
Improving Consistency Checks between Safety Concepts and View Based
Architecture Design

Pablo Oliveira Antoninoa*, Mario Trappa
a Fraunhofer IESE, Kaiserslautern, Germany

Abstract: Despite the early adoption of ISO 26262 by the automotive industry, managing functional
safety in the early phases of system development remains a challenge. One key problem is how to
efficiently keep safety assurance artifacts up-to-date considering the recurrent requirements changes
during the system’s lifecycle. Here, there is a real demand for means to support the creation,
modification, and reuse of safety assurance documents, like the Safety Concepts described in ISO
26262. One major aspect of this challenge is inconsistency between safety concepts and system
architecture. Usually created by different teams at different times and in different contexts of the
development environment, these artifacts are often completely disassociated. This becomes even more
evident when system maintenance is necessary; in this case, the inconsistencies result in intensive
efforts to update the safety concepts impacted by the changes, and, consequently, significantly
decrease the efficiency and efficacy of safety assurance. To overcome this challenge, we propose a
model-based formalization approach for specifying safety concepts that allows creating precise traces
to architectural elements while specifying safety concepts using natural language. We observed that
our approach minimize the inconsistencies between safety models and architecture models, and offers
basis to perform automated completeness and consistency checks.

Keywords: Safety Concepts, Safety Requirements, Architecture Design, Traceability.

1. INTRODUCTION

In 2011, ISO 26262 [1] was published as a safety standard in the automotive industry, emphasizing
functional safety management in early phases of system development. Despite its early adoption, there
are still open issues that limit the efficiency of assuring the safety of complex systems. Our experience
has shown that two core contributors to these issues are (i) recurrent requirements changes during
development time and over the system’s lifetime, and (ii) the multitude of different artifacts to be
considered. This intermittent dynamics leads to challenges regarding how to efficiently keep safety
assurance artifacts up to date. One central safety assurance artifact defined in ISO 26262 is the Safety
Concept. Safety concepts are requirements with a strong emphasis on the architectural elements that
compose the measures to be used to prevent safety-critical failures [1].

In practice, safety concepts have been defined by means of natural text in documents, spreadsheets, or
requirements databases. Sometimes, graphical notations like the Goal Structuring Notation (GSN) [2]
or UML [3] are used to provide a more structured overview. Nevertheless, the lack of an underlying
formalism of these approaches is a key factor contributing to the incompleteness and inconsistency of
safety concept specifications.

One major aspect of this challenge is the relationship between safety concepts and the system
architecture. As these two artifacts are usually created by different teams at different moments and in
different contexts of the system development environment, they are, often, completely disassociated.
However, by definition, the requirements defined in safety concepts, often result from a safety analysis
of the preliminary architecture. Therefore, this lack of traces between safety concept and architecture

* pablo.antonino@iese.fraunhofer.de

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

is a key factor contributing to inconsistencies between safety concepts and the actual architecture
design, and, consequently, to the incompleteness of safety concept specifications.

To overcome this challenge, we propose a model-based formalization technique for specifying safety
concepts that supports safety engineers in creating precise traces to architectural elements while
specifying safety requirements using natural language. Our approach consists of two items: (i) the
Safety Concept Decomposition Pattern, which is a structural decomposition of elements that we
understand to be mandatory in any safety concept specification, and (ii) the Parameterized Safety
Concept Specification templates, which are generic parameterized textual templates that should be
instantiated for the different elements of the Safety Concepts Decomposition pattern, and has the
purpose of guide engineers during the specification of the safety concepts using natural language.
With that, we ensure seamless integration of safety concepts and architectural design without the need
to use formal specification languages like Lambda Calculus or Z, rather preserving intuitiveness
during the specification of safety concepts.

The remainder of this paper is organized as follows: In Section 2, we provide a general overview of
ISO 26262, particularly of safety concepts; in Section 3, we discuss the main challenges in specifying
safety concepts in practice; in Section 4 we discuss the related works; in Section 5, we present our
approach; in Section 6, we show how part of the safety concept of a Power Sliding Door Module is
specified with our approach; and in Section 7, we conclude and present perspectives for future works.

2. ISO 26262 AND THE NOTION OF SAFETY CONCEPTS

ISO 26262 is an adaptation of IEC 61508 [4], addressing functional safety of electrical and/electronic
(E/E) systems in the automotive industry. It defines a safety lifecycle that addresses safety-related
aspects during the concept, development, and production phases (cf. Figure 1). It is important to
mention that ISO 26262 deals only with possible hazards caused by malfunctions of E/E safety-
related systems; it does not address hazards like electric shocks, radiation, or corrosion (a complete list
can be found in [1]). Safety Concepts are particularly addressed in the Concept and Product
Development phases (cf. Figure 1). Therefore, in this section we will focus only in these two phases of
the safety lifecycle.

The Concept phase is where the following items are considered: (i) item definition, (ii) initiation of the
safety lifecycle, (iii) hazard analysis and risk assessment, and (iv) the functional safety concept. The
main item of interest for us in this phase is the Functional Safety Concept (FSC), which is the
“specification of the functional safety requirements, with associated information, their allocation to
architectural elements, and their interaction necessary to achieve safety goals.” [1].

The Product Development at the system level phase is where technical safety requirements
(refinement of the functional safety concept) are specified, taking into account not only the functional
concept, but also technical aspects of the preliminary architecture. The specification of the technical
safety requirements and their allocation to system elements (software and hardware) is called
Technical Safety Concept (TSC) [1].

