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Abstract: Long-time performance assessment models for final repositories for radioactive waste typi-

cally produce heavily tailed output distributions that extend over several orders of magnitude and un-

der specific circumstances can even include a significant number of exact zeros. A variance-based 

sensitivity analysis gives a strong overweight to the typically very few values that are far away from 

the expected value of the distribution, which can lead to a low robustness of the evaluation. Moreover, 

while a variation of the model output, even over orders of magnitude, is of little interest if it happens 

on a radiologically irrelevant level, a mere factor of 2 near the permissible dose limits can be very im-

portant. Both types of problems can be mitigated by applying appropriate output transformations be-

fore performing the sensitivity analysis. The effects of different transformations on the sensitivity 

analysis results for typical final repository model systems are demonstrated. 
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1.  INTRODUCTION 
 

The long-term performance of final repositories for radioactive waste has to be investigated using 

computational models describing the release of radionuclides from waste containers and their transport 

through the near field, the geosphere and the biosphere. Probabilistic sensitivity analysis is an im-

portant tool for improving the understanding of the model behavior as well as for identifying research 

needs. With realistic parameter ranges, however, such models typically produce heavily tailed output 

distributions that extend over several orders of magnitude and, under specific circumstances, can even 

include a significant number of exact zeros. This causes two types of problems: 

 

a) A variance-based evaluation gives a strong overweight to values that are far away from the 

expected value of the distribution. Therefore, the total output variance is typically dominated 

by very few individual values, which can lead to low robustness of the evaluation. 

 

b) In view of radiological safety, the highest output values are the most relevant ones. While a 

variation of the model output, even over orders of magnitude, is of little interest if it happens 

on a radiologically irrelevant level, a mere factor of 2 near the permissible dose limits can be 

very important. Usual sensitivity analysis methods do not by themselves take account of such 

non-mathematical asymmetries. 

 

Both types of problems can be mitigated by applying appropriate output transformations before per-

forming the sensitivity analysis. The goal pursued with such transformations is to map the model out-

put, typically the effective annual dose to a human individual, to some magnitude that better represents 

the actual harmful effects to the environment on a scale that is well consistent with the mathematical 

method of evaluation.  

 

In cases of model output values distributed over several orders of magnitude, it is sometimes recom-

mended to analyze the logarithms of the output instead of the calculated values themselves. This, 

however, does not always solve the problem and can even make it worse. Zero values are mathemati-

cally excluded from a log-transformation, and very low values are highly overvalued. A change of, 

say, three orders of magnitude would be given the same weight, regardless of whether it occurs at a 

near-zero level, maybe due to some more or less arbitrary numerical specifics of the model, or at a 
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numerically significant and radiologically relevant level. The results of a sensitivity analysis on a log-

transformed model output can therefore become more or less useless. 

 

To avoid this problem, we have to look for transformations that handle low values differently from 

high values. Of course, the essential precondition for such an approach is a sensible criterion that dis-

criminates “low” from “high” values. One possibility is that we take a strictly mathematical point of 

view and define anything below the mean or the median of all values as low and anything above as 

high. Another, more physically motivated approach is to use a threshold value that is based on radio-

logical considerations and does not take account of the actual distribution of the model output.  

 

It seems sensible to select a continuous transformation that maps  

- zero to zero,  

- very low values to values near zero,  

- the threshold value to one  

- and high values to moderately increasing values above one, without giving them an undue 

overweight.  

In this paper three such transformations are proposed and their effects on the results of a variance-

based sensitivity analysis are demonstrated using two different final repository models. 

 

2.  THE MODELS 
 

This chapter gives a short overview of the basic characteristics of the two models investigated here. 

Both models represent hypothetic final repositories in rock salt formations in Germany. 

 

2.1.  HLW Repository 

 

The first model is based on a former planning for a possible final repository for high-level radioactive 

waste in Germany, which was foreseen to be installed in excavations specifically mined for this pur-

pose in a salt formation with a high creeping capability. The concept envisaged boreholes for em-

placement of canisters with vitrified waste from reprocessing as well as drifts for emplacement of con-

tainers with spent fuel elements. Each borehole or drift is sealed by a plug, and the same applies to the 

loading drifts. Since under the high temperatures in the vicinity of heat-producing waste the salt creeps 

rather fast, the wastes will, in most cases, be tightly included in the salt within several decades. Then 

each contact of brine with parts of the wastes is excluded for the future and no contaminant release is 

possible. This situation leads to a zero-output of the model. It is, however, possible that a brine inclu-

sion in the salt formation opens during the early phase. Then the fluid can reach the waste containers 

and dissolve radionuclides. The creep-induced convergence of the remaining voids in the mine has 

then a disadvantageous effect, since it presses the contaminated brine through the seals and into the 

geosphere.  

