critical applications a mathematical proof
of worst-case assumptions may be legally necessary, it is possible to evaluate the actual probabilities of
exceeding certain buffer utilization values and to decide how many buffers are actually needed. In our
example, if the output buffer of switch 3 would be restricted to 3 slots, the resulting loss probability of
incoming packets would be estimated in the order of magnitude of 10−18, corresponding to one lost
message within about every 4 million years operation time. This will most probably be acceptable
because of the other layers of redundancy in the used avionic hard- and software. Moreover, the value
is negligible small compared to the packet error rate of Ethernet, which is around 10−9 . . .10−12.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

Message transmission time (usec)

link utilization
mean queue length

P{at least one message waiting}
P{at least two messages waiting}

Figure 5: Various performance measures of link S3E6 vs. message length

A second experiment was conducted to find out the dependency of basic network performance measures
on the overall utilization and validate model as well as simulation. Link utilization can be changed
without adding more VL structural models by simply varying the message length of the existing
model within the allowed range. The results are shown in Figure 5. The expected result of a linear
dependency of link utilization is visible (within the bounds of simulation inaccuracy). Queue lengths
and probabilities of having at least one or two messages waiting at the output port of switch 3 are
increasing nonlinearly, as it can be expected from queuing theory.

5. CONCLUSION

The paper shows how AFDX networks can be modeled with stochastic Petri nets and proposes a set
of realistic patterns. It demonstrates use and advantages of the splitting rare-event simulation method
RESTART by applying it to a non-trivial AFDX network example and deriving probabilities in the
range of 10−20 in acceptable simulation time.

3 The corresponding experiment has been stopped after more than 8 hours without hitting even one significant event, which is
equal to more than 24 hours of CPU time.

Acknowledgements

The authors would like to acknowledge the work of Alexander Wichmann and Timur Ametov, who
implemented the current RESTART algorithms in TimeNET. This work has been supported by a TU
Ilmenau internal excellency grant in funding period 2013/14.

REFERENCES

[1] A. Ramos, J. Ferreira, and J. Barcelo, “Model-based systems engineering: An emerging approach
for modern systems,” IEEE Trans. on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 42, no. 1, pp. 101 –111, January 2012.

[2] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Applica-
tions, 2nd ed. Wiley, 2002.

[3] T. Schuster and D. Verma, “Networking concepts comparison for avionics architecture,” in
IEEE/AIAA 27th Digital Avionics Systems Conference (DASC 2008), 2008, pp. 1–11.

[4] “Arinc 664, aircraft data network, part 7: Avionics full duplex switched Ethernet (AFDX)
network,” Jun. 2005.

[5] K. Wang, S. Wang, and J. Shi, “Integrated reliability theory and evaluation methodology of
AFDX,” in 10th IEEE Int. Conf. on Industrial Informatics (INDIN), 2012, pp. 657–662.

[6] J.-L. Scharbarg and C. Fraboul, “Methods and tools for the temporal analysis of avionic networks,”
in New Trends in Technologies: Control, Management, Computational Intelligence and Network
Systems, M. J. Er, Ed. Sciyo, 2010.

[7] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for bounding end-to-end delays
on an AFDX network,” in Proc. 18th Euromicro Conf. on Real-Time Systems (ECRTS06), 2006.

[8] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-case delay analysis of an AFDX
network using an optimized trajectory approach,” IEEE Trans. Industrial Informatics, vol. 6,
no. 4, pp. 521–533, Nov. 2010.

[9] C. Fraboul and J.-L. Scharbarg, “Trends in avionics switched Ethernet networks,” in Proc. 1st
Workshop on Real-Time Ethernet (RATE) at the IEEE Real-Time Systems Symposium, Vancouver,
Canada, 2013.

[10] R. German, Performance Analysis of Communication Systems, Modeling with Non-Markovian
Stochastic Petri Nets. John Wiley and Sons, 2000.