3. SAFETY CONCEPT SPECIFICATION IN PRACTICE

To better understand these challenges, let us consider the example of a Power Sliding Door Module
(PSDM) system adapted from [5]. We adapted the function network (cf. Figure 2) and the deployment
view (cf. Figure 3) from [5], and created a data view (cf. Figure 4) on our own, assuming, then, these
three views as the PSDM preliminary architecture. To get a general understand on the PSDM, let us
start with the central component Open Door Computation (cf. Figure 2), whose mission is to trigger
the door opening based on two events:

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 1 - ISO 26262 overview (extracted from [1]).

i Passenger/driver request: The request to open the sliding door is triggered when the driver

or passenger presses the Door Opener button (cf. Figure 2). This sends a signal to the Door Opener
Request Processor, which is responsible for converting the door opener request signal to a format
that can be used by the Open Door Computation component.

ii Vehicle Speed: To determine the vehicle speed (cf. Figure 4), first the wheel rotation speed

is read by the Wheel Rotation Speed Sensor (cf. Figure 2), which then sends this information to the
Wheel Rotation Speed Processor, which is responsible for converting the sensed wheel rotation
speed into a format that can be used by the other components. Next, the processed wheel rotation
speed is sent to the Computation Vehicle Speed component, which computes the vehicle speed
based on this information. From this point, the computed vehicle speed is sent to the Open Door
Computation component and also to the Vehicle Speed Integrity Checker, which checks if that the
vehicle speed is not corrupted or outside a predefined acceptable value range. If the speed value is
not as expected, it will notify the Open Door Computation component that the value sent by the
Computation Vehicle Speed component should not be accepted.

Once the Open Door Computation component receives the open door request and the vehicle speed, it
evaluates if the vehicle is at a speed that allows the door to be opened, which, according to the
specification available in [5], is 15km/h. If the vehicle is at 15km/h or less, the Open Door
computation component notifies the Open Door Signal Generator component, which, then, sends a
signal that triggers the Sliding Door Actuator, which is responsible for opening the sliding door. There
is also a component called Sliding Door Actuator Monitor, which is responsible for verifying whether
the door was indeed opened. If it detects that the actuator did not work properly, it notifies the Open
Door Computation component to re-send the open door command.

Figure 2 – Power Sliding Door Module functional network (adapted from [5]).

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 3 - Power Sliding Door Module deployment view (adapted from [5]).

req Data@RT

«Data»
Vehicle Speed

- Signal Gradient
- Signal Noise Level
- Maximum Value
- Minimum Value

«Data»
Stop Signal

- Max Breaking Time

«Data»
Wheel Rotation Speed

- Frequency of Rotation :double

«Data»
Wheel Rotation Sensor

Signal Pulse

- Min sensor signal pulse
- Max sensor signal pulse

Figure 4 - Power Sliding Door Module data view.

Let us assume that the safety engineers identified that if the vehicle speed is not updated to the PSDM
system within 100ms, the safety of the passengers might be compromised, because they might be able
to open the door while the vehicle is at a high speed. To better structure this potential situation, let us
assume that they have explicitly specified the hazard, safety goal, and a strategy (cf. Figure 5) that
should be addressed by the system architecture to avoid the occurrence of this situation. The
specification presented in Figure 5 is already decomposed to a much greater extent than in actual
practice. In general, one will only find a statement like: “The information about the actual vehicle
speed should be updated within a cycle time of 100ms” and a simple link from this textual statement to
a component in the architecture model that addresses this safety requirement, and this link will be
considered the safety concept (cf. [5]). This kind of traceability might be useful when the traces are
simple, for instance, when the architectural elements that address a safety concept are located in only
one architecture diagram. Now let us consider that to address this safety concept, more than one
component is necessary; let’s assume that it is also necessary to modify deployment items, data
formats, and types, change the structure of a component in terms of adding and/or removing ports,
change data flows, etc. Even appropriate automated support, such as the one provided by PREEvision†
and MEDINI Analyze‡, do not provide adequate support for specifying safety concepts and, at the
same time, supporting the creation of proper trace links to architectural elements from different
architecture views along the textual specification.

Figure 5 - PSDM Safety Concept specification (adapted from [5]).

† http://vector.com/vi_preevision_en.html
‡ http://www.ikv.de/index.php/en/products/functional-safety

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

4. RELATED WORK

As already mentioned, in practice, the most common way to specify safety concepts is using natural
text in documents, spreadsheets, or requirements databases. There are, nevertheless, some initiatives
aimed at providing more structured specifications, such as the one proposed by Habli et al. [6], where
it is investigated how traceability between safety cases modeled with the Goal Structuring Notation
(GSN) and architectural models represented in SysML can be improved. Birch et al. [2] analyzed the
implicit safety argument structure of ISO 26262 and conducted a case study showing how these
arguments can be logically decomposed and structured using GSN. Denney and Pai [7] proposed a
breakdown pattern specifically for safety case specifications aimed at automated instantiation of
arguments. Domis et al. [8] introduced Safety Concepts Trees (SCTs) as a means for modeling how
safety goals are broken down into safety requirements, which, in turn, are continuously refined by
other safety requirements using typical logical gates. However, SCTs are more concerned with taking
safety concepts to the modelling domain, and not with the content of the elements that compose safety
concepts specifications as we do.

In a nutshell, we indicate how to structure and relate the elements that we consider important to be in
safety concepts specification (cf. Section 5.1), and how to elaborate the content of each element (cf.
Section 5.2). It means that our approach is not strictly tight to any modelling approach (e.g. SCTs and
GSN); actually, engineers are free to use the approach and notation they are used to, and just have to
consider the elements described in the Safety Concepts Decomposition Pattern, and use the guidelines
to elaborate their contents.

