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Abstract: This study analyzes the risk of severe fatal accidents within the full fossil energy chains 
causing five or more fatalities. The risk is quantified separately for OECD and non-OECD countries. 
In addition for the Coal chain, Chinese data are analyzed separately because it has been shown that 
data prior to 1994 were subject to strong underreporting. In order to assess the risk and its uncertainty, 
a Bayesian hierarchical model was applied. This allows yielding analytical functions for frequency and 
severity distributions. Furthermore, Bayesian data analysis inherently delivers a measure of a 
combination of epistemic and aleatory uncertainties, through the a priori distribution and likelihood 
function that compose the Bayes theorem. In this study, in order to reduce the epistemic uncertainty 
related to the subjective choice of the likelihood function, Bayesian Model Averaging (BMA) is 
applied. In BMA the final posterior distribution is a weighted combination of the posterior 
distributions assessed for different likelihood functions (models). The proposed approach provides a 
unified framework that comprehensively covers accident risks in energy chains, and allows calculating 
specific risk indicators, including their uncertainties, to be used in a holistic evaluation of energy 
technologies. 
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1.  INTRODUCTION 
Risk assessment of severe accidents in the energy sector is an important aspect that contributes to 
improve safety performance of technologies, but is also essential in the broader context of 
sustainability, energy security and policy formulation by decision makers. Accidents in the energy 
sector are not only occurring in the production phase, but along the entire energy chain (e.g., [1]). 
Therefore, a comprehensive analytical framework is needed (e.g., [2]).  
 
The classical approach to assess the risk of severe accidents in fossil energy chains is based on the use 
of metrics such as aggregated risk indicators focusing on human health impacts, i.e., fatality rates, or 
frequency-consequence curves (e.g., [1], [2]). However, when dealing with risk, uncertainty estimation 
is of great importance in order to take into account possible random fluctuations, for example due to 
the lack of data. Furthermore, uncertainty levels cannot be fully addressed using the aforementioned 
standard approach (e.g., [3]). 
 
In this study, the risk and its uncertainty levels are assessed through a Bayesian Hierarchical model. In 
this way separate analytical functions for frequency and severity distributions can be calculated. In 
Bayesian data analysis, the posterior distribution is given by the product of an a priori distribution, 
describing how the data are distributed before introducing them into the analysis, and a likelihood 
function (e.g., [4]). The former defines the lack of knowledge and thus is intrinsically related to the 
epistemic uncertainties. The likelihood function is one of the fundamental parts of the Bayes theorem 
(e.g., [4]). It describes the randomness of the data and thus defines the aleatory uncertainties. The 
likelihood function is commonly defined following expert judgment and/or is selected following 
scientific community agreement. Therefore, besides describing the aleatory uncertainty, the likelihood 
function is as well a source of epistemic uncertainty due to subjectivity involved in its choice.  
 
The concept of Bayesian Model Averaging (BMA) has been proposed in order to assess posterior 
distributions and to increase their robustness by considering a set of possible models that could 
describe a dataset (e.g., [5]). Therefore, BMA can serve as a tool to reduce the subjectivity in the 



 

choice of the model used as likelihood function for the Bayesian analysis. In BMA, the posterior 
distribution of the parameters of interest is given by the sum of the product of the models belonging to 
the model space, and the corresponding weights for these models. BMA has been used in different 
scientific fields, such as for example for dose-response risk assessment (e.g., [6]). Moreover, different 
methods have been proposed to estimate the weight of each model belonging to the model space to the 
final posterior distribution, for example using the Bayesian Information Criterion (BIC) (e.g., [7]), or 
Markov Chain Monte Carlo methods (e.g., [8]). 
 
In this study, BMA is applied to the severity distributions in the risk assessment. The BIC method is 
used to a set of possible models common in hazard and risk assessment as well as survival analysis 
(e.g., [9], [10]). Therefore, the final posterior distribution for the parameter of interest, e.g., fatalities, 
is averaged over the entire model space. The final result is a severity distribution where both aleatory, 
from the likelihood functions, and epistemic uncertainties, from both a priori distribution and 
likelihood functions, are taken into account. Finally, the estimation of frequencies in the risk 
assessment is modeled following a common Bayesian analysis, since they can be described by a 
Poissonian distribution.  
 