[11] “Analysis techniques for dependability — Petri net techniques,” IEC 62551:2012, Sep. 2013.

[12] M. Villén-Altamirano and J. Villén-Altamirano, “Analysis of RESTART simulation: Theoretical
basis and sensitivity study,” European Transactions on Telecommunications, vol. 13, no. 4, pp.
373–385, 2002.

[13] J. K. Townsend, Z. Haraszti, J. A. Freebersyser, and M. Devetsikiotis, “Simulation of rare events
in communications networks,” IEEE Communications Magazine, vol. 36, no. 8, pp. 36–41, 1998.

[14] A. Zimmermann, “Modeling and evaluation of stochastic Petri nets with TimeNET 4.1,” in Proc.
6th Int. Conf on Performance Evaluation Methodologies and Tools (VALUETOOLS). IEEE,
2012, pp. 54–63.

[15] Z. Jiandong, L. Dujuan, and W. Yong, “Modelling and performance analysis of AFDX based on
Petri net,” in 2nd Int. Conf. on Future Computer and Communication (ICFCC), vol. 2, May 2010,
pp. 566–570.

[16] D. Li, J. Zhang, and B. Liu, “Periodic message-based modeling and performance analysis of
AFDX,” in IEEE Int. Conf. on Wireless Communications, Networking and Information Security
(WCNIS), 2010, pp. 162–166.

[17] J.-L. Scharbarg, F. Ridouard, and C. Fraboul, “A probabilistic analysis of end-to-end delays on an
AFDX avionic network,” IEEE Trans. Industrial Informatics, vol. 5, no. 1, pp. 38–49, February
2009.

[18] T. Lv, N. Hu, Z. Wu, and N. Huang, “The analysis of end-to-end delays based on AFDX
configuration,” in 9th Int. Conf. on Reliability, Maintainability and Safety (ICRMS), 2011, pp.
1296–1300.

[19] M. Adnan, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “An improved timed automata approach
for computing exact worst-case delays of AFDX sporadic flows,” in Proc. 16th IEEE Int. Conf.
Emerging Technologies and Factory Automation (ETFA), Sep. 2011, pp. 1–4.

[20] J.-L. Scharbarg and C. Fraboul, “Simulation for end-to-end delays distribution on a switched
Ethernet,” in Proc. IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA
2007), 2007, pp. 1092–1099.

[21] H. Bauer, J. Scharbarg, and C. Fraboul, “Worst-case backlog evaluation of avionics switched
Ethernet networks with the trajectory approach,” in 24th Euromicro Conference on Real-Time
Systems (ECRTS), July 2012, pp. 78–87.

[22] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling with
Generalized Stochastic Petri Nets, ser. Series in parallel computing. John Wiley and Sons, 1995.

[23] A. Zimmermann, Stochastic Discrete Event Systems. Springer, Berlin Heidelberg New York,
2007.

[24] R. Alena, J. Ossenfort, K. Laws, A. Goforth, and F. Figueroa, “Communications for integrated
modular avionics,” in IEEE Aerospace Conference, March 2007, pp. 1–18.

[25] C. Kelling, “Rare event simulation with RESTART in a Petri net modeling environment,” in Proc.
of the European Simulation Symposium, Erlangen, 1995, pp. 370–374.

[26] A. Zimmermann and P. Maciel, “Importance function derivation for RESTART simulations of
Petri nets,” in 9th Int. Workshop on Rare Event Simulation (RESIM 2012), Trondheim, Norway,
Jun. 2012, pp. 8–15.

[27] E. Heidinger, “Rare events in network simulation using MIP,” in Proc. 23rd Int. Teletraffic
Congress (ITC 2011), 2011, pp. 314–315.

[28] A. Zimmermann, “Dependability evaluation of complex systems with TimeNET,” in Proc. Int.
Workshop on Dynamic Aspects in Dependability Models for Fault-Tolerant Systems (DYADEM-
FTS 2010), Valencia, Spain, Apr. 2010.