With respect to the support to structure and relate the elements of safety concepts specification, the
closest to our approach are those proposed by Birch et al. [2] and Denney and Pai [7]. Nevertheless,
Denney and Pai focus on a structural decomposition of safety cases, and do not offer appropriate
means for supporting safety concept decomposition. Birch et al. propose rational arguments strategies
that are useful to justify “why” a safety requirement is, indeed, a Safety Requirement, using GSN to
structure the justification argument. Our approach does care with the “why” as well, but in a more
structured way (cf. Section 5), as we explicitly indicate elements that, when precisely described,
provides enough basis to justify the existence of a safety concept, such as the potential causes of
failures, their nature, and the associated failure mode. Additionally, we provide means to come up
with precise descriptions of (i) these elements that justify the existence of safety concepts, and (ii)
safety requirements specifications that indicate, already along their definition, “how” the architecture
should be modified to address failure causes, and, consequently, satisfy the safety goal.

With respect to support in elaborating the content of the elements that compose safety concepts
specifications, Firesmith [9] presents parameterized requirements for different types of safety
requirements. He argues that, because safety requirements usually have the form of system specific
quality criteria associated with different levels of quality measures, they can be written as instances of
parameterized safety requirements templates. However, the parameterized templates proposed by
Firesmith are far from appropriate to specify safety concepts elements. Therefore, we have created
parameterized templates that are appropriate to the elements of our Safety Concepts Decomposition
Pattern, strongly focusing on parameterization of architecture design elements.

Summarizing, to the best of our knowledge, there is no other model-based approach that allows semi-
formal hierarchical decomposition of functional and technical safety concepts, and that also guides the
creation of traces to architectural elements from multiple views while specifying safety concepts using
natural language.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

5. MODEL-BASED FORMALIZATION OF SAFETY CONCEPTS SUPPORTING THE USE
OF NATURAL LANGUAGE

In this section we present our approach to specify safety concepts, which consists of two core items:
(i) the Safety Concept Decomposition Pattern, which is a structural decomposition of elements that we
consider important to be in any safety concept specification, and (ii) the Parameterized Safety Concept
Specification templates, which are generic parameterized textual templates that should be instantiated
for the different elements of the Safety Concepts Decomposition pattern

To properly specify safety concepts with our approach, we assume that the following three sets of
artifacts should be already in place: (i) the result of the Hazard and Risk analysis, (ii) the preliminary
architecture, and (iii) the results of Failure Mode and Effect Analysis – FMEA, where problems in the
preliminary architecture are described.

5.1. Safety Concept Decomposition Pattern

ISO 26262 explicitly indicates the content of safety concept specifications, but it doesn’t specify a
defined structure for them. What happens in practice is that each safety concept specification has a
different structure, most likely based on the understanding and experience of the engineers involved in
the specification process. Furthermore, because of this lack of a structured definition, following the
argumentation of safety concept specifications is not a trivial task, especially if the reader is not the
author. The consequence is that it becomes difficult to ensure that all the aspects demanded by ISO
26262 are present in the specification, and it is also hard to ensure that the architecture elements
referenced by the safety concepts are consistent with those specified in the architecture design. To
overcome this challenge, we have specified the Safety Concept Decomposition Pattern, which
comprises elements that we understand as being fundamental for ensuring the completeness of
functional and technical safety concepts. The metamodel of the Safety Concept Decomposition Pattern
is shown in Figure 6, which is followed by the descriptions of its elements.

Figure 6 - Safety Concepts Decomposition pattern metamodel.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

 Safety Goal: Top-level requirement resulted from the hazard and risk analysis assessment. For
each hazardous event with an ASIL evaluated in the hazard analysis, a safety goal should be
determined [1].

 ASIL: Levels to specify the necessary requirements and safety measures to avoid unreasonable
residual risks, with D representing the most stringent and A the least stringent level [1].

 Failure Cause: Condition of a system (or parts of it) that motivates the existence of a safety
requirement. It is usually identified when conducting a safety analysis to identify paths that can
lead to a critical system failure. We adopted the convention proposed by Wu and Kelly [10], thus
assuming that a cause can be categorized according to one of the three following abstract types:

- The software itself: Incomplete or inaccurate specification, or incorrect design and

implementation can cause unexpected behavior of the software.

- Underlying hardware: Correct software can still misbehave because of unexpected behavior
of the underlying hardware.

- Environment: Also known as environment disturbances, causes can be originated outside the
software and can be fed into the system in the form of inputs.

 Failure mode class: Manner in which an element or an item fails [1]. We understand that a failure

mode class is a higher level of abstraction that classifies failure causes, in order to enrich them
semantically. Following the example of Wu and Kelly [10], we also adopted the failure mode
classification proposed by Fenelon et al. [11]:

- Service provision: Omission (expected event does not occur), Commission (spurious

occurrence of event).

- Service timing: Early (event occurs before time required), Late (event occurs after the time
required).

- Service value: Coarse incorrect (detectable incorrect value delivered), Subtle incorrect

(undetectable incorrect value delivered).

 Functional Safety Requirement (FSR): Specification of implementation independent safety

measure, including its safety-related attributes [1]. We understand that it can express a Functional
Detection Requirement (high level description of measures to detect failures) or a Functional
Containment Requirement (high level description of measures to handle failures).

 Composite Functional Safety Requirement (CFSR): Functional Safety Requirement that has
more than one failure cause that motivates its existence. i.e., cfsr ∈ CFSR: {FSR||FSR.cause ≥ 1}.
CFSRs can be refined by other CFSRs, or by Atomic Functional Safety Requirement (AFSR).