The above-described model is applied to the energy sector, and specifically to assess accident risks in 
fossil energy chains. The current analysis covers severe (≥5 fatalities) accidents in fossil (coal, oil, 
natural gas) energy chains for the years 1970-2008, which are contained in PSI’s Energy-related 
Severe Accident Database (ENSAD). First, various risk indicators for different energy chains and 
country groups (e.g., OECD, non-OECD) are calculated. Second, results from the BMA and the 
standard approach are compared. Finally, a comparative evaluation for average and extreme risk is 
undertaken across energy chains and country groups.  
 
2.  DATA 
2.1 ENSAD database 
The ENergy-related Severe Accidents Database (ENSAD) (e.g., [11]) comprehensively covers energy 
related severe accidents worldwide. There exist numerous databases that look at accidents related to 
various industrial activities (e.g. FACTS online, OSH Update), but in contrast to ENSAD none of 
them is clearly focused on accidents attributable to the energy sector. Furthermore, ENSAD takes a 
full-chain approach because accidents can occur at all stages of an energy chain and not only at the 
actual power generation step. In ENSAD, data on all energy-related accidents is collected and 
classified into energy chains and activities within those chains. In addition, information on location, 
accident type, and different types of consequences (e.g. human health, environmental and economic 
impacts) is coded for to achieve a comprehensive global coverage of severe accidents. Finally, the 
accidents and severity reported in ENSAD for fossil chains are divided into three major groups, 
namely the Coal (incl. Lignite) chain, the Oil chain and the Natural Gas chain. 
 
ENSAD has been developed using a wide variety of commercial and non-commercial information 
sources, ranging from specialized databases to technical reports, journal and newspaper articles, 
websites, etc. In the literature no commonly accepted definition can be found of what constitutes a so-
called severe accident (e.g., [1]). The database ENSAD uses seven criteria to distinguish between 
severe and smaller accidents (e.g., [2]). Whenever one or more of the following consequences is met, 
an accident is considered to be severe: 
 

• at least 5 fatalities or 
• at least 10 injured or 
• at least 200 evacuees or 
• extensive ban on consumption of food or 
• releases of hydrocarbons exceeding 10,000 (metric) tons or 
• enforced cleanup of land and water over an area of at least 25 km2 or 
• economic loss of at least 5 million USD (2000) 

 



 

We considered the energy-related accidents for the entire chain (from exploration and extraction 
through processing to end use) of each group.  
 
2.2 Frequency and Severity 
Risk can be decomposed into the product of the frequency and severity. The number of accidents per 
year gives the frequency, while severity measures the extent of the consequences of each accident. In 
this study, the number of fatalities describes severity. The reason for this choice is that fatalities 
generally comprise the most reliable indicator with regard to the completeness and accuracy of the 
data (e.g., [1], [12]). Furthermore, fatality information is superior to injured or evacuated persons 
information because often the severity of an injury or the duration of an evacuation is not reported 
(e.g., [1]).  
 
Frequency and fatality distributions in ENSAD exhibit very different statistical behavior in each 
energy chain (Figure 1). The frequency distribution is influenced by temporal trends within each chain 
as well as country groups. These trends are commonly related to technological and regulatory 
differences and changes. 
 
The fatality distribution, on the other hand, follows a very different pattern, and stretches over a broad 
range (Figure 1). The severity distribution is influenced by a number of parameters such as the 
material involved in the accident or the different products and the amount of material present, or the 
number of people in the vicinity of an accident. In addition, the data set is composed of accidents 
under a large range of different circumstances, meaning that we can thus assume also a large number 
of drivers for the risk exists (e.g., [3]). 

 
2.3 Country Aggregates 
Comparative results can be provided at the level of individual countries or for different country 
aggregates [12]. Based on the substantial difference in management, regulatory frameworks and 
general safety culture between industrial countries and developing ones, different energy chains are 

a) 

Figure 1 Number of accidents per year (Frequency) and number of accidents per fatalities 
(Consequence) for Coal (a and b), Coal China 94-08 (c and d), Natural Gas (e and f) and Oil (g 

and h). 

b) 

c) d) 

e) f) 

g) h) 



 

assigned to two major country groups, namely OECD and non-OECD. In addition for the Coal chain, 
Chinese data are analyzed separately because it has been shown that data prior to 1994 are subjected to 
strong underreporting (e.g., [16]). Furthermore, due to different data completeness for Chinese coal in 
1994-1999 and 2000-2012, we subdivided the dataset into two subgroups related to the observation 
period. The summary of severe accidents for each substance energy chain and country group is shown 
in Table 1. 
 

