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Abstract: Despite the early adoption of ISO 26262 by the automotive industry, managing functional 
safety in the early phases of system development remains a challenge. One key problem is how to 
efficiently keep safety assurance artifacts up-to-date considering the recurrent requirements changes 
during the system’s lifecycle. Here, there is a real demand for means to support the creation, 
modification, and reuse of safety assurance documents, like the Safety Concepts described in ISO 
26262. One major aspect of this challenge is inconsistency between safety concepts and system 
architecture. Usually created by different teams at different times and in different contexts of the 
development environment, these artifacts are often completely disassociated. This becomes even more 
evident when system maintenance is necessary; in this case, the inconsistencies result in intensive 
efforts to update the safety concepts impacted by the changes, and, consequently, significantly 
decrease the efficiency and efficacy of safety assurance. To overcome this challenge, we propose a 
model-based formalization approach for specifying safety concepts that allows creating precise traces 
to architectural elements while specifying safety concepts using natural language. We observed that 
our approach minimize the inconsistencies between safety models and architecture models, and offers 
basis to perform automated completeness and consistency checks. 
 
Keywords:  Safety Concepts, Safety Requirements, Architecture Design, Traceability. 
 
1. INTRODUCTION 

 
In 2011, ISO 26262 [1] was published as a safety standard in the automotive industry, emphasizing 
functional safety management in early phases of system development. Despite its early adoption, there 
are still open issues that limit the efficiency of assuring the safety of complex systems. Our experience 
has shown that two core contributors to these issues are (i) recurrent requirements changes during 
development time and over the system’s lifetime, and (ii) the multitude of different artifacts to be 
considered. This intermittent dynamics leads to challenges regarding how to efficiently keep safety 
assurance artifacts up to date. One central safety assurance artifact defined in ISO 26262 is the Safety 
Concept. Safety concepts are requirements with a strong emphasis on the architectural elements that 
compose the measures to be used to prevent safety-critical failures [1].  
 
In practice, safety concepts have been defined by means of natural text in documents, spreadsheets, or 
requirements databases. Sometimes, graphical notations like the Goal Structuring Notation (GSN) [2] 
or UML [3] are used to provide a more structured overview. Nevertheless, the lack of an underlying 
formalism of these approaches is a key factor contributing to the incompleteness and inconsistency of 
safety concept specifications.  
 
One major aspect of this challenge is the relationship between safety concepts and the system 
architecture. As these two artifacts are usually created by different teams at different moments and in 
different contexts of the system development environment, they are, often, completely disassociated. 
However, by definition, the requirements defined in safety concepts, often result from a safety analysis 
of the preliminary architecture. Therefore, this lack of traces between safety concept and architecture 
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is a key factor contributing to inconsistencies between safety concepts and the actual architecture 
design, and, consequently, to the incompleteness of safety concept specifications. 
 
To overcome this challenge, we propose a model-based formalization technique for specifying safety 
concepts that supports safety engineers in creating precise traces to architectural elements while 
specifying safety requirements using natural language. Our approach consists of two items: (i) the 
Safety Concept Decomposition Pattern, which is a structural decomposition of elements that we 
understand to be mandatory in any safety concept specification, and (ii) the Parameterized Safety 
Concept Specification templates, which are generic parameterized textual templates that should be 
instantiated for the different elements of the Safety Concepts Decomposition pattern, and has the 
purpose of guide engineers during the specification of the safety concepts using natural language. 
With that, we ensure seamless integration of safety concepts and architectural design without the need 
to use formal specification languages like Lambda Calculus or Z, rather preserving intuitiveness 
during the specification of safety concepts. 
 
The remainder of this paper is organized as follows: In Section 2, we provide a general overview of 
ISO 26262, particularly of safety concepts; in Section 3, we discuss the main challenges in specifying 
safety concepts in practice; in Section 4 we discuss the related works; in Section 5, we present our 
approach; in Section 6, we show how part of the safety concept of a Power Sliding Door Module is 
specified with our approach; and in Section 7, we conclude and present perspectives for future works. 