 Atomic Functional Safety Requirement (AFSR): functional safety requirement that has only
one failure cause that motivates its existence. i.e., afsr ∈ AFSR: {FSR||FSR.cause = 1}. AFSRs
refine CFSRs that cannot be decomposed into finer grains anymore. AFSR are realized by a set of
Technical Safety Requirements.

 Technical Safety Requirement (TSR): Description of strategies to realize an Atomic Functional
Safety Requirement [1].

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

 Fault Avoidance Requirement: We adopted the definition of Laprie, and consider Fault
Avoidance Requirements as a group of means that aim for systems free of faults, and comprises
fault prevention and fault removal mechanisms [12].

 Fault Tolerance Requirement: Description of means that allows “living” with systems that are
susceptible to faults. [12].

 Technical Detection Requirement: Description of how Functional Detection Requirements will
be realized by elements of the architecture design.

 Technical Containment Requirement: Description of how Functional Containment
Requirements will be realized by elements of the technical architecture design. It describes means
to take a system from a state containing errors and faults to a state without detected errors and
without faults [12].

 Safety tactics: Architectural design decisions made to avoid or handle failures to which safety-
critical systems are subject [10]. They become more concrete when they are realized by safety
patterns indicating architectural elements (mainly components, connector, deployment units, and
communication channels) and a set of constraints on how instances of these types should be
combined into a system to detect or contain a failure [13].

5.2. Parameterized Safety Concept Specification Templates

Even though we do understand that the user should be free to write textual the safety concepts
specifications, we believe that some guidelines can be useful to indicate items that must not be absent
from the specification. Therefore, we have created Parameterized Safety Concepts Specification
Templates that should be used to guide the engineers during the specification of some elements of the
Safety Concepts Decomposition Pattern. The template elements delimited by square brackets are
textual descriptions that should contain elements to be linked to the architecture design. We
understand that these elements should be selected during the safety concept specification in order to
ensure early traceability in the specification process. Moreover, these elements are mandatory in the
safety concept specification because they are about the very core notion of safety concepts defined in
ISO 26262, which is to assign architectural elements to the safety requirements. Therefore, if
architectural elements are not included in the safety concept specification, its completeness is
compromised. The textual descriptions between parentheses have no such strict constraints; however,
they still address some constraints in the sense that they indicate important constraints that should be
considered, as, for instance, an indication that a signal should not be sent later than within 2ms. The
parameterized templates are as follows:

 Safety Goal: [System || Component Group || Component || Computing Node] shall (avoid || not cause || not allow ||

not be || not || no) (harm).

 Functional Detection Safety Requirement: The System shall detect (accidental harm | Safety incident |
Hazard | Safety Risk). This template was reused from [9], and there it describes safety requirements of
type Detection of Violation of Prevention.

 Functional Containment Safety Requirement: When the System shall detects (accidental harm | Safety
incident | Hazard | Safety Risk), then the system shall (List of Actions). This template was also reused from [9],
and there it describes safety requirements of type Reaction to Violation of Prevention.

 Technical Safety Requirement: The template for this element depends on the failure mode

classification of the failure cause that motivates the existence of the Atomic Safety Requirement
associated to the Technical Safety Requirement. The two possible templates are:

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

- Service Value Failure Mode: [System || Component Group || Component || Computing Node] shall
(perform action) [artifact affected by action] (Values threshold of measurement: within || exactly with || not exceed
|| not less than) [Data constraint].

- Service Timing Failure Mode: [System || Component Group || Component || Computing Node] shall

[perform action] [artifact affected by action] (timing threshold of measurement: within || before || after || exactly ||
no later than) [timing constraint].

 Fault Tolerance Requirement: Detect and Handle (type of violation) violation of [artifact affected by action].

 Technical Detection Requirement: It should be detected if [artifact affected by action] is not (action

performed - past tense) (threshold of measurement) [Value Constraint||Timing Constraint].

 Technical Containment Requirement: This element should be described as free text so the
engineer can describe his strategy in detail. However, it is important to highlight that this
description must reference architectural elements.

 Safety Tactics: We have created specification templates for almost all the safety patterns
described by Douglass [13], and examples are shown in Section 6.

It is important to highlight that the elements of the Safety Concepts Decomposition Pattern doesn’t
have associated parameterized templates are those that not necessarily have to reference architectural
elements. However, the references can be created, whenever the engineers understand that such
references will contribute to a clearer understand of the safety requirement. Another aspect to be
considered is that we do not impose that the textual constructions have to be strictly formulated as
indicated in the templates. However, it is strongly recommended that the specifications contain
references to the elements indicated between the square brackets and the parentheses, since they are
the key to ensuring the completeness and consistency of the safety concept specifications.

To illustrate the instantiation of these parameterized templates, consider the example below, where a
Technical Safety Requirement and a Fault Tolerance Requirement are specified for an Airbag System.
The color coding is intended to make it easier to understand the mapping between the template and the
example:

 Technical Safety Requirement:

- Template: [System || Component Group || Component || Computing Node] shall (perform action) [artifact affected by

action] (Values threshold of measurement: within || exactly with || not exceed || not less than) [Data constraint]

- Example: [Front Acceleration sensor] shall (send) [Front sensed acceleration signal amplitude] (with at least) [0,56dB]

 Fault Tolerance Requirement:

- Template: Detect and Handle (type of violation) violation of [artifact affected by action]
- Example: Detect and Handle (value range) violation of [front sensed acceleration signal amplitude]

6. SPECIFYING SAFETY CONCEPTS FOR A POWER SLIDING DOOR MODULE WITH

OUR APPROACH

In this section we show how the Power Sliding Door Module example described in [5] look like when
specified with our approach. However, due to space constraints we will focus in only two safety
requirements: (i) “The information about the actual vehicle speed should be actualized with a cycle
time of 100ms.”, and (ii) “The wheel rotation speed should be measured with an accuracy of at least
30 rad/min”. Also due to space constraints, along this section we describe in detail only the first
requirement; the model with the two requirements is show in Figure 7. It also important to mention
that the the preliminary architecture considered was the one shown in Figure 2, Figure 3, and Figure 4.
Please, also note that the items from the specification retain the square brackets and the parentheses to

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

facilitate the understanding of the example. However, in practice, when the trace links are created,
these signs should be removed to guarantee the natural flow of reading.