Table 1 Overview of the analyzed subsets per energy chain and country group for the years 
1970–2008. Numbers of severe (≥ 5 fatalities) accidents, corresponding fatalities, and production 

used for normalization are given.  

Energy 
Chain Country Group Number of 

Accident 
Number of 
Fatalities 

Production 
(GWeyr) 

Coal 

OECD 87 2259 18792 
non-OECD w/o 

China 162 5788 10071 

China 1994-1999 818 11302 1908 
China 2000-2008 1214 15750 7459 

Oil OECD 181 3430 36606 
non-OECD 350 19334 20524 

Natural Gas OECD 109 1258 17504 
non-OECD 77 1549 13459 

 
2.4 Normalization 
To derive a comparable risk measure of accident frequency across energy chains and country groups, 
the accident frequency should be normalized to a relevant unit of energy. Therefore, the accident 
frequency is normalized by the amount of production for each energy chain in GWeyr (Table 1). The 
Gigawatt-electric-year (GWeyr) is chosen because large individual plants have capacities of the order 
of 1 GW of electrical output (GWe), e.g., [2]. This makes GWeyr a natural unit to use when presenting 
normalized indicators generated within technology assessment. Furthermore, since we are dealing with 
data collected for fossil energy chains only, the thermal energy is converted to an equivalent electrical 
output using a generic efficiency factor of 0.35 (e.g., [2]). 
 
3.  METHOD 
3.1 Bayesian Analysis  
Bayesian inference is an alternative to the classical statistical inference (e.g., [4]). In the latter, also 
known as frequentist inference, only repeatable events have probabilities, while in the Bayesian 
inference, probability simply describes both epistemic and aleatory uncertainty (e.g., [4]). In fact, 
Bayesian analysis combines the information in the data represented by the entire likelihood function 
with prior knowledge about the parameters, which may come from other data sets or a modeler’s 
experience and physical intuition [9]. Furthermore, the a priori distribution describes what is known 
before observing any data (e.g., [4]). Therefore, this distribution mainly contributes to the lack of 
knowledge and thus describes the epistemic uncertainty. The likelihood describes the process giving 
rise to data in terms of unknown parameter (e.g., [4]). It contributes to the random variability of the 
unknown parameter, and thus describes the aleatory uncertainty. Parameter estimation is made through 
the posterior distribution, which is computed using Bayes’ Theorem: 
 
    𝒑 𝛉     𝐲) = 𝑳 𝐲;𝛉 𝒑 𝛉

𝑳 𝐲;𝛉 𝒑 𝛉 𝐝𝛉
         (1) 

 
where 𝒑(𝛉  |  𝐲) is the posterior distribution for the parameter 𝛉 given the observed data y, 𝑳 𝐲;𝛉  is 
the likelihood function, and 𝒑(𝛉) is the a priori distribution of the parameter θ. The denominator is a 
normalizing constant that scales the posterior so that the area under the posterior probability 
distribution function equals one, i.e. make it “proper” meaning that it must converge (e.g., [4]). The 
main issue in equation (1) is that computing the integral may not be easy in cases when the parameter 
vector θ  is large (e.g., [9]). In order to overcome this issue, Markov Chain Monte Carlo (MCMC) 



 

methods are commonly used (e.g., [13]). In fact, MCMC algorithm samples values of the parameters 
from the posterior distribution without computing the normalizing constant (e.g., [14]). Therefore, 
equation (1) can be written as  

     𝑝 𝛉     𝐲) ∝ 𝐿(𝐲;𝛉)𝑝(𝛉)         (2)  

Among different type of MCMC algorithms (e.g., [13]), in this study the MCMC Gibbs algorithm is 
used in the sampling of the posterior distribution (e.g., [14]). This choice is made in order to avoid 
possible issues related to the incorrect choice of the jumping distribution, which is used for sampling 
the posterior in the other widely applied sampler, the Metropolis–Hastings algorithm (e.g., [13]). 

3.2 Bayesian Model Averaging 
The likelihood function in equation (2) is one of the fundamental parts of the Bayes theorem (e.g., 
[4]). It describes the probability of the evidence, i.e. the data, given the unknown parameter 𝛉. The 
likelihood function is commonly defined following expert judgment and/or selected following 
scientific community agreement (e.g., [15], [3]). Therefore, besides describing the aleatory 
uncertainty, the likelihood function is source of epistemic uncertainty due to the level of subjectivity 
added in the choice of it. In this context, in order to reduce uncertainties related to the subjective 
choice of the likelihood, a possible solution, known as Bayesian Model Averaging (BMA), is given by 
[5] and modified by others, e.g., [8]. 
 