 

The calculation results analyzed here were produced in 2003 using the code package EMOS [1]. The 

model consists of parts for the near field, the geosphere and the biosphere, and it finally yields the hy-

pothetical time-dependent dose rates to a human individual. 31 parameters were varied statistically 

according to their specific distributions. Due to the high probability of tight inclusion of all wastes, 

only some 15 % of the model runs yield a non-zero output.  

 

The HLW repository model was calculated 3000 times with a random sample. Only 491 of the runs 

yielded a non-zero output, but some of them reach maxima above 10
-4

 Sv per year. The time curves of 

the six runs with the highest maxima are shown in Figure 1 (left). 

 

2.2  LILW Repository 

 

The second model investigated here represents a hypothetic final repository for low- and intermediate-

level radioactive waste that is assumed to be installed in an abandoned salt production mine. Its main 

features are loosely based on a real site of this type in Germany, the Morsleben repository. The salt 
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formation is inhomogeneous and has a low creeping capability. It is assumed that the mine openings 

are filled with brine from the overburden after some time. At that point in time, some short-lived 

wastes, which are disposed of in one of the openings, start to release contaminants. These are dis-

solved in the brine and pressed out to the geosphere by the convergence process. In order to protect the 

longer-lived and more radiotoxic wastes from the brine, the main waste emplacement area is isolated 

from the rest of the mine by a specific seal, which, however, can be chemically corroded by magnesi-

um. Depending on the magnesium content of the brine and the initial permeability of the seal material, 

the seal can nearly suddenly fail at some point in time. This leads to a short-lasting decrease, followed 

by a fast, significant increase of the contaminant release. The decrease is due to the fact that after seal 

failure it takes a little time to fill up the emplacement area, during which the brine outflow from the 

mine is reduced. 

 

Like the HLW model, the LILW model consists of three parts, describing the near field, the geosphere 

and the biosphere. The calculations were done with the software package RepoTREND [2], which 

contains modules for each of the three parts and is specifically designed for calculating the transport of 

radionuclides through and release from a repository system. The model output is the annual dose to a 

human individual. In the investigations presented here, 11 uncertain parameters, all pertaining to the 

near field, were varied according to appropriate distributions. In contrast to the HLW case the LILW 

model does not produce zero output runs. 

 

Three different random samples, each containing 3000 parameter sets, were drawn. The right side of 

Figure 1 displays some typical time curves calculated by the LILW model, which show the seal failure 

and the subsequent increase of the dose rate. The highest maxima reach about 10
-5

 Sv/yr. 

 

 

Figure 1: Typical Time Development Curves of Both Models (Left: HLW, Right: LILW) 

 

  
 

3.  THE CONSIDERED OUTPUT TRANSFORMATIONS AND THEIR EFFECTS 
 

In chapter 1, four requirements were formulated that should be fulfilled by an output transformation. 

According to these requirements, we chose the following three transformations for investigation in this 

paper (the model output value is denoted by y): 

 

transformation 1:  )/1(log2 ayy   , 

transformation 2: 
2.0)/( ayy , 

transformation 3: 
3.0)/( ayy . 

 

Figure 2 shows how these transformations act on the model output on a linear and on a logarithmic 

scale. All three transformations map low values to values near 0, the threshold value a to 1 and high 
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values to values that seem “not too far above” 1. The threshold parameter a should be selected to dis-

criminate “low” from “high” values in a sensible way. For the investigations presented here it seems 

reasonable to fix it about three orders of magnitude below the highest occurring dose rates. Therefore, 

we chose a = 10
-7

 Sv/yr for the HLW model and a = 10
-8

 Sv/yr for the LILW model. Additionally, the 

effects of transformation 1 are demonstrated for a threshold value a that is adaptively calculated as the 

median of the analyzed data for each point in time. Since the transformation is monotonic, it maps the 

median of the original data to the median of the transformed data, which is automatically equal to 1. 