 
2. ISO 26262 AND THE NOTION OF SAFETY CONCEPTS 

 
ISO 26262 is an adaptation of IEC 61508 [4], addressing functional safety of electrical and/electronic 
(E/E) systems in the automotive industry. It defines a safety lifecycle that addresses safety-related 
aspects during the concept, development, and production phases (cf. Figure 1). It is important to 
mention that ISO 26262 deals only with possible hazards caused by malfunctions of E/E safety- 
related systems; it does not address hazards like electric shocks, radiation, or corrosion (a complete list 
can be found in [1]). Safety Concepts are particularly addressed in the Concept and Product 
Development phases (cf. Figure 1). Therefore, in this section we will focus only in these two phases of 
the safety lifecycle. 
 
The Concept phase is where the following items are considered: (i) item definition, (ii) initiation of the 
safety lifecycle, (iii) hazard analysis and risk assessment, and (iv) the functional safety concept. The 
main item of interest for us in this phase is the Functional Safety Concept (FSC), which is the 
“specification of the functional safety requirements, with associated information, their allocation to 
architectural elements, and their interaction necessary to achieve safety goals.” [1]. 
 
The Product Development at the system level phase is where technical safety requirements 
(refinement of the functional safety concept) are specified, taking into account not only the functional 
concept, but also technical aspects of the preliminary architecture. The specification of the technical 
safety requirements and their allocation to system elements (software and hardware) is called 
Technical Safety Concept (TSC) [1]. 
 
3. SAFETY CONCEPT SPECIFICATION IN PRACTICE 
 
To better understand these challenges, let us consider the example of a Power Sliding Door Module 
(PSDM) system adapted from [5]. We adapted the function network (cf. Figure 2) and the deployment 
view (cf. Figure 3) from [5], and created a data view (cf. Figure 4) on our own, assuming, then, these 
three views as the PSDM preliminary architecture. To get a general understand on the PSDM, let us 
start with the central component Open Door Computation (cf. Figure 2), whose mission is to trigger 
the door opening based on two events: 
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Figure 1 - ISO 26262 overview (extracted from [1]). 

 
i Passenger/driver request: The request to open the sliding door is triggered when the driver 

or passenger presses the Door Opener button (cf. Figure 2). This sends a signal to the Door Opener 
Request Processor, which is responsible for converting the door opener request signal to a format 
that can be used by the Open Door Computation component.  

 
ii Vehicle Speed: To determine the vehicle speed (cf. Figure 4), first the wheel rotation speed 

is read by the Wheel Rotation Speed Sensor (cf. Figure 2), which then sends this information to the 
Wheel Rotation Speed Processor, which is responsible for converting the sensed wheel rotation 
speed into a format that can be used by the other components. Next, the processed wheel rotation 
speed is sent to the Computation Vehicle Speed component, which computes the vehicle speed 
based on this information. From this point, the computed vehicle speed is sent to the Open Door 
Computation component and also to the Vehicle Speed Integrity Checker, which checks if that the 
vehicle speed is not corrupted or outside a predefined acceptable value range. If the speed value is 
not as expected, it will notify the Open Door Computation component that the value sent by the 
Computation Vehicle Speed component should not be accepted. 

 
Once the Open Door Computation component receives the open door request and the vehicle speed, it 
evaluates if the vehicle is at a speed that allows the door to be opened, which, according to the 
specification available in [5], is 15km/h. If the vehicle is at 15km/h or less, the Open Door 
computation component notifies the Open Door Signal Generator component, which, then, sends a 
signal that triggers the Sliding Door Actuator, which is responsible for opening the sliding door. There 
is also a component called Sliding Door Actuator Monitor, which is responsible for verifying whether 
the door was indeed opened. If it detects that the actuator did not work properly, it notifies the Open 
Door Computation component to re-send the open door command. 
 

