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Abstract: This paper presents the implementation of Bayesian inference on Quick Access Recorder 

data for parameter estimation purpose. Posterior density is sampled by employing Markov Chain Monte 

Carlo method. The reason for employing the Bayesian inference, instead of classical method such as 

Maximum Likelihood is because the data used in this paper has more uncertainties than the data obtained 

from a flight testing. These uncertainties come from the facts that Quick Access Recorder data obtained 

from untailored flight maneuvers, variables are measured/recorded at low and different sampling rates, 

control inputs such as elevator, rudder, aileron are not optimized, and flight is performed based on daily 

operational activities (wind and turbulence might disturb the measured variables). Results show that this 

approach is capable of capturing the uncertainties in the data since the estimated parameters are 

presented in the distribution forms. The flight data used as a case study are obtained from Airbus 320 

Quick Access Recorder device. Some parameters to be estimated in this study consist of thrust and the 

effect of spoiler and flap deflection on lift and drag coefficient during approach phase.   
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1.  INTRODUCTION 
 

Flight safety is one main issue in aviation area. Many efforts are conducted to improve safety level both 

from aircraft design and operational side. From operational point of view, airlines are interested in 

improving safety by utilizing flight data which are recorded during daily operational flight. The flight 

data called Quick Access Recorder (QAR) data is monitored or analyzed by flight safety crew and the 

result will be given to the related parties as a feedback. To deal with huge daily flight data, the flight 

safety department is provided with Flight Data Monitoring (FDM) program which is available 

commercially. These FDM programs work based on recorded parameter, analytical, and simple 

computation only. For instance, if there is a runway overrun incident occur, some possible parameters 

to investigate are spoiler deployment, thrust reverser, brakes – are they working properly or not?, and 

other related contributing factors to the incident (Figure 1).  

 

However, sometimes these recorded parameters do not provide the flight safety crew with enough 

information to determine the cause of the incident. Parameter estimation technique comes into the 

picture by providing more parameters to be investigated in which these parameters are not 

recorded/measured directly in QAR data. As example of the incident mentioned above, the additional 

parameter which might be estimated is runway friction coefficient. This parameter is not recorded in 

QAR device but can be estimated by employing the parameter estimation method. Not only parameters 

during ground phase but also parameters during air-phase can be estimated such as lift and drag 

coefficient increment/decrement due to flap or spoiler deflection during approach phase. 

Implementation of the parameter estimation technique along with current FDM program would give a 

great benefit to FDM crew since more parameters are obtained and the cause of incident can be revealed 
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with more solid foundation. In this paper, the Bayesian inference is employed as estimation technique 

which presents the estimated parameter in a distribution form. The distribution of posterior density is 

sampled by using Markov Chain Monte Carlo (MCMC) method. 
 

Figure 1. Runway Overrun Incident 

 
 

The following sections of this paper are organized as follows: Section 2 introduces the problem 

formulation. In particular, the flight phases and related parameters to be estimated are thoroughly 

introduced. Section 3 briefly reviews the Bayesian method as well as technique for sampling the 

posterior density. This is followed by Section 4 which presents the implementation and result obtained 

by implementing the Bayesian inference on QAR data. Finally, Section 5 draws the conclusion for the 

paper. 

 

2.  PROBLEM FORMULATION 

 
The number of parameters to be estimated is related to the postulated model and flight phase of the 

aircraft. In this paper, the approach flight (air phase) is selected as flight phase to be investigated (see 

Figure 1 and Table 1).  During the approach phase, parameters such as lift and drag coefficient 

increment/decrement due to flap or spoiler deflection are estimated. Along with these aerodynamic 

parameters, thrust produced by aircraft engine is also estimated during this phase. The mathematical 

formulation during the flight phase is postulated as a linear relation as shown in the following: 
 

 𝒂𝒙 =
𝟏

𝒎
(𝒒̅𝑺 𝐬𝐢𝐧 𝜶 𝑪𝑳 − 𝒒̅𝑺 𝐜𝐨𝐬 𝜶 𝑪𝑫 + 𝜹𝑻𝑻) (1) 

 

where 𝒂𝒙, 𝒎, 𝜶, 𝒒̅, 𝜹𝑻, 𝑺 consecutively denote the acceleration along longitudinal axes, mass of the 

aircraft, angle of attack, dynamic pressure (𝟏

𝟐
𝝆𝑽𝟐), throttle input, and wing area. All these parameters are 

obtained from QAR data except S parameter which is obtained from A320 technical data [3].  