The basic idea of BMA is that the distribution of some interested quantity of a model, such as fatalities 
in our case, is derived over some space of possible models instead of only one, e.g., [5]. In other 
words, suppose that M is the set of all possible models of interest M, that is M ∈ M. If 𝛉 is the 
parameter of interest, and the likelihood corresponding to the model Mj ∈ M is given by 𝒇  (𝐲|𝛉,𝐌𝐣), 
then the formal Bayesian calculation, as given in equation (2), that summarizes the inference about 𝛉 
is given by, e.g. [5]: 
 
    𝒑 𝛉     𝐲) =    𝒑 𝛉     𝐲,𝐌𝐣)  𝒑 𝐌𝐣     𝐲)

𝑱
𝒋!𝟏        (3) 

 
where 𝒑 𝛉     𝐲,𝐌𝐣) is the posterior density under Mj and 𝒑 𝐌𝐣     𝐲) is the posterior probability of Mj. 
The former can be rewritten as:     
 
    𝒑 𝛉     𝐲,𝐌𝐣) ∝   𝒇   𝐲 𝛉,𝐌𝐣 𝒑 𝛉   𝐌𝐣)         (4) 
 
where 𝒑 𝛉   𝐌𝐣) is the a priori density under Mj. Equation (4) is describing a Bayesian analysis. In 
fact, it has the same structure as equation (2) in case of the sampling of posterior distribution through 
MCMC algorithms (section 3.1). Therefore, equation (4) in this study is computed through the MCMC 
Gibbs sampler.  
 
In Equation (3), 𝒑 𝐌𝐣     𝐲) is the posterior probability of Mj, also known as posterior model weight. In 
fact, it describes the weight of the model Mj with respect to all the others belonging to the model space 
M in the posterior distribution of the parameter under interests: 
 
    𝒑 𝐌𝐣     𝐲) =

𝒎 𝐲     𝐌𝐣)𝒑(𝐌𝐣)  

𝒎 𝐲     𝐌𝐭)𝒑(𝐌𝐭)  
𝑱
𝒕!𝟏

       (5) 

 
where 𝒑(𝐌𝐣) is the prior probability of the j-th model in the model space reflecting the expert beliefs 
in the relative correctness of this model. A common choice is 𝒑  (𝐌𝐣) = 1/J, with j = 1, …, J, which 
means that each model considered is equally likely before the data are observed. Furthermore, 
𝒎 𝐲     𝐌𝐣) is the marginal density of the observations under Mj, e.g., [6], that is, the probability 
computed by integrating the likelihood multiplied by the prior distribution of the parameters over the 
parameter space: 



 

 
    𝒎 𝐲   𝐌𝐣) =    𝒇   𝐲     𝛉,𝐌𝐣)𝒑 𝛉     𝐌𝐣)      (6) 
 
Equation (6) is similar to the integral in equation (1), except that the model itself becomes a variable 
of the problem. Therefore, the integral in equation (6) can be difficult to compute, because a closed 
form might not be always available. In order to overcome this issue, researchers proposed different 
methods, from the use of Bayesian Information Criterion (BIC) (e.g., [6]) to MCMC algorithms (e.g., 
[8]). In this study, the former method is employed to estimate the posterior model weight 𝒑 𝐌𝐣     𝐲), 
e.g., [10].  
 
3.2.1 BIC Method 
The Bayesian Information Criterion has been proposed by researchers to provide an approximation of 
𝒑 𝐌𝐣     𝐲), e.g., [8]. Such an approximation is adequate when a non-informative prior is assumed over 
the model space, e.g.,[10]. In fact, based on equation (1), if the prior is non-informative, the posterior 
distribution is strongly related to the likelihood function (𝒑 𝛉     𝐲)  ~  𝑳   𝛉;   𝐲 / 𝑳   𝛉;   𝐲 𝒅𝛉). Thus, 
the introduction of the a priori distribution, 𝒑 𝛉     𝐌𝐣), in equation (6) can be avoided. Under the 
aforementioned conditions, it has been shown, e.g., [8], that the posterior model weight can be 
described in terms of BIC as follow: 
 
     𝒑 𝐌𝐣     𝐲) =   

!"#(!!.!  !"#!)