 
Figure 2 – Power Sliding Door Module functional network (adapted from [5]). 
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Figure 3 - Power Sliding Door Module deployment view (adapted from [5]). 
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Figure 4 - Power Sliding Door Module data view. 

 
Let us assume that the safety engineers identified that if the vehicle speed is not updated to the PSDM 
system within 100ms, the safety of the passengers might be compromised, because they might be able 
to open the door while the vehicle is at a high speed. To better structure this potential situation, let us 
assume that they have explicitly specified the hazard, safety goal, and a strategy (cf. Figure 5) that 
should be addressed by the system architecture to avoid the occurrence of this situation. The 
specification presented in Figure 5 is already decomposed to a much greater extent than in actual 
practice. In general, one will only find a statement like: “The information about the actual vehicle 
speed should be updated within a cycle time of 100ms” and a simple link from this textual statement to 
a component in the architecture model that addresses this safety requirement, and this link will be 
considered the safety concept (cf. [5]). This kind of traceability might be useful when the traces are 
simple, for instance, when the architectural elements that address a safety concept are located in only 
one architecture diagram. Now let us consider that to address this safety concept, more than one 
component is necessary; let’s assume that it is also necessary to modify deployment items, data 
formats, and types, change the structure of a component in terms of adding and/or removing ports, 
change data flows, etc. Even appropriate automated support, such as the one provided by PREEvision† 
and MEDINI Analyze‡, do not provide adequate support for specifying safety concepts and, at the 
same time, supporting the creation of proper trace links to architectural elements from different 
architecture views along the textual specification. 
 

 
Figure 5 - PSDM Safety Concept specification (adapted from [5]).               

† http://vector.com/vi_preevision_en.html 
‡ http://www.ikv.de/index.php/en/products/functional-safety 
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4. RELATED WORK 
 

As already mentioned, in practice, the most common way to specify safety concepts is using natural 
text in documents, spreadsheets, or requirements databases. There are, nevertheless, some initiatives 
aimed at providing more structured specifications, such as the one proposed by Habli et al. [6], where 
it is investigated how traceability between safety cases modeled with the Goal Structuring Notation 
(GSN) and architectural models represented in SysML can be improved. Birch et al. [2] analyzed the 
implicit safety argument structure of ISO 26262 and conducted a case study showing how these 
arguments can be logically decomposed and structured using GSN. Denney and Pai [7] proposed a 
breakdown pattern specifically for safety case specifications aimed at automated instantiation of 
arguments. Domis et al. [8] introduced Safety Concepts Trees (SCTs) as a means for modeling how 
safety goals are broken down into safety requirements, which, in turn, are continuously refined by 
other safety requirements using typical logical gates. However, SCTs are more concerned with taking 
safety concepts to the modelling domain, and not with the content of the elements that compose safety 
concepts specifications as we do.  
 
In a nutshell, we indicate how to structure and relate the elements that we consider important to be in 
safety concepts specification (cf. Section 5.1), and how to elaborate the content of each element (cf. 
Section 5.2). It means that our approach is not strictly tight to any modelling approach (e.g. SCTs and 
GSN); actually, engineers are free to use the approach and notation they are used to, and just have to 
consider the elements described in the Safety Concepts Decomposition Pattern, and use the guidelines 
to elaborate their contents. 
 
With respect to the support to structure and relate the elements of safety concepts specification, the 
closest to our approach are those proposed by Birch et al. [2] and Denney and Pai [7]. Nevertheless, 
Denney and Pai focus on a structural decomposition of safety cases, and do not offer appropriate 
means for supporting safety concept decomposition. Birch et al. propose rational arguments strategies 
that are useful to justify “why” a safety requirement is, indeed, a Safety Requirement, using GSN to 
structure the justification argument. Our approach does care with the “why” as well, but in a more 
structured way (cf. Section 5), as we explicitly indicate elements that, when precisely described, 
provides enough basis to justify the existence of a safety concept, such as the potential causes of 
failures, their nature, and the associated failure mode. Additionally, we provide means to come up 
with precise descriptions of (i) these elements that justify the existence of safety concepts, and (ii) 
safety requirements specifications that indicate, already along their definition, “how” the architecture 
should be modified to address failure causes, and, consequently, satisfy the safety goal.  
 