 Safety Goal: [Vehicle] shall (not allow) (door to be opened while the vehicle speed is in motion).

 CFSR: Control Unit shall send accurate vehicle speed information to power sliding door module.

 Failure Cause 1: Vehicle speed is not updated in time.

 Failure Cause 2: Wheel vehicle speed is not measured with the proper accuracy.

Note: Due to the lack of space, we will show the decomposition used to address only Failure Cause 1.
The description of the items related to Failure Cause 2 can be seen in Figure 7.

 AFSR (referring to Cause 1): The information about the actual Vehicle Speed should be updated with an

updating cycle of vehicle speed. Violation: Timing Violation – Time to execute operation; Failure Mode: Service
Timing.

 Technical Safety Concept (Service Timing Failure Mode): [Computation Vehicle Speed Component]

shall (update) [vehicle speed] (not later than) [a cycle time of 100 ms].

 Fault Tolerance Requirement: Detect and handle (timing accuracy) violation of [vehicle speed] updating.

- Detection Requirement: It should be detected if [Vehicle Speed] is not (updated) (not later than) [a cycle time of

100 ms] at the [Computation Vehicle Speed component].

 Containment Requirement: Redundancy - there should be a [redundant Wheel Rotation Speed Sensor] and a

[redundant Rotation Speed Processor] that should substitute the [Wheel Rotation Speed Sensor] and [Rotation Speed
Processor] if it is detected that the [vehicle speed] is not updated every [100ms].

 Detection Safety Tactic: Let’s assume that the engineers decided to monitor the vehicle speed

using a Watchdog. As previously mentioned, we have specified a grammar for most of the safety
patterns described by Douglass [13].

- Template: [Watchdog component] monitors [monitored architectural element] to check if [monitored aspect] is

(action) (threshold of measurement) [Timing Constraint].

- Example: [Watchdog component] monitors [computation Vehicle Speed component] to check if [vehicle speed] is
(updated) (not later than) [a cycle time of 100ms].

 Containment Safety Tactic: Let’s assume that the engineers decided to use homogeneous
redundancies of Wheel Rotation Speed Sensor and Rotation Speed Processor.

- Template: [Component], which is deployed to [Computing Node||Thread], have (n) homogeneous redundancy(ies),
which is(are) deployed to: [Computing nodes||Threads] [n .. n-1].

- Example: [Rotation Speed Processor], which is deployed to [DSC Control Unit], have (1) homogeneous redundancy,

which is deployed to: [DSC Control Unit].

We observed that safety concepts bases on the Safety Concepts Decomposition Pattern offer great
basis for safety engineers in identifying if all failure causes were properly safe-guarded. Another
positive aspect is about the compliance created between functional and safety concepts, which is a
valuable step towards safety concepts correctness. Another observed benefit is with respect to the
consistency improvement between safety concepts and architecture design, because the preliminary
architecture can be considered while the safety engineer are writing down the safety concept using the
parameterized templates as basis, and not, as usual, first defining the safety concepts, and only later
indicate which architecture element addresses them. In a sense, we observed improvements the overall

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

system specification process, because engineers can make early detection if any rearrangement in the
design is necessary, or if new architecture elements are required. Another positive aspect is that safety
engineers are comfortable to use it because they can keep writing the specifications textually, and also
can keep using the mechanisms they are used to for specifying safety concepts, because, in a nutshell,
we only indicate the elements to be considered in the specification, how they should be structured, and
suggests how the textual content should look like. Therefore, they can do it using well know modeling
mechanisms such as GSN and SCTs, and tools like MEDINI Analyze and PREEvision.

 Power Sliding Door Module System

«Safety Goal»
[Vehicle] shall [not permit] [door to be opened while the vehicle speed is in motion]

«Composite Functional Safety Requirement»
DSC Control Unit shall send accurate Vehicle Speed information to Power Sliding Door

Module

«Technical Safety Requirement»
Computation Vehicle Speed Component shall [actualize]
actual vehicle speed [exactly at] [a cycle time of 100 ms]

«Technical Safety Requirement»
Wheel rotation speed sensor shall [measure] wheel

rotation speed [with at least] 30 rad/min

«Detection Requirement»
It should be detected if Vehicle Speed is not

[actualized] [exactly at] a cycle of 100 ms

«Detection Requirement»
It should be detected if Wheel Rotation
Speed is not [measured] [with at least]

30rad/min

«Detection Safety Tactic»
[Watchdog] monitors if [actual vehicle

speed] is [actualized] [exactly at] [cycle of
100ms]

tags
Tactic = Failure Monitor with Watchdog

«Detection Safety Pattern»
[Frequency controller] verifies if [wheel

rotation speed] is [measured] [with
accuracy of at least] [30 rad/min]

tags
Tactic = Frequency Check

«Atomic Functional Safety Requirement»
The information about the actual vehicle speed should be

actualized with a cycle time of 100ms.

tags
Failure Classification = Service Timing
Violation = Timing Violation:Time to Execute Operation