 

Aerodynamic coefficients denoted by 𝐶𝐿 (lift coefficient), and 𝐶𝐷 (drag coefficient) as well as thrust (T) 

are parameters to be estimated. The aerodynamic coefficients during the selected flight phase are 

affected by flap and spoiler deflection and are modeled as incremental changes in the lift and drag 

coefficients, i.e., as  ∆𝐶𝐿𝐹 ,  ∆𝐶𝐿𝑆 ,  ∆𝐶𝐷𝐹 , and ∆𝐶𝐷𝑆  (the subscript F and S denote flap and spoiler 

deflection) [1]. The effects of flap and spoiler deflection on lift and drag coefficient are investigated for 

three different flap settings, namely 𝛿𝐹 = 0, 15, and 35 degrees and four different spoiler settings, i.e., 

𝛿𝑆 = 0, 18, 22, and 27 degrees. 
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Figure 1: Selected Approach Flight Phase  

(Flap, Spoiler Deflection and Longitudinal Acceleration Plots) 

Table 1: Selected Flight 

Phase Description 
 

 

 

 

Phase Description 

A1 FLAP = 0 

SPLR = 0 

Duration = 70 s 

A2 FLAP = 0 

SPLR = 18 

Duration = 30 s 

A3 FLAP = 15 

SPLR = 22 

Duration = 50 s 

A4 FLAP = 35 

SPLR = 27 

Duration = 38 s 
 

 

 

3.  BAYESIAN INFERENCE AND POSTERIOR SAMPLING METHOD 
 

3.1. The Bayes Formula 

 

In the Bayesian context, the probability is represented as distribution of possible values. This approach 

is based on prior and likelihood distributions of parameters.  The prior distribution describes our belief 

about the problem beforehand (subjective judgment). The likelihood represents the probabilities of 

observing a certain set of parameter values. Both of these distributions are updated to a posterior 

distribution, which represents the parameter distribution given on the observed data, formulated as 

follows: 
 

 𝒑(𝜽|𝒁) =
𝒑(𝒁|𝜽) ∙ 𝒑(𝜽)

∫ 𝒑(𝒁|𝜽) ∙ 𝒑(𝜽)𝒅𝜽
 (2) 

 

where, 𝑝(𝜃|𝑍), 𝑝(𝑑𝑎𝑡𝑎|𝜃), 𝑝(𝜃), and ∫ 𝑝(𝑑𝑎𝑡𝑎|𝜃) ∙ 𝑝(𝜃)𝑑𝜃  consecutively denote posterior, likelihood, 

prior and normalizing constant, while 𝑍 and 𝜃 denote data and unknown parameters consecutively. The 

Bayesian solution for parameter estimation is the posterior distribution of parameters (conditional 

probability of unknown parameters given the data). This posterior distribution is the distribution we are 

interested in knowing since it represents the distribution directly of the unknown parameter. In this 

paper, the prior of unknown parameter is assumed to be uninformative prior, i.e. 𝑝(𝜃) = 1, whereas the 

likehood is formulated as: 
 

 𝑝(𝑍𝑖|𝜃) =
1

(2𝜋)𝑛 2⁄ |𝐶|1 2⁄
𝑒−

1
2

(𝑍𝑖−𝑦(𝑡𝑖;𝜃)𝑇𝐶−1(𝑍𝑖−𝑦(𝑡𝑖;𝜃) 𝜎2⁄
 (3) 

 

Variable 𝑦(𝑡𝑖; 𝜃) denotes the postulated model which depends on the unknown parameters. The 

likelihood formulation in equation (3) is based on assumptions that the measurement error is distributed 

as Gaussian with mean zero and covariance 𝐶, that is 𝜖~𝑁(0, 𝐶). Furthermore, if the measurement error 

( 𝜖𝑖 = 𝑍𝑖 − 𝑦(𝑡𝑖; 𝜃 ) is assumed to be independent and normally distributed, that is 𝜖𝑖~𝑁(0, 𝜎2) 

and 𝜖~𝑁(0, 𝜎2𝐼), equation (3) is simplified to (4): 
 

 𝑝(𝑍𝑖|𝜃) =
1

𝜎√2𝜋
𝑒−

1
2

(𝑍𝑖−𝑦(𝑡𝑖;𝜃)2 𝜎2⁄
 (4) 

 

 

or in the combined likelihood of all the measurements can be written as a product: 
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 𝑝(𝑍|𝜃) = ∏ 𝑝(𝑍𝑖|𝜃)

𝑛

𝑖=1

1

𝜎√2𝜋
𝑒−

1
2

(𝑆𝑆𝜃)2 𝜎2⁄
 (5) 

 

where  𝑆𝑆𝜃 = ∑ (𝑍𝑖 − 𝑦(𝑡𝑖; 𝜃)2𝑛
𝑖 . By combining the prior and likelihood as defined above, the posterior 

up to the normalizing constant can be written as: 
 

 𝑝(𝜃|𝑍)  ∝  𝑝(𝑍|𝜃) (6) 
 

Equation (6) is the distribution of interest which will be sampled using technique described in section 

3.2 below. 