!"#(!!.!  !"#!)
!
!!!

       (7) 

 
where 𝐵𝐼𝐶! =   −2L! +   𝑝! log𝑁. N is the sample size of the training set, p is the total number of 
parameters and L is the log-likelihood. Moreover, the lower BIC score the better the model is fitting 
the dataset. 
 
4 APPLICATION TO THE DATA 
4.1 Frequency 
Frequency denotes the number of accidents per year (Figure 1). Essentially in the ENSAD database, 
accidents can be considered rare, independent events so that the frequency can be modeled as a 
Poisson distribution. Therefore, the frequency is modeled applying the common Bayesian procedure 
described in section 3.1. In equation (2), the likelihood is described by the Poisson model, while the a 
priori distribution for the parameter of interest, the frequency rate 𝜆, is set to a non-informative, very 
broad Γ distribution (𝜆  ~  Γ  (𝛼 = 0.001,𝛽 = 0.001), with 𝛼 and 𝛽 describing the shape and rate of the 
distribution, respectively). Thus, the posterior distribution would be mainly influenced by the data, 
since the a priori distributions are weak (e.g., [3]).  
 
The MCMC algorithm is run for 30,000 iterations, following a burn-in of 1,000 updates. Furthermore, 
the latter is also used to train the model. According to the Gelman-Rubin diagnostic (e.g., [16]) the 
simulated chains converged adequately in the MCMC practice implemented in this study. Once the 
posterior distribution for the mean frequency is estimated, it is normalized by the corresponding 
energy production in GWeyr (Table 1). 
 
4.2 Severity  
Severity measures the extent of the consequences of each accident (Figure 1). The fatality distribution 
is right-skewed (skewness > 0) meaning that most of the accidents are located at the left side of the 
mean, with catastrophic (extreme) events located to the right of the distribution. A unique model 
possibly describing the fatality distribution is difficult to establish, since different probability 
distribution functions exhibit right skewness. Therefore, in order to model the fatality distribution, the 
BMA method is applied (section 3.2).  
 
In this study, the model space is arranged by a group of possible right skewed models that are 
commonly used in hazard, risk assessment and survival analysis (e.g., [9], [10]). Furthermore, only 
models described by a maximum of three parameters (location, shape and scale) are considered. This 



 

choice is made in order to avoid overfitting due to a high number of parameters in the model. The 
models used are shown in Table 2. 
 
According to the BIC method, the posterior model weight for the BMA is estimated for all energy 
chains disaggregated by country groups. Table 2 shows that in all considered datasets, the same two 
models described the data best, meaning they had the lowest BIC scores. Therefore, the Inverse 
Gaussian (IG) and the Lognormal (LOGNO) distributions are used to model all the datasets. In 
addition, in case of Coal China 1994-1999, the Weibull distribution (weight = 0.01) has also to be 
considered in the assessment of the posterior distribution.  
 

Table 2 Summary of goodness of fit (BIC score) and relative posterior model weight (Weight) 
for the fatality distributions collected for different fossil energy chains disaggregated by country 

groups. 

Distributions 
Coal 

China 00-08 China 94-99 non-OECD w/o China OECD 
BIC Weight BIC Weight BIC Weight BIC Weight 

Logistic 624 0.00 506 0.00 160 0.00 293 0.00 
Reverse 
Gumbel 588 0.00 481 0.00 143 0.00 264 0.00 

Generalized 
Pareto 416 0.00 349 0.00 152 0.00 245 0.00 

Lognormal 406 0.09 336 0.97 124 0.30 216 0.05 
Weibull 424 0.00 346 0.01 139 0.00 238 0.00 
Inverse 

Gaussian 402 0.91 344 0.02 122 0.70 210 0.95 

 

Distributions 
Natural Gas Oil 

non-OECD OECD non-OECD OECD 
BIC Weight BIC Weight BIC Weight BIC Weight 

Logistic 159 0.00 135 0.00 264 0.00 507 0.00 
Reverse 
Gumbel 147 0.00 124 0.00 242 0.00 466 0.00 

Generalized 
Pareto 119 0.00 116 0.00 205 0.00 400 0.00 

Lognormal 113 0.08 105 0.22 189 0.13 379 0.01 
Weibull 119 0.00 113 0.00 205 0.00 408 0.00 
Inverse 