 

Figure 2: Effects of the Transformations (a = 10
-7

) 

 

 
Figure 3 demonstrates how the three transformations affect the output of the HLW model in view of 

the variance. The histograms show the distribution of the peak values of all runs as red columns and 

the respective contributions to the total variance in blue. Due to the high number of zero runs the low-

est bin is by far most populated. It can be seen that for the original data the figure looks rather unbal-

anced. While there are 2689 (89%) zeros or very low values with a common contribution to the total 

variance of about 5.5%, the two (0.067%) highest peak output values contribute 7.4% to the variance. 

The highest 25 values, that is 0.83%, are responsible for 50% of the variance. This disproportion is 

considerably mitigated by any of the three transformations. The figures show that in all cases the rela-

tion between the frequencies and the contributions to the variance is much more balanced than for the 

original data. The percentage of the highest values commonly responsible for 50% of the variance is 

about 4 to 5%. The highest contributions to the variance do no longer result from very few outliers at 

the upper end, but from the zeros and from the most populated bins in the region of higher values. It is 

therefore expected that a variance-based sensitivity analysis gives more robust and reliable results if 

performed on the transformed data. 

 

Figure 3: Histograms for Frequency and Contribution to the Total Variance  

for the Original and the Transformed Data (Peak Dose Values) 
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4.  RESULTS 
 

In the following some results are presented. With the HLW model 3000 runs were performed; with the 

LILW model three times 3000 runs were performed with different random samples. The transfor-

mations were applied to the time-dependent output of the calculations, and afterwards, a simple vari-

ance-based sensitivity analysis was performed. This means that the first-order sensitivity indices  

)Var(

))|(E(Var
1SI

Y

XY j

j   

were calculated for all input parameters Xj and 300 points in time. Y means the entirety of the model 

output values for a specific point in time, E(Y|Xj) is the expectation of Y under the condition that Xj is 

hold constant. For the details of the underlying theory see, e.g. [3]. For calculation of the sensitivity 

indices the EASI method [4] was applied using a MATLAB script by E. Plischke (available under 

http://ipsc.jrc.ec.europa.eu/?id=756 ). EASI is a simple effective algorithm for calculating global sen-

sitivity indices of first order using Fast Fourier Transformation. It is very quick, can be applied with 

any kind of sample and seems to yield results of similar robustness and reliability as other, much more 

numerically expensive methods [5]. 

 

4.1.  Results for the HLW Model 

 

In Figure 4 the time-development of the SI1 values for the HLW model, calculated with EASI from 

the original model output as well as from the transformed data, is presented. The curves of all 31 pa-

rameters are plotted, but for clarity reasons, only the six most important ones are given in the legend. 

 

 

Figure 4: Time Development of SI1 for the HLW Model, Calculated with EASI  

from the Original and the Transformed Data 

 

 

 

http://ipsc.jrc.ec.europa.eu/?id=756
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It can be seen from all figures that the model is clearly dominated at all times by the parameter VIncl, 

which is the volume of the brine inclusion in the salt formation. Additionally the parameter ExpPP, the 

exponent in the permeability-porosity relation, plays a certain role. Moreover, the curves of CDiff 

(Diffusion coefficient), KRef (reference convergence rate), FConvHAW (reduction of convergence in 

HLW fields) and LimSolUnk (solubility limits under unknown chemical conditions) reach, at least at 

some points in time, values that can be optically distinguished from the zero line. 

 

While all four figures agree on these general facts, there are essential differences in the details. The 

dominance of VIncl is still more pronounced if transformed data are evaluated, no matter which of the 

transformations is applied. The calculated SI1 values for this parameter are at all times considerably 

higher for the transformed data than for the original output. The SI1 values of all other parameters but 

ExpPP seem to decrease, except at the very end of the simulation period. Looking at the time phase 

between about 4∙10
5
 and 6∙10

5
 years we see that, by reasons we do not discuss here, the SI1 of VIncl, if 

calculated for the original data, decreases below 0.04, which is only slightly above the values of the 

other parameters. From this figure alone we would conclude that during this period the parameter is 

nearly as insignificant for the output as all the other parameters. The figures for the transformed data, 

however, give a completely different impression. In all of them there is only a slight decrease of the 

SI1 of VIncl during the mentioned period and it remains between 0.32 and 0.44, depending on the ap-

plied transformation. 