 

3.2. Posterior Sampling Method 

 

Sampling from posterior density function is performed by employing Markov Chain Monte Carlo 

method. Metropolis algorithm is used as acceptance/rejection criteria, while random walk along with 

component wise method is used for proposing the candidate parameter. The Metropolis 

acceptance/rejection criterion is defined in equation (7) below. 
 

 𝛼(𝜃𝑖−1, 𝜃∗) = 𝑚𝑖𝑛 {1,
𝑝(𝜃∗)

𝑝(𝜃𝑖−1)
} (7) 

 

The candidate parameter(𝜃∗) will be accepted if (𝜃𝑖−1, 𝜃∗) > 𝑢 , where 𝑢~𝑈[0,1]. The pseudo-code of 

this algorithm is presented in Section 4. 

 

3.3. Initial Parameter and Covariance Estimation 

 

Using Random Walk Metropolis algorithm with Gaussian proposal distribution in posterior sampling 

process requires a guess for the covariance matrix C as well as starting values of parameters. The starting 

value of parameters can be estimated by using a least square sense as formulated in equation (8).  
 

 𝜃0 = min
𝜃

∑(𝑍𝑖 − 𝑦(𝑡𝑖; 𝜃))
2

𝑛

𝑖=1

 (8) 

 

Taking parameters obtained from equation (8) as starting values in MCMC process avoid a long burn-

in time and speed-up the convergence rate of sampling process. The parameter covariance matrix 𝐶 is 

obtained by employing equation (9) below: 
 

 𝐶 ≈ 𝜎2[𝑋𝑇𝑋]−1 (9) 
 

where 𝜎2and 𝑋 consecutively represent variance of the residual and Jacobian matrix  calculated at 𝜃0. 

In details, the step obtaining the initial parameter and covariance matrix can be found in [4]. 

 

3.4. Model Validation 

 

Model validation is performed by comparing model output and measurement. In the context of Bayesian 

inference, the model output is described as predictive distributions of model output. The predictions of 

model output are naturally based on the posterior distribution of estimated parameters, as defined as [2]: 
 

 𝒑(𝒁∗|𝒁) = ∫ 𝒑(𝒁∗, 𝜽|𝒁)𝒅𝜽 = ∫ 𝒑(𝒁∗|𝜽) 𝒑(𝜽|𝒁)𝒅𝜽 (10) 

 

Here 𝑝(𝑍∗|𝑍) denotes the prediction of future observations 𝑍∗ given Z as the current one. Since the 

model output based on distribution of estimated parameter, the model output will be in distribution form 

as well as forming a confidence region. This approach is different with the classical estimation approach 

in which the model output is based on a single value of estimated parameter hence forms the model 

output without distribution [5, 6]. 
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4.  IMPLEMENTATION AND RESULTS 

 

4.1. Implementation 

 

The pseudo code of Random Walk Metropolis algorithm is presented below. It shows the initial value 

of parameter and covariance are first estimated in the least square sense. After the initialization, the 

posterior sampling process is done iteratively until reaching the maximum number of samples. The 

candidate parameters will be accepted/rejected based on criterion defined in equation (7). The accepted 

parameters are then stored and form the posterior distribution. 
 

 

Random Walk Metropolis pseudo code with estimated initial parameter and covariance  
 

1. Initialize 

 Choose 𝜃0 = arg min
θ∈Q

∑ (zj − y(ti, θ)
2

= arg min
θ∈Q

𝑆𝑆𝜃
n
j=1  

using optimization routine. 