Gaussian 107 0.92 102 0.78 185 0.87 369 0.99 

 
Once the posterior model weight is estimated (Table 2), the MCMC algorithm is used to assess the 
posterior distribution, for each model, of the parameters of interest, namely the expected value and the 
expected extreme value. According to the BIC method applied to BMA, non-informative, very broad 
prior distributions have to be defined e.g., [8]. For the location parameter (𝜇) the prior is defined as a 
normal distribution with mean 0 and standard deviation 0.01. For the shape parameter (𝜎) the prior is 
defined as a Γ distribution with shape and rate both equal to 0.001. Finally, for distributions described 
by three parameters, such as the Weibull distribution, the scale is defined by a Γ distribution with 
shape and rate both equal to 0.001.  
 
Finally, for each energy chain and country group, the posterior distribution is calculated according to 
equation (3). Then for each model with posterior model weight > 0 (see Table 2), the posterior 
distribution is assessed using an MCMC Gibbs sampler, e.g., [14]. The MCMC algorithm is run for 
100,000 iterations, following a burn-in of 10.000 updates. Furthermore, the latter is also used to train 
the model. According to the Gelman-Rubin diagnostic (e.g., [16]) the simulated chains converged 
adequately in the MCMC practice implemented in this study. The final posterior distribution is then 



 

evaluated as the sum of the weighted posterior distributions associated to the different models 
(equation (3)). 
 
5 RESULTS  
The aforementioned models allow us to compare frequencies and severity distribution as well as the 
total risk, being the product of the two components, between energy chains and country groups 
(OECD and non-OECD). For each parameter, the mean and the 5 and 95% quantiles are extracted 
from the posterior distribution. 
 
5.1 Frequency 
Figure 2 shows the average accident frequency per GWeyr over the period 1970-2008 for all fossil 
energy chains, and OECD and non-OECD countries. In addition for the Coal chain, Chinese data are 
analysed separately because it has been shown that data prior to 1994 were subjected to strong 
underreporting (e.g., [16]).  
 
The normalized accident frequency is clearly highest for the Chinese coal chain. However, a 
comparison of the periods 1994-1999 and 2000-2008 indicates that the frequency is decreasing, and 
thus slowly approaching other non-OECD countries. This result could be possibly explained by the 
fact that the Chinese government, in the last decade, undertook a large effort to close small private 
mines in order to move the entire production to large mines, which are under the safety and regulatory 
policy of the government. Consequently, Coal china should be treated separately at least with regards 
to analysis of accident frequency. Finally, accident frequencies are generally lower in OECD than non-
OECD countries for the coal and oil chains, whereas for natural gas no significant difference is found. 
The latter could be possibly explained by the lack of data for both OECD and non-OECD country 
groups. In fact, as shown in Figure 1e, in the natural gas energy chain fewer accidents per year 
happened with respect to oil and coal energy chains (Figure 1a, c, g).  

 
5.2 Severity 
Figure 3 shows the mean and 5-95% error bars for the expected fatalities per accidents as well as the 
number of fatalities exceeded in 1% of all accidents for various fossil energy chain and country group 
combinations. Additionally, the figure includes the contribution of each posterior distribution to the 
final BMA, described by the mean and 5% and 95% quantiles. Overall, the inverse Gaussian (IG) 
model was the dominant contributor to the final result in most of the cases (Table 2), except for Coal 
China 94-99 where it was only 2%. In the case of fatalities exceeded in 1% of accidents, the IG model 
shows a very broad uncertainty range compared to the lognormal and Weibull models. The same effect 

Figure 2 Mean frequencies (accidents per GWeyr), 5% and 
95% of the posterior distribution, averaged over time. 
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is to a lesser extent also visible for Coal China 00-08, although IG replaces LOGNO as the dominant 
contributor. This effect could be possibly related to the lack of events in the tail of the historical 
distribution of the accidents (Figure 1d). In fact, in case of Coal China 94-99, all events are clustered 
in the range 5-50 fatalities, with only a data point in the tail at 114 fatalities. Moreover, in case of Coal 
China 00-08, the maximum fatality is twice as big as the time period 94-99. However, the fatality 
distribution is similar to the ones for oil, natural gas and coal without China, where more than one 
observation is located in the tail of the distribution. This lack of data could cause large fluctuations in 
the inverse Gaussian tail, since IG needs relative high probability, meaning number of observations, in 
the tail in order to be able to model it (e.g., [17]). Therefore, the large fluctuations would increase the 
randomness in modeling the tail of the distribution and, thus, increase the aleatory uncertainty. 
 