 

In the evaluation of the original data, the SI1 curve of ExpPP nearly vanishes in the mess of insignifi-

cant curves at about 10
5
 years until the end of the simulation period. For the transformed output, how-

ever, it remains clearly silhouetted against the other curves and ExpPP is identified as the second most 

important parameter for nearly the entire simulation period. The small differences seem to be ampli-

fied by performing a transformation before the evaluation. 

 

It is noticeable that in the early phase, up to about 8000 years, the results obtained with transformation 

1 resemble more those of the original data than those of transformations 2 and 3. This is obviously due 

to the fact that during early times the model output is generally below the threshold of 10
-7

 Sv/yr, as 

can be seen in Figure 1 (left), and the logarithmic transformation leaves low values more or less un-

changed, except from a factor (see Figure 2). In contrast, the power law transformations 2 and 3 spe-

cifically pronounce differences in values below the threshold, since their exponents are smaller than 1.  

 

4.2.  Results for the LILW Model 

 

In Figure 5 the time-development of the SI1 values for the LILW model, calculated with EASI from 

the original model output as well as from the transformed data, is presented. All parameters are shown, 

distinguished by different colors. The results obtained using three different random samples are 

marked by different line styles.  

 

It is predominantly conspicuous that the parameter TBrine, which does not produce considerably high 

SI1 values calculated from the original output, becomes much more important if transformed data are 

evaluated, especially in the early phase. For transformation 2 its SI1 reaches a maximum of 0.74. This 

parameter represents the point in time when the mine openings are filled with brine, which happens 

around 10 000 years with a log-normal distribution. Before this point in time there is no contaminant 

release at all, so that there are lots of zeros at early times. It is clear that TBrine is dominant in this 

phase, because it decides about zero or non-zero results. This dominance is much better reflected by 

the SI1 curves for the transformed output. Since in many cases, in the time phase between brine intru-

sion and seal failure the calculated dose rate remains below the threshold value of 10
-8

 Sv/yr, we have 

the same effect as described for the HLW model: the power law transformations 2 and 3 amplify var-

iations in the range of low values and therefore additionally emphasize the dominance of the parame-

ter TBrine in this phase.  
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Figure 5: Time Development of SI1 for the LILW Model, Calculated with EASI  

from the Original and the Transformed Data 

 

 

 
Apart from the eye-catching increase of the importance of TBrine due to the transformation, there is 

another noteworthy effect. While in the original data the parameter AEBConv, which represents the 

convergence rate of the sealed emplacement area, dominates for most of the simulation period, reach-

ing a maximum SI1 of 0.2, this parameter is only of secondary importance in the transformed data 

with SI1 values no higher than 0.12. Instead, the parameter IniPermSeal, representing the initial per-

meability of the dissolving seal, assumes the dominating role with a maximum SI1 between 0.3 and 

0.38, depending on the sample and the transformation. IniPermSeal determines the initial flow rate of 

corroding brine through the intact seal and is predominantly responsible for the time of seal failure. 

So, for each point in time, this parameter decides about whether the seal has already failed or not, 

which typically means a difference in dose rate of two or three orders of magnitude. We call this mod-

el behavior quasi-discrete, because it leads to separate congregations of output values. The parameter 

BrineMgSat, which represents the magnesium saturation of the brine and with it its corrosive potential, 

also has an influence on the time of seal failure and contributes to triggering this behavior. While, 

however, its SI1curve is nearly invisible in the evaluation of the original model output, it becomes 

more relevant if transformed data are evaluated. Obviously, transformations of the considered kind 

emphasize the sensitivity of the model against parameters that cause a quasi-discrete model behavior. 

 

The SI1 curves of all other parameters progress close to the zero line and show only little differences 

between the four evaluations.  

 

With the output of the LILW model an additional evaluation was performed using transformation 1 

with a threshold value a that was determined adaptively. This means that, instead of using a more or 

less subjectively fixed threshold, for each point in time the value a was calculated independently as the 

median of all 3000 output values. On the one hand, this makes sure that the determination of a follows 

an objective procedure, always keeping one half of the data below and the other half above the thresh-
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old. As the transformation is monotonic and maps a to 1, the median of the transformed data is con-

stantly equal to 1. On the other hand, a non-constant threshold between values considered as “low” or 

“high” is a bit hard to understand and must not lead to misinterpretation of results. 

 

Figure 6 shows the time development of SI1, calculated from the adaptively transformed data, on the 

left side. As long as more than half of the data are zeros, the median is also exactly zero and cannot be 

used for a; therefore the curves start only at about 7000 years. On the right side of Figure 6, the time 

development of the median, which was used as the transformation parameter a, is presented for the 

three random samples.  