With respect to support in elaborating the content of the elements that compose safety concepts 
specifications, Firesmith [9] presents parameterized requirements for different types of safety 
requirements. He argues that, because safety requirements usually have the form of system specific 
quality criteria associated with different levels of quality measures, they can be written as instances of 
parameterized safety requirements templates. However, the parameterized templates proposed by 
Firesmith are far from appropriate to specify safety concepts elements. Therefore, we have created 
parameterized templates that are appropriate to the elements of our Safety Concepts Decomposition 
Pattern, strongly focusing on parameterization of architecture design elements. 
 
Summarizing, to the best of our knowledge, there is no other model-based approach that allows semi-
formal hierarchical decomposition of functional and technical safety concepts, and that also guides the 
creation of traces to architectural elements from multiple views while specifying safety concepts using 
natural language. 
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5. MODEL-BASED FORMALIZATION OF SAFETY CONCEPTS SUPPORTING THE USE 
OF NATURAL LANGUAGE  

 
In this section we present our approach to specify safety concepts, which consists of two core items: 
(i) the Safety Concept Decomposition Pattern, which is a structural decomposition of elements that we 
consider important to be in any safety concept specification, and (ii) the Parameterized Safety Concept 
Specification templates, which are generic parameterized textual templates that should be instantiated 
for the different elements of the Safety Concepts Decomposition pattern  
 
To properly specify safety concepts with our approach, we assume that the following three sets of 
artifacts should be already in place: (i) the result of the Hazard and Risk analysis, (ii) the preliminary 
architecture, and (iii) the results of Failure Mode and Effect Analysis – FMEA, where problems in the 
preliminary architecture are described. 
 
5.1. Safety Concept Decomposition Pattern 

 
ISO 26262 explicitly indicates the content of safety concept specifications, but it doesn’t specify a 
defined structure for them. What happens in practice is that each safety concept specification has a 
different structure, most likely based on the understanding and experience of the engineers involved in 
the specification process. Furthermore, because of this lack of a structured definition, following the 
argumentation of safety concept specifications is not a trivial task, especially if the reader is not the 
author. The consequence is that it becomes difficult to ensure that all the aspects demanded by ISO 
26262 are present in the specification, and it is also hard to ensure that the architecture elements 
referenced by the safety concepts are consistent with those specified in the architecture design. To 
overcome this challenge, we have specified the Safety Concept Decomposition Pattern, which 
comprises elements that we understand as being fundamental for ensuring the completeness of 
functional and technical safety concepts. The metamodel of the Safety Concept Decomposition Pattern 
is shown in Figure 6, which is followed by the descriptions of its elements. 
 

 
Figure 6 - Safety Concepts Decomposition pattern metamodel. 
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 Safety Goal: Top-level requirement resulted from the hazard and risk analysis assessment. For 
each hazardous event with an ASIL evaluated in the hazard analysis, a safety goal should be 
determined [1]. 
 

 ASIL: Levels to specify the necessary requirements and safety measures to avoid unreasonable 
residual risks, with D representing the most stringent and A the least stringent level [1]. 
 

 Failure Cause: Condition of a system (or parts of it) that motivates the existence of a safety 
requirement. It is usually identified when conducting a safety analysis to identify paths that can 
lead to a critical system failure. We adopted the convention proposed by Wu and Kelly [10], thus 
assuming that a cause can be categorized according to one of the three following abstract types: 
 
- The software itself: Incomplete or inaccurate specification, or incorrect design and 

implementation can cause unexpected behavior of the software. 
 

- Underlying hardware: Correct software can still misbehave because of unexpected behavior 
of the underlying hardware. 
 