For the expected fatalities per accident (upper panel in Figure 3), the final BMA shows no statistically 
significant differences between different energy chains and country groups, except in the cases of oil 
non-OECD and Coal energy chains. In these two cases the expected fatalities per accident are about 
twice as high for non-OECD compared to OECD countries. Concerning natural gas, similar to the 
frequency case, there is no significant difference between OECD and non-OECD country groups. 
However, in the latter, the shape of the major contributor’s distribution (IG) clearly affects the final 
result. In fact, the posterior distribution of the expected value exhibits a long tail, resulting in large 
values at the 95% quantile. It is interestingly in the case of coal China that both time ranges taken into 
account are not significantly different with respect to other considered energy chains. However, the 
mean number of expected fatalities is larger for coal China 2000-2008 than 1994-1999. This could be 
explained by the fact that moving the production from small private mines to big mines, as was done 
by the Chinese government in the last decade, the number of accidents (Figure 2) could be reduced, 
but at the same time the potential consequences can be more severe due to the larger number of 
workers present in these mines.  
 
Overall, the aforementioned behaviour for the number of expected fatalities well described the 
behaviour of the number of fatalities exceeded in 1% of the total accidents (lower panel in Figure 3). 

Figure 3 Mean, 5% and 95% quantiles for all the energy chains and country groups analysed. 
For each case, the BMA (AVERAGE) result is shown for the various distributions including 

their percent contribution or weight). Results are shown for the expected fatalities and fatalities 
exceeded in 1% of all accidents 
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However, the main differences are related to the large uncertainty in Coal China 00-08 and to the 
slightly similar behaviour of Coal non-OECD without China with respect to the other cases. The 
former can be possibly described by the increase of randomness in modelling the tail of the inverse 
Gaussian distribution due to the presence of a large number of events in the tail of the historical 
observations (Figure 1). Therefore, these would increase the aleatory uncertainty and, thus, affect the 
95% quantile of the posterior distribution. 
 
5.3 Risk Indicators: Mean and Exceedance 
By definition, risk is the product of the frequency and severity. In order to compare the risk between 
different energy chains and country groups, two risk indicators are used in this study. The first one 
addresses the mean risk and is expressed as the expected number of fatalities per accident. The second 
one represents the extreme risk, defined by the threshold exceeded for a specific return frequency, and 
is given by the total number of fatalities exceeded at 1% frequency per accident (e.g., [5]). Table 3 
summarizes the results for these risk indicators. In addition, results from the standard approach, non-
normalized mean and 1% exceedance per accident based on frequency-consequence curves, are also 
shown in order to compare the results. 
 
Generally, the results for the mean aggregate indicators show a good accordance between BMA and 
the standard approach. The main difference concerns the Oil non-OECD case. This could be explained 
by the fact that the historical observations are distributed with a very long tail (see Figure 1), due to an 
extreme event happened in 1987 in the Philippines, where the tanker Victor collided with the Ferry 
Dona Paz resulting in 4386 fatalities (e.g., [1]). Such extreme events can have a strong impact on the 
mean value in the case of the standard approach, resulting in a large difference to the expected value in 
BMA, where posterior distributions are more resistant to outliers (e.g., [6]). In addition, the 5 and 95% 
quantiles are significantly different between the standard approach and the BMA model. This can be 
explained by the fact that in the former case no uncertainty analysis is included, resulting in a broad 
range in the entire fatality space of the dataset, while in BMA both aleatory and epistemic 
uncertainties are modeled (e.g., [7]). 
 

Table 3 Results for the full risk, expected fatalities per accident and 1% exceedances per 
accident. Each value is given by the mean with 5 and 95% intervals. In addition, the mean and 

1% exceedance is calculated for frequency and production level in the time range 1970-2008 
following the standard approach. 