 Compute 𝑆𝑆𝜃0 = ∑ (zj − y(ti, θ0)
2n

j=1  

 Estimate error variance 𝜎2 =
1

𝑛−𝑝
∑ (zj − y(ti, θ0)

2n
j=1  

 Construct covariance matrix 𝐶 = 𝜎2[𝑋(θ0)𝑇 ∙ 𝑋(θ0)]−1 

 Compute 𝑅 = cholesky decomposition(𝐶)    

2. Do sampling  

 for i = 1, 2, ...n  (n = number of samples) 

# sample 𝑧 ~ 𝑁(0,1) 

# construct candidate 𝜃∗ = 𝜃𝑖−1 + 𝑅𝑧 

# sample 𝑢𝛼  ~ 𝑈(0,1) 

# compute 𝑆𝑆𝜃∗ = ∑ (zj − y(ti, θ∗)
2n

j=1  

# compute 𝛼(𝜃∗, 𝜃𝑖−1) = 𝑚𝑖𝑛 (1, 𝑒−[𝑆𝑆𝜃∗−𝑆𝑆
𝜃𝑖−1]/2𝜎2

) 

if   𝑢𝛼 < 𝛼 

# set 𝜃𝑖 = 𝜃∗, 𝑆𝑆𝜃𝑖 = 𝑆𝑆𝜃∗ 

else 

# set 𝜃𝑖 = 𝜃𝑖−1 

endif 

endfor 

 

The pseudo code of Random Walk Metropolis algorithm shown above is then implemented based on 

the postulated model and the selected flight phase as defined in Section 2. Number of samples is set to 

80,000 with acceptance ratio for each of parameters varies between 3% - 18%. The related results are 

shown in the Figure 3 to 6 below. 

 

During Phase A1, the thrust varies in range between 0.8 – 1 kN, lift coefficient deflection varies in range 

between 0.4 – 0.5, and drag coefficient has value distributed in range 0.03 – 0.05. Both of these 

aerodynamic coefficients are obtained with no flap and spoiler deflection. The predictive model output 

distribution is also presented along with measurement (left side). From Figure 3, it shows that the 

predictive model output match with a good agreement with that of the measurement.  

 

In Phase A2, the flap deflection is still in the same state as Phase A1 but spoiler now deflected to 18 

degrees. This spoiler deflection decreases the lift coefficient and increases the drag coefficient. These 

effects can be seen in Figure 4, i.e. the lift coefficient decreases to value between 0.24 – 0.28, whereas 

drag coefficient increases in range 0.08 – 0.1. Predictive output plot is also presented along with 

measurement (Figure 4, left side), but the distribution of predictive plot is wider than that of Phase A1. 

This indicates the estimated parameters in Phase A2 have more uncertainties than the parameters 

estimated in Phase A1. The change in thrust parameter is not caused by flap/spoiler deflection but by 

the flight condition and throttle command from pilot. 
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Figure 2: Phase A1 Predictive Model Output and  

Related Estimated Parameters Distribution 

 
 

 

Figure 4: Phase A2 Predictive Model Output and  

Related Estimated Parameters Distribution 

 
 

During Phase A3, both flap and spoiler are in deflection state of 15 and18 degrees consecutively. This 

deflection affects both lift and drag coefficient. The lift coefficient increases in range 0.24 – 0.28, 

whereas the drag coefficient varies in range 0.125 – 0.135 as shown in Figure 5 (right side). The 

predictive plot distribution of model output is also plotted together with the measurement. From Figure 

5, it can be seen that the trend of the measurement can be captured by the model output. 
 

Figure 5: Phase A3 Predictive Model Output and  

Related Estimated Parameters Distribution 

 
 

The results during Phase A4, presented in Figure 6 below, shows that the lift coefficient is now 

increasing with values around 0.8. This increment might come mostly due to the flap deflection (35 

degrees). On the other hand, the drag coefficient slightly change and remain in value around 0.09 – 0.1. 

The predictive model output distribution is also plotted together with measurement as shown in Figure 
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6 (left side). It shows that they are in a good agreement with small spread of the predictive distribution 

of model output. This indicates that the estimated parameters have a high accuracy in the postulated 

model being employed. 
 

Figure 6: Phase A4 Predictive Model Output and  

Related Estimated Parameters Distribution 

 
 

 

5.  CONCLUSIONS 

 

The Bayesian inference along with MCMC technique are successfully implemented on Quick Access 

Recorder data. The estimated parameters are represented as distribution form which gives information 

about the uncertainties in parameters. The algorithm implemented in this study opens the possibility to 

be integrated into current FDM program hence can extend the capability and functionality of the 

program. The benefit of this implementation provides parameters which are not recorded/measured in 

QAR device. These estimated parameters can be used as additional information by FDM crew to 

investigate a specific event or incident so that the cause of incident can be determined with more solid 

foundation. The output of this work is also used as an input in one of active research related to incident 

prediction in Institute of Flight System Dynamics, TUM. 
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