- Environment: Also known as environment disturbances, causes can be originated outside the 
software and can be fed into the system in the form of inputs. 

 
 Failure mode class: Manner in which an element or an item fails [1]. We understand that a failure 

mode class is a higher level of abstraction that classifies failure causes, in order to enrich them 
semantically. Following the example of Wu and Kelly [10], we also adopted the failure mode 
classification proposed by Fenelon et al. [11]: 
 
- Service provision: Omission (expected event does not occur), Commission (spurious 

occurrence of event). 
 

- Service timing: Early (event occurs before time required), Late (event occurs after the time 
required). 

 
- Service value: Coarse incorrect (detectable incorrect value delivered), Subtle incorrect 

(undetectable incorrect value delivered). 
 

 
 Functional Safety Requirement (FSR): Specification of implementation independent safety 

measure, including its safety-related attributes [1]. We understand that it can express a Functional 
Detection Requirement (high level description of measures to detect failures) or a Functional 
Containment Requirement (high level description of measures to handle failures). 
 

 Composite Functional Safety Requirement (CFSR): Functional Safety Requirement that has 
more than one failure cause that motivates its existence. i.e., cfsr ∈ CFSR: {FSR||FSR.cause ≥ 1}. 
CFSRs can be refined by other CFSRs, or by Atomic Functional Safety Requirement (AFSR). 
 

 Atomic Functional Safety Requirement (AFSR): functional safety requirement that has only 
one failure cause that motivates its existence. i.e., afsr ∈ AFSR: {FSR||FSR.cause = 1}. AFSRs 
refine CFSRs that cannot be decomposed into finer grains anymore. AFSR are realized by a set of 
Technical Safety Requirements. 
 

 Technical Safety Requirement (TSR): Description of strategies to realize an Atomic Functional 
Safety Requirement [1]. 
 

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 



 Fault Avoidance Requirement: We adopted the definition of Laprie, and consider Fault 
Avoidance Requirements as a group of means that aim for systems free of faults, and comprises 
fault prevention and fault removal mechanisms [12]. 
 

 Fault Tolerance Requirement: Description of means that allows “living” with systems that are 
susceptible to faults.  [12]. 
 

 Technical Detection Requirement: Description of how Functional Detection Requirements will 
be realized by elements of the architecture design. 
 

 Technical Containment Requirement: Description of how Functional Containment 
Requirements will be realized by elements of the technical architecture design. It describes means 
to take a system from a state containing errors and faults to a state without detected errors and 
without faults [12]. 
 

 Safety tactics: Architectural design decisions made to avoid or handle failures to which safety-
critical systems are subject [10]. They become more concrete when they are realized by safety 
patterns indicating architectural elements (mainly components, connector, deployment units, and 
communication channels) and a set of constraints on how instances of these types should be 
combined into a system to detect or contain a failure [13]. 
 

5.2. Parameterized Safety Concept Specification Templates 
 

Even though we do understand that the user should be free to write textual the safety concepts 
specifications, we believe that some guidelines can be useful to indicate items that must not be absent 
from the specification. Therefore, we have created Parameterized Safety Concepts Specification 
Templates that should be used to guide the engineers during the specification of some elements of the 
Safety Concepts Decomposition Pattern. The template elements delimited by square brackets are 
textual descriptions that should contain elements to be linked to the architecture design. We 
understand that these elements should be selected during the safety concept specification in order to 
ensure early traceability in the specification process. Moreover, these elements are mandatory in the 
safety concept specification because they are about the very core notion of safety concepts defined in 
ISO 26262, which is to assign architectural elements to the safety requirements. Therefore, if 
architectural elements are not included in the safety concept specification, its completeness is 
compromised. The textual descriptions between parentheses have no such strict constraints; however, 
they still address some constraints in the sense that they indicate important constraints that should be 
considered, as, for instance, an indication that a signal should not be sent later than within 2ms. The 
parameterized templates are as follows: 

 
 Safety Goal: [System || Component Group || Component || Computing Node] shall (avoid || not cause || not allow || 

not be || not || no) (harm). 
 