 
For the risk indicator 1% exceedance per accident, the comparison between the BMA and standard 
approach results shows a different behavior for the 5 and 95% quantiles due to the fact that in the 
second case no uncertainty analysis is assessed. In case of the average, the results differ in all the 
cases. In most of them the average values estimated using the standard approach are lower than the 
modeled extreme. This is related to the fact that a significant number of the historical observations 
have small consequences. Furthermore, they compensate the presence of few data points, such as the 
extreme value, resulting in a shift of all the quantiles towards small number of fatalities. Therefore, the 
value for 1% exceedances is close to the mean of the distribution, resulting in a different value with 

Country Group 
BMA Model Standard Approach 

Mean per Accident 1% Exceedance 
per Accident 

Mean per 
Accident  

1% Exceedance 
per Accident 

Coal China 00-08 57(45; 73) 222(89; 482) 55(8; 124) 60(5; 211) 
Coal China 94-99 41(34; 50) 112(84; 153) 39(8; 88) 44(9; 112) 

Coal non-OECD w/o 
China 71(54; 96) 191(100; 357) 67(8; 199) 183(120; 413) 

Coal OECD 41(31; 56) 105(47; 217) 39(7; 93) 123(29; 231) 
NG non-OECD 42(28; 80) 101(34; 228) 38(6; 97) 88(81; 215) 

NG OECD 29(20; 43) 58(33; 106) 26(6; 87) 37(10; 104) 
Oil non-OECD 124(85; 180) 439(291; 645) 173(9; 554) 419(28; 3812) 

Oil OECD 47(35; 65) 102(46; 206) 44(7; 139) 48(37; 226) 



 

respect to the BMA result, which is accounting for the uncertainty and the outliers that strongly affect 
the standard approach. In cases where the standard approach shows larger averages compared to 
BMA, the former’s results is strongly affected by the presence of outliers. These extreme values 
strongly affect, in terms of number, the distribution, shifting the higher quantiles toward them. This 
results in a larger value of the fatalities exceeding 1% of accidents in the standard approach with 
respect to BMA. In fact, in the latter, the posterior distribution is resistant to outliers (e.g., [6]), while 
in case of the standard approach the result is strongly affected by them.   
 
In Figure 4 the visualization of the risk is shown for the average risk (Figure 4a) and for the risk of 
extreme events (Figure 4b). The overall highest risk is found for coal China 94-99 with an expected 
number of 41 fatalities per accident at current consumption levels and a 1% probability that an 
accident with more than 112 fatalities takes place. However, as described above, this result is different 
from all other energy chains and country groups due to its much larger historical dataset than in any 
other case (e.g., [16]). Furthermore, in all other cases, Oil non-OECD clearly shows the highest risk. 
In fact for Oil non-OECD 124 fatalities are expected per year at current consumption levels, and at a 
1% probability per year an accident with more than 439 fatalities is expected. It is important to note 
that the result for Coal non-OECD w/o China in terms of number of fatalities or fatalities exceeding 
1% of the accidents is comparable with Coal China. However, based on the frequency it is not, since 
in case of China, many more accidents occurred. Overall, Natural gas is the least risky energy chain 
and, more specifically, the Natural gas OECD group performs best. Finally, OECD generally exhibits 
lower risk levels than non-OECD, and even more pronounced than coal China. 

 
6 CONCLUSIONS 
This study presented a first-of-its-kind implementation of the Bayesian Model Averaging (BMA) 
method in a comparative risk assessment framework to comprehensively quantify the risk of severe 
accidents in fossil energy chains. This framework allows estimating uncertainty and dealing with lack 
of data and lack of knowledge by averaging the posterior distribution over a pre-defined model space. 
This “top down” approach can also be useful to complement conventional, detailed “bottom-up” 
models of risk quantification that are conducted for individual plants with specific physical processing 
and site conditions. Therefore, the proposed approach provides a unified framework that 
comprehensively covers accident risks in energy chains, and allows estimating specific risk indicators, 
including their uncertainties. This information provides an essential element in a holistic sustainability 
and energy security evaluation of energy technologies. The overall risk is found to be highest in Coal 
China for the time range 94-99. Among Coal China, non-OECD country groups for all energy chains 
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Figure 4 a) Mean number of fatalities per severe accident versus frequency of severe accidents 
per GWeyr. b) Fatalities exceeded in 1% of accidents versus total accident frequency per 

GWeyr. 



 

show higher risk in terms of expected number of fatalities per accident as well as for extreme cases. 
Furthermore, results show that Natural gas is the least risky energy chain. In future work based on the 
database ENSAD, both the scope of this model will be expanded towards incorporating other types of 
consequences (e.g. injured) and other energy chains (e.g. hydropower), and the resolution of risk will 
be increased, that is, to differentiate the risk for more activities or regions. 
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