«Atomic Functional Safety Requirement»
Wheel rotation speed should be measured with an

accuracy of at least 30rad/min

tags
Failure Classification = Service Value
Violation = Value Accuracy: Frequency Violation

«Containment Requirement»
Crosschecking detecting discrepancy by

comparing vehicle speed calculation results of
redundancies of computation Vehicle Speed

Component

«Fault Tolerance Requirement»
Detect and Handle [Timing Accuracy] violation of

actualization cycle of vehicle speed

«Fault Tolerance Requirement»
Detect and Handle [Value Accuracy] violation of

wheel rotation speed

«Containment Safety Tactic»
[Component Group], which is deployed to [Computing

Node||Thread], have [n] homogeneous redundancies, which are
deployed to: [Computing nodes||Threads] [n], [Computing

nodes||Threads] [n-1]

tags
Safety Pattern = Heterogeneous Redundancy with Cross-Checking

«Containment Safety Pattern»
[Voter component] element checks whether [1..* output

port] [1..*value] of [component] are equal to the [1..*
output ports] [1..*value] of the [redundant component]
- [Voter component] is deployed to [computing node]

- [component] is deployed to [comp

tags
Tactic = Voting

«Cause»
Wheel rotation speed is not measured

with proper accuracy

«Cause»
Vehicle speed is not actualized in

time

«Containment Requirement»
Voter component should decide on 3
homogeneous redundancies of Wheel

Rotation Speed Sensor

«is refined by»

«motivate»

«is addressed by»

«is refined by»«is refined by»

«motivate»

«is refined by»

«is addressed by»

«is refined by»«is refined by»
«is refined by»

«is addressed by»

«is refined by»«is refined by»

«is addressed by»

«motivate» «motivate»
«motivate»

«motivate»

Figure 7 - PSDM Safety Concepts specified with our approach.

7. FUTURE WORK AND CONCLUSIONS

This work was motivated by the lack of approaches for semi-formal hierarchical decomposition of
safety concepts and for the creation of traces to architectural elements while specifying safety
requirements using natural language. To fill this gap, we proposed a model-based formalization
technique for specifying safety concepts that supports safety engineers in creating precise traces to
architectural elements while specifying safety requirements using natural language. The approach
consists of a Safety Concept Decomposition Pattern and a Parameterized Safety Concepts
Specification Templates, with the former specifying the elements to be considered in a safety concept
specification and the latter specifying a grammar containing elements whose presence in textual

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

specifications of safety concepts is strongly recommended to ensure completeness and consistency.
This is our first step towards the realization of automated consistency and completeness checks of
safety concepts.

Acknowledgments

This work is supported by the Fraunhofer-Innovation Cluster Digitale Nutzfahrzeugtechnologie
(Digital Commercial Vehicle Technology), and by the Software Platform Embedded Systems "XT" -
SPES XT project. We would also like to thank Sonnhild Namingha for proofreading.

References

[1] International Organization for Standardization. “ISO/DIS 26262 - Road Vehicles – Functional
Safety”, Technical Committee 22 (ISO/TC 22), Geneva, Switzerland, 2011.

[2] J. Birch, R. Rivett, I. Habli, B. Bradshaw, J. Botham, D. Higham, P. Jesty, H. Monkhouse, and
R. Palin. “Safety Cases and Their Role in ISO 26262 Functional Safety Assessment”. Springer, In
Proceedings of 32nd SAFECOMP, 2013.

[3] Object Management Group. “UML profile for modeling QoS and FT characteristics and
mechanisms. Technical report, April 2008.

[4] International Organization for Standardization. “IEC 61508 - Functional safety of
electrical/electronic/programmable electronic safety-related systems”, The International
Electrotechnical Commission, Geneva, Switzerland, 1998.

[5] M. Hillenbrand, M. Heinz, K. D. Müller-Glaser, N. Adler, J. Matheis, and C. Reichmann. “An
approach for rapidly adapting the demands of ISO/DIS 26262 to electric/electronic architecture
modelling”. International Symposium on Rapid System Prototyping, 2010.

[6] I. Habli, I. Ibarra, R. Rivett, and T. Kelly. "Model-Based Assurance for Justifying Automotive
Functional Safety” SAE Technical Paper, 2010.

[7] E. Denney, G. Pai. “A Formal Basis for Safety Case Patterns”. Springer, In Proceedings of
32nd SAFECOMP, 2013.

[8] D. Domis, M. Forster, S. Kemmann, and M. Trapp. “Safety concept trees”. In Reliability and
Maintainability Symposium, 2009. RAMS 2009. Annual, pages 212 - 217, jan. 2009.

[9] D. Firesmith. “A Taxonomy of Safety-Related Requirements”, Software Engineering Institute
White Paper, 2004.

[10] W. Wu and T. Kelly, “Safety Tactics for Software Architecture Design”, in COMPSAC, 2004.

[11] P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey. 1994. “Towards integrated
safety analysis and design.” SIGAPP Appl. Comput. Rev. 2, 1 (March 1994), 21-32.
DOI=10.1145/381766.381770 http://doi.acm.org/10.1145/381766.381770

[12] A. Avizienis, J.-C. Laprie, B. Rendell and C. Landwehr, “Basic Concepts and Taxonomy of
Dependable and Secure Computing,” IEEE Trans. Dependable Secur. Comput., vol. 1, pp. 11--33, Jan
2004.