 Functional Detection Safety Requirement: The System shall detect (accidental harm | Safety incident | 
Hazard | Safety Risk). This template was reused from [9], and there it describes safety requirements of 
type Detection of Violation of Prevention. 
 

 Functional Containment Safety Requirement: When the System shall detects (accidental harm | Safety 
incident | Hazard | Safety Risk), then the system shall (List of Actions). This template was also reused from [9], 
and there it describes safety requirements of type Reaction to Violation of Prevention. 

 
 Technical Safety Requirement: The template for this element depends on the failure mode 

classification of the failure cause that motivates the existence of the Atomic Safety Requirement 
associated to the Technical Safety Requirement. The two possible templates are: 
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- Service Value Failure Mode: [System || Component Group || Component || Computing Node] shall 
(perform action) [artifact affected by action] (Values threshold of measurement: within || exactly with || not exceed 
|| not less than) [Data constraint]. 

 
- Service Timing Failure Mode: [System || Component Group || Component || Computing Node] shall 

[perform action] [artifact affected by action] (timing threshold of measurement: within || before || after || exactly || 
no later than) [timing constraint]. 

 
 Fault Tolerance Requirement: Detect and Handle (type of violation) violation of [artifact affected by action]. 

 
 Technical Detection Requirement: It should be detected if [artifact affected by action] is not (action 

performed - past tense) (threshold of measurement) [Value Constraint||Timing Constraint]. 
 

 Technical Containment Requirement: This element should be described as free text so the 
engineer can describe his strategy in detail. However, it is important to highlight that this 
description must reference architectural elements. 
 

 Safety Tactics: We have created specification templates for almost all the safety patterns 
described by Douglass [13], and examples are shown in Section 6. 

 
It is important to highlight that the elements of the Safety Concepts Decomposition Pattern doesn’t 
have associated parameterized templates are those that not necessarily have to reference architectural 
elements. However, the references can be created, whenever the engineers understand that such 
references will contribute to a clearer understand of the safety requirement. Another aspect to be 
considered is that we do not impose that the textual constructions have to be strictly formulated as 
indicated in the templates. However, it is strongly recommended that the specifications contain 
references to the elements indicated between the square brackets and the parentheses, since they are 
the key to ensuring the completeness and consistency of the safety concept specifications. 
 
To illustrate the instantiation of these parameterized templates, consider the example below, where a 
Technical Safety Requirement and a Fault Tolerance Requirement are specified for an Airbag System. 
The color coding is intended to make it easier to understand the mapping between the template and the 
example: 
 
 Technical Safety Requirement: 
 
- Template: [System || Component Group || Component || Computing Node] shall (perform action) [artifact affected by 

action] (Values threshold of measurement: within || exactly with || not exceed || not less than) [Data constraint] 
 

- Example: [Front Acceleration sensor] shall (send) [Front sensed acceleration signal amplitude] (with at least) [0,56dB] 
 

 Fault Tolerance Requirement: 
 
- Template: Detect and Handle (type of violation) violation of [artifact affected by action] 
- Example: Detect and Handle (value range) violation of [front sensed acceleration signal amplitude] 

 
6. SPECIFYING SAFETY CONCEPTS FOR A POWER SLIDING DOOR MODULE WITH 

OUR APPROACH  
 
In this section we show how the Power Sliding Door Module example described in [5] look like when 
specified with our approach.  However, due to space constraints we will focus in only two safety 
requirements: (i) “The information about the actual vehicle speed should be actualized with a cycle 
time of 100ms.”, and (ii) “The wheel rotation speed should be measured with an accuracy of at least 
30 rad/min”. Also due to space constraints, along this section we describe in detail only the first 
requirement; the model with the two requirements is show in Figure 7. It also important to mention 
that the the preliminary architecture considered was the one shown in Figure 2, Figure 3, and Figure 4. 
Please, also note that the items from the specification retain the square brackets and the parentheses to 
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facilitate the understanding of the example. However, in practice, when the trace links are created, 
these signs should be removed to guarantee the natural flow of reading. 
 