 

Figure 6: Time Development of SI1, Calculated with EASI  

from the Adaptively Transformed Data, and of the Data Median 

 

 
There are very little differences between the medians calculated for the three samples. For most of the 

time, the median of the model output is in the range between 2∙10
-9

 and 2∙10
-7

 Sv/yr. After about 

22000 years it reaches the value of 10
-8

 Sv/yr and afterwards increases faster. At this time, in most of 

the cases the seal has failed, so that the higher results become dominating. This is also visible in the 

SI1 curve for IniPermSeal, which is the most relevant parameter for the time of seal failure. The curve 

reaches its maximum exactly at that time where the median curves show the bend. The then increasing 

threshold value obviously leads to a decrease of the SI1of IniPermSeal, but does not seem to have a 

comparable effect to the other parameters. 

 

With the adaptive transformation it becomes clearly visible that in the very early phase below 10
4
 

years TBrine is by far the dominating parameter. The curve starts at a value of 0.95. The importance of 

AEBConv appears more pronounced with the adaptive transformation than it was the case with any of 

the fixed transformations. Its SI1 curve reaches a maximum of about 0.2 and resembles more that one 

calculated from the original data (see Figure 5). For all other parameters there are only little differ-

ences to the curves obtained from the original data or the other transformations. 

 

5.  SUMMARY AND CONCLUSIONS 
 

We have applied three different transformations to the time-dependent output of two different models 

for long-term performance assessment of final repositories and calculated the variance-based first-

order sensitivity indices using the EASI algorithm. All transformations make use of a threshold value 

a, which is used for normalization of the model output data and discriminates “low” from “high” val-

ues. Additionally, a transformation with adaptive determination of a was applied to the LILW model 

(this could not be done for the HLW model, because it produces 85% zero output so that the median is 

always zero and cannot be used as the threshold value). The transformations are monotonic and map 

zero to zero, a to one and “high” values to values in the range of 1 to about 10. The motivation for this 

was to project the widely distributed model output to a range that is better adequate for a variance-
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based evaluation and to reduce the overvaluation of a few high outliers. We investigated a logarithm-

based transformation and two power transformations with different exponents smaller than 1.  

 

Transformations of the considered type seem to amplify the differences and accentuate the relevant 

results of a variance-based sensitivity analysis. Generally, compared to an evaluation of the original 

model output, the SI1 values of the important parameters seem to increase if calculated from the trans-

formed output, while those of less relevant parameters remain more or less unchanged or even de-

crease. Thus, by performing an adequate transformation prior to a variance-based sensitivity analysis, 

one can obtain more unique results. 

 

While the log-based transformation does not significantly change low values and consequently, nearly 

the same SI1 values as for the non-transformed output are calculated if most of the data are below the 

threshold, the power-based transformations amplify differences in low values. Parameters that are spe-

cifically relevant for low values may therefore be better identified using a power-based transformation. 

 

The threshold parameter a has to be selected adequately for the intended investigation. It can either be 

chosen from a radiological point of view and set to a value that is considered to be a threshold for ra-

diological relevance, or according to more mathematical aspects. A possible choice of the latter type 

would be the overall median of all analyzed data. An adaptive transformation that uses the time-

dependent median of the model output at each point in time as threshold value can also provide inter-

esting results. In time phases with many exceptionally high or low values this approach inhibits over- 

or undervaluation of data. This kind of transformation can be of specific interest for the investigation 

of models that produce very different output distributions and medians at different times. When inter-

preting the results one should keep in mind, which threshold value has been used and why. 

 

In a different investigation [6] we found that the SI1 calculated from the original model output yield 

results that qualitatively differ from those obtained with regression-based sensitivity analysis. This is 

no longer the case if the transformed output is analyzed, no matter which of the transformations is ap-

plied. The results of the variance-based sensitivity analysis of transformed data seem to be well in line 

with those of the regression-based evaluation. From this we conclude that such transformations might 

improve the reliability of a variance-based evaluation.  

 

With the LILW model three different random samples were investigated. The differences between the 

SI1 time curves obtained with these three samples do not significantly decrease if a transformation is 

applied, except from the very early time phase, during which only a few parameter sets yield a non-

zero model output. From this observation we conclude that transformations can improve the robust-

ness of the variance-based evaluation if it is based on only a few non-zero data. 
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