[13] B. P. Douglass. “Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems”. Addison-Wesley Longman Publishing Co., Inc., 2005, Boston, MA, USA.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

http://resources.sei.cmu.edu/library/author.cfm?authorID=4637

	Abstract: Despite the early adoption of ISO 26262 by the automotive industry, managing functional safety in the early phases of system development remains a challenge. One key problem is how to efficiently keep safety assurance artifacts up-to-date co...
	Keywords: Safety Concepts, Safety Requirements, Architecture Design, Traceability.
	1. INTRODUCTION
	2. ISO 26262 AND THE NOTION OF SAFETY CONCEPTS
	The Concept phase is where the following items are considered: (i) item definition, (ii) initiation of the safety lifecycle, (iii) hazard analysis and risk assessment, and (iv) the functional safety concept. The main item of interest for us in this ph...

	3. SAFETY CONCEPT SPECIFICATION IN PRACTICE
	To better understand these challenges, let us consider the example of a Power Sliding Door Module (PSDM) system adapted from [5]. We adapted the function network (cf. Figure 2) and the deployment view (cf. Figure 3) from [5], and created a data view (...
	i Passenger/driver request: The request to open the sliding door is triggered when the driver or passenger presses the Door Opener button (cf. Figure 2). This sends a signal to the Door Opener Request Processor, which is responsible for converting the...
	ii Vehicle Speed: To determine the vehicle speed (cf. Figure 4), first the wheel rotation speed is read by the Wheel Rotation Speed Sensor (cf. Figure 2), which then sends this information to the Wheel Rotation Speed Processor, which is responsible fo...
	Once the Open Door Computation component receives the open door request and the vehicle speed, it evaluates if the vehicle is at a speed that allows the door to be opened, which, according to the specification available in [5], is 15km/h. If the vehic...
	Let us assume that the safety engineers identified that if the vehicle speed is not updated to the PSDM system within 100ms, the safety of the passengers might be compromised, because they might be able to open the door while the vehicle is at a high ...
	4. RELATED WORK
	Summarizing, to the best of our knowledge, there is no other model-based approach that allows semi-formal hierarchical decomposition of functional and technical safety concepts, and that also guides the creation of traces to architectural elements fro...
	5. MODEL-BASED FORMALIZATION OF SAFETY CONCEPTS SUPPORTING THE USE OF NATURAL LANGUAGE
	In this section we present our approach to specify safety concepts, which consists of two core items: (i) the Safety Concept Decomposition Pattern, which is a structural decomposition of elements that we consider important to be in any safety concept ...
	To properly specify safety concepts with our approach, we assume that the following three sets of artifacts should be already in place: (i) the result of the Hazard and Risk analysis, (ii) the preliminary architecture, and (iii) the results of Failure...
	5.1. Safety Concept Decomposition Pattern