 Safety Goal: [Vehicle] shall (not allow) (door to be opened while the vehicle speed is in motion). 
 
 CFSR: Control Unit shall send accurate vehicle speed information to power sliding door module. 
 
 Failure Cause 1: Vehicle speed is not updated in time. 
 
 Failure Cause 2: Wheel vehicle speed is not measured with the proper accuracy. 
 
Note: Due to the lack of space, we will show the decomposition used to address only Failure Cause 1. 
The description of the items related to Failure Cause 2 can be seen in Figure 7. 
 
 AFSR (referring to Cause 1): The information about the actual Vehicle Speed should be updated with an 

updating cycle of vehicle speed. Violation: Timing Violation – Time to execute operation; Failure Mode: Service 
Timing. 

 
 Technical Safety Concept (Service Timing Failure Mode): [Computation Vehicle Speed Component] 

shall (update) [vehicle speed] (not later than) [a cycle time of 100 ms]. 
 
 Fault Tolerance Requirement: Detect and handle (timing accuracy) violation of [vehicle speed] updating. 
 
- Detection Requirement: It should be detected if [Vehicle Speed] is not (updated) (not later than) [a cycle time of 

100 ms] at the [Computation Vehicle Speed component]. 
 
 Containment Requirement: Redundancy - there should be a [redundant Wheel Rotation Speed Sensor] and a 

[redundant Rotation Speed Processor] that should substitute the [Wheel Rotation Speed Sensor] and [Rotation Speed 
Processor] if it is detected that the [vehicle speed] is not updated every [100ms]. 

 
 Detection Safety Tactic: Let’s assume that the engineers decided to monitor the vehicle speed 

using a Watchdog. As previously mentioned, we have specified a grammar for most of the safety 
patterns described by Douglass [13]. 

 
- Template: [Watchdog component] monitors [monitored architectural element] to check if [monitored aspect] is 

(action) (threshold of measurement) [Timing Constraint]. 
 

- Example: [Watchdog component] monitors [computation Vehicle Speed component] to check if [vehicle speed] is 
(updated) (not later than) [a cycle time of 100ms]. 
 

 Containment Safety Tactic: Let’s assume that the engineers decided to use homogeneous 
redundancies of Wheel Rotation Speed Sensor and Rotation Speed Processor.  
 

- Template: [Component], which is deployed to [Computing Node||Thread], have (n) homogeneous redundancy(ies), 
which is(are) deployed to: [Computing nodes||Threads] [n .. n-1]. 

 
- Example: [Rotation Speed Processor], which is deployed to [DSC Control Unit], have (1) homogeneous redundancy, 

which is deployed to: [DSC Control Unit]. 
 

We observed that safety concepts bases on the Safety Concepts Decomposition Pattern offer great 
basis for safety engineers in identifying if all failure causes were properly safe-guarded. Another 
positive aspect is about the compliance created between functional and safety concepts, which is a 
valuable step towards safety concepts correctness. Another observed benefit is with respect to the 
consistency improvement between safety concepts and architecture design, because the preliminary 
architecture can be considered while the safety engineer are writing down the safety concept using the 
parameterized templates as basis, and not, as usual, first defining the safety concepts, and only later 
indicate which architecture element addresses them. In a sense, we observed improvements the overall 
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system specification process, because engineers can make early detection if any rearrangement in the 
design is necessary, or if new architecture elements are required. Another positive aspect is that safety 
engineers are comfortable to use it because they can keep writing the specifications textually, and also 
can keep using the mechanisms they are used to for specifying safety concepts, because, in a nutshell, 
we only indicate the elements to be considered in the specification, how they should be structured, and 
suggests how the textual content should look like. Therefore, they can do it using well know modeling 
mechanisms such as GSN and SCTs, and tools like MEDINI Analyze and PREEvision. 
 

 Power Sliding Door Module System

«Safety Goal»
[Vehicle] shall [not permit] [door to be opened while the vehicle speed is in motion]

«Composite Functional Safety Requirement»
DSC Control Unit shall send accurate Vehicle Speed information to Power Sliding Door 

Module

«Technical Safety Requirement»
Computation Vehicle Speed Component shall [actualize] 
actual vehicle speed [exactly at] [a cycle time of 100 ms]

«Technical Safety Requirement»
Wheel rotation speed sensor shall [measure] wheel 

rotation speed [with at least] 30 rad/min 

«Detection Requirement»
It should be detected if Vehicle Speed is not 

[actualized] [exactly at] a cycle of 100 ms

«Detection Requirement»
It should be detected if Wheel Rotation 
Speed is not [measured] [with at least] 

30rad/min

«Detection Safety Tactic»
[Watchdog] monitors if [actual vehicle 

speed] is [actualized] [exactly at] [cycle of 
100ms]

tags
Tactic = Failure Monitor with Watchdog

«Detection Safety Pattern»
[Frequency controller] verifies if [wheel 

rotation speed] is [measured] [with 
accuracy of at least] [30 rad/min]

tags
Tactic = Frequency Check

«Atomic Functional Safety Requirement»
The information about the actual vehicle speed should be 

actualized with a cycle time of 100ms.

tags
Failure Classification = Service Timing
Violation = Timing Violation:Time to Execute Operation

«Atomic Functional Safety Requirement»
Wheel rotation speed should be measured with an 

accuracy of at least 30rad/min

tags
Failure Classification = Service Value
Violation = Value Accuracy: Frequency Violation

«Containment Requirement»
Crosschecking detecting discrepancy by 

comparing vehicle speed calculation results of 
redundancies of computation Vehicle Speed 

Component

«Fault Tolerance Requirement»
Detect and Handle [Timing Accuracy] violation of 

actualization cycle of vehicle speed 

«Fault Tolerance Requirement»
Detect and Handle [Value Accuracy] violation of 

wheel rotation speed

«Containment Safety Tactic»
[Component Group], which is deployed to [Computing 

Node||Thread], have [n] homogeneous redundancies, which are 
deployed to: [Computing nodes||Threads] [n],  [Computing 

nodes||Threads] [n-1]

tags
Safety Pattern = Heterogeneous Redundancy with Cross-Checking

«Containment Safety Pattern»
[Voter component] element checks whether [1..* output 

port] [1..*value] of [component] are equal to the [1..* 
output ports] [1..*value] of the [redundant component]
- [Voter component] is deployed to [computing node]

- [component] is deployed to [comp

tags
Tactic = Voting

«Cause»
Wheel rotation speed is not measured 

with proper accuracy

«Cause»
Vehicle speed is not actualized in 

time

«Containment Requirement»
Voter component should decide on 3 
homogeneous redundancies of Wheel 

Rotation Speed Sensor
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Figure 7 - PSDM Safety Concepts specified with our approach. 

 
7. FUTURE WORK AND CONCLUSIONS 
 
This work was motivated by the lack of approaches for semi-formal hierarchical decomposition of 
safety concepts and for the creation of traces to architectural elements while specifying safety 
requirements using natural language. To fill this gap, we proposed a model-based formalization 
technique for specifying safety concepts that supports safety engineers in creating precise traces to 
architectural elements while specifying safety requirements using natural language. The approach 
consists of a Safety Concept Decomposition Pattern and a Parameterized Safety Concepts 
Specification Templates, with the former specifying the elements to be considered in a safety concept 
specification and the latter specifying a grammar containing elements whose presence in textual 
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specifications of safety concepts is strongly recommended to ensure completeness and consistency. 
This is our first step towards the realization of automated consistency and completeness checks of 
safety concepts. 
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