	ISO 26262 explicitly indicates the content of safety concept specifications, but it doesn’t specify a defined structure for them. What happens in practice is that each safety concept specification has a different structure, most likely based on the un...
	 Safety Goal: Top-level requirement resulted from the hazard and risk analysis assessment. For each hazardous event with an ASIL evaluated in the hazard analysis, a safety goal should be determined [1].
	 ASIL: Levels to specify the necessary requirements and safety measures to avoid unreasonable residual risks, with D representing the most stringent and A the least stringent level [1].
	 Failure Cause: Condition of a system (or parts of it) that motivates the existence of a safety requirement. It is usually identified when conducting a safety analysis to identify paths that can lead to a critical system failure. We adopted the conve...
	- The software itself: Incomplete or inaccurate specification, or incorrect design and implementation can cause unexpected behavior of the software.
	- Underlying hardware: Correct software can still misbehave because of unexpected behavior of the underlying hardware.
	- Environment: Also known as environment disturbances, causes can be originated outside the software and can be fed into the system in the form of inputs.
	 Failure mode class: Manner in which an element or an item fails [1]. We understand that a failure mode class is a higher level of abstraction that classifies failure causes, in order to enrich them semantically. Following the example of Wu and Kelly...
	- Service provision: Omission (expected event does not occur), Commission (spurious occurrence of event).
	- Service timing: Early (event occurs before time required), Late (event occurs after the time required).
	- Service value: Coarse incorrect (detectable incorrect value delivered), Subtle incorrect (undetectable incorrect value delivered).
	 Functional Safety Requirement (FSR): Specification of implementation independent safety measure, including its safety-related attributes [1]. We understand that it can express a Functional Detection Requirement (high level description of measures to...
	 Composite Functional Safety Requirement (CFSR): Functional Safety Requirement that has more than one failure cause that motivates its existence. i.e., cfsr ∈ CFSR: {FSR||FSR.cause ≥ 1}. CFSRs can be refined by other CFSRs, or by Atomic Functional Sa...
	 Atomic Functional Safety Requirement (AFSR): functional safety requirement that has only one failure cause that motivates its existence. i.e., afsr ∈ AFSR: {FSR||FSR.cause = 1}. AFSRs refine CFSRs that cannot be decomposed into finer grains anymore....
	 Technical Safety Requirement (TSR): Description of strategies to realize an Atomic Functional Safety Requirement [1].
	 Fault Avoidance Requirement: We adopted the definition of Laprie, and consider Fault Avoidance Requirements as a group of means that aim for systems free of faults, and comprises fault prevention and fault removal mechanisms [12].
	 Fault Tolerance Requirement: Description of means that allows “living” with systems that are susceptible to faults. [12].
	 Technical Detection Requirement: Description of how Functional Detection Requirements will be realized by elements of the architecture design.
	 Technical Containment Requirement: Description of how Functional Containment Requirements will be realized by elements of the technical architecture design. It describes means to take a system from a state containing errors and faults to a state wit...
	 Safety tactics: Architectural design decisions made to avoid or handle failures to which safety-critical systems are subject [10]. They become more concrete when they are realized by safety patterns indicating architectural elements (mainly componen...
	5.2. Parameterized Safety Concept Specification Templates
	Even though we do understand that the user should be free to write textual the safety concepts specifications, we believe that some guidelines can be useful to indicate items that must not be absent from the specification. Therefore, we have created P...
	 Safety Goal: [System || Component Group || Component || Computing Node] shall (avoid || not cause || not allow || not be || not || no) (harm).
	 Functional Detection Safety Requirement: The System shall detect (accidental harm | Safety incident | Hazard | Safety Risk). This template was reused from [9], and there it describes safety requirements of type Detection of Violation of Prevention.
	 Functional Containment Safety Requirement: When the System shall detects (accidental harm | Safety incident | Hazard | Safety Risk), then the system shall (List of Actions). This template was also reused from [9], and there it describes safety requi...
	 Technical Safety Requirement: The template for this element depends on the failure mode classification of the failure cause that motivates the existence of the Atomic Safety Requirement associated to the Technical Safety Requirement. The two possibl...
	- Service Value Failure Mode: [System || Component Group || Component || Computing Node] shall (perform action) [artifact affected by action] (Values threshold of measurement: within || exactly with || not exceed || not less than) [Data constraint].
	- Service Timing Failure Mode: [System || Component Group || Component || Computing Node] shall [perform action] [artifact affected by action] (timing threshold of measurement: within || before || after || exactly || no later than) [timing constraint].
	 Fault Tolerance Requirement: Detect and Handle (type of violation) violation of [artifact affected by action].
	 Technical Detection Requirement: It should be detected if [artifact affected by action] is not (action performed - past tense) (threshold of measurement) [Value Constraint||Timing Constraint].
	 Technical Containment Requirement: This element should be described as free text so the engineer can describe his strategy in detail. However, it is important to highlight that this description must reference architectural elements.
	 Safety Tactics: We have created specification templates for almost all the safety patterns described by Douglass [13], and examples are shown in Section 6.
	It is important to highlight that the elements of the Safety Concepts Decomposition Pattern doesn’t have associated parameterized templates are those that not necessarily have to reference architectural elements. However, the references can be created...
	To illustrate the instantiation of these parameterized templates, consider the example below, where a Technical Safety Requirement and a Fault Tolerance Requirement are specified for an Airbag System. The color coding is intended to make it easier to ...
	 Technical Safety Requirement:
	- Template: [System || Component Group || Component || Computing Node] shall (perform action) [artifact affected by action] (Values threshold of measurement: within || exactly with || not exceed || not less than) [Data constraint]
	- Example: [Front Acceleration sensor] shall (send) [Front sensed acceleration signal amplitude] (with at least) [0,56dB]
	 Fault Tolerance Requirement:
	- Template: Detect and Handle (type of violation) violation of [artifact affected by action]
	- Example: Detect and Handle (value range) violation of [front sensed acceleration signal amplitude]
	6. SPECIFYING SAFETY CONCEPTS FOR A POWER SLIDING DOOR MODULE WITH OUR APPROACH
	 Safety Goal: [Vehicle] shall (not allow) (door to be opened while the vehicle speed is in motion).

	 CFSR: Control Unit shall send accurate vehicle speed information to power sliding door module.
	 Failure Cause 1: Vehicle speed is not updated in time.
	 Failure Cause 2: Wheel vehicle speed is not measured with the proper accuracy.
	Note: Due to the lack of space, we will show the decomposition used to address only Failure Cause 1. The description of the items related to Failure Cause 2 can be seen in Figure 7.
	 Fault Tolerance Requirement: Detect and handle (timing accuracy) violation of [vehicle speed] updating.
	- Detection Requirement: It should be detected if [Vehicle Speed] is not (updated) (not later than) [a cycle time of 100 ms] at the [Computation Vehicle Speed component].
	 Containment Requirement: Redundancy - there should be a [redundant Wheel Rotation Speed Sensor] and a [redundant Rotation Speed Processor] that should substitute the [Wheel Rotation Speed Sensor] and [Rotation Speed Processor] if it is detected that...
	 Detection Safety Tactic: Let’s assume that the engineers decided to monitor the vehicle speed using a Watchdog. As previously mentioned, we have specified a grammar for most of the safety patterns described by Douglass [13].
	- Template: [Watchdog component] monitors [monitored architectural element] to check if [monitored aspect] is (action) (threshold of measurement) [Timing Constraint].
	- Example: [Watchdog component] monitors [computation Vehicle Speed component] to check if [vehicle speed] is (updated) (not later than) [a cycle time of 100ms].

	 Containment Safety Tactic: Let’s assume that the engineers decided to use homogeneous redundancies of Wheel Rotation Speed Sensor and Rotation Speed Processor.
	- Template: [Component], which is deployed to [Computing Node||Thread], have (n) homogeneous redundancy(ies), which is(are) deployed to: [Computing nodes||Threads] [n .. n-1].
	- Example: [Rotation Speed Processor], which is deployed to [DSC Control Unit], have (1) homogeneous redundancy, which is deployed to: [DSC Control Unit].

	We observed that safety concepts bases on the Safety Concepts Decomposition Pattern offer great basis for safety engineers in identifying if all failure causes were properly safe-guarded. Another positive aspect is about the compliance created between...
	7. FUTURE WORK AND CONCLUSIONS
	This work is supported by the Fraunhofer-Innovation Cluster Digitale Nutzfahrzeugtechnologie (Digital Commercial Vehicle Technology), and by the Software Platform Embedded Systems "XT" - SPES XT project. We would also like to thank Sonnhild Namingha f...

