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Abstract: Risk at nuclear facilities in the UK is managed through a combination of the ALARP
principle (As Low As Reasonably Practicable), and numerical targets. The baseline risk of a plant is
calculated through the use of Probabilistic Safety Assessment (PSA) models, which are also used to
estimate the risk in various plant states, including maintenance states. Taking safety equipment out of
service for maintenance yields a temporary increase in risk. Software tools such as RiskWatcher can
be used to monitor the real time level of risk at plant. In combination with software tools to estimate
the instantaneous risk, time at risk arguments are frequently employed to justify safety during plant
modifications or maintenance activities. In this paper we consider the effect of using conservative
estimates for the probability of failure on demand of safety critical components compared to using a
full uncertainty distribution. It is found that conservatism in the base case model translates to a hidden
optimism when used in time at risk arguments. While it is known and accepted that quantified risks are
necessarily approximate, useful insights can be gained through risk modelling by considering relative
risks. Anything that distorts relative risks impacts on the usefulness of the risk modelling. The
important point of the effect discussed here is that it has the potential to distort relative risks. The
mapping between the base case conservatism and the time at risk optimism is characterised, and the
effect is illustrated using simple hypothetical examples. These simple examples show that the shape of
the full uncertainty distributions of model parameters have important and direct consequences for time
at risk arguments, and must be considered in order to avoid distorting the risk profile.
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1. INTRODUCTION

Conservative estimates are a mainstay feature of probabilistic risk models used for safety analysis.
Conservative arguments are frequently invoked, often in cases when it would be hard to confidently
provide an accurate estimate, and are strongly linked with the assessment of uncertainty. The use of
conservative arguments implicitly restricts the value of quantitative risk analysis (QRA) to statements
such as “the frequency of core melt is lower than x per year”. This fails to do justice to the potential
uses of QRA. The value of QRA can extend beyond the identification of “negative insights” and high
risk areas, to informing plant operators about “positive insights” such as where the safety margin is
very high and could potentially be relaxed [1]. The issue of uncertainty in risk analysis has been
discussed extensively in the literature, and the importance of an adequate representation of uncertainty
has also been presented [2, 3]. This paper stresses the point that conservative arguments are not an
adequate approach to uncertainty by demonstrating that conservative estimates distort the risk profile
of the plant, sometimes in non-obvious ways. This lends extra weight to the viewpoint that
conservative estimates should always be replaced with best estimates coupled with uncertainty
estimates. The conservative distortion is illustrated using the concepts of time at risk and maintenance,
in which case conservatisms can hide the true risk.

Time at risk is a fundamental concept when considering risk. In most quantitative risk models, time at
risk is used to represent the effect of maintenance, the degradation of plant components, and their
susceptibility to various hazards. This paper will explore the concept of time at risk and uncertainty in
parameter estimates using the example of maintenance states and considering how plant unavailability
due to maintenance affects the prediction of risk.

Maintenance is known to have both potentially positive and negative effects on the risk at a plant.
Maintenance is used to identify and fix defects that occur due to anticipated wear and tear on plant
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equipment due to normal operation, and is vital to ensure the continued operation of the plant.
However, incorrectly performed maintenance can also leave a plant in a worse state than before; the
classic example is that of misaligned valves. In addition, during a maintenance outage safety
equipment is unavailable to perform its duty, hence the plant incurs an increase in risk during the
maintenance period. Given that maintenance can have a significant impact on the risk at a plant, it is
important to be able to estimate all aspects of maintenance risk as precisely as possible in order to
design maintenance schedules that are as close to risk optimal as possible. The significant effects of
maintenance on risk at industrial facilities have been extensively discussed in the literature [4, 5, 6].
Although there are numerous dimensions to the interaction of maintenance with plant risk, this paper
will start from the reasonable assumption that maintenance is essential and then consider only the
impact due to unavailability of plant systems. It is demonstrated that the method used to estimate the
failure parameters in the risk model has a significant effect on the estimation of the risk significance of
maintenance outages.

Before proceeding, it is worthwhile to make more precise the key concepts used in this paper. It is
noted that there are numerous formulations of the definition of risk, and that the word is often used
differently in various contexts. Frequently, risk is defined as probability “multiplied” by consequence,
and it is commonly expressed in terms of a frequency of an undesirable event per unit of time. This is
an excellent intuitive description of risk, although it is noted that there are certain deficiencies with the
definition, such as a precise definition of the multiplication operation. In this document Kaplan and
Garrick’s [7] definition of risk as a triplet consisting of scenario, probability and consequence is used.
However, the consequence part of the triplet will be a constant throughout this document, and will
simply be considered to be “failure to perform a prescribed safety function”. The scenario will switch
only between a nominal “normal state” and a “maintenance state”. Hence, of the triplet defined above,
the main concern in this paper is the probability component of risk. When considering time at risk, the
concept of cumulative risk is key; at its most general, cumulative risk can be defined as the time
integral of instantaneous risk. The instantaneous risk will refer to the risk at some specified time point,
while the cumulative risk is the total risk experienced over a period of time. In this document “risk”
will be used as a synonym for “instantaneous risk”. For example, the risk due to a specified hazard
depends on the length of time over which the hazard could potentially occur. Uncertainty itself is a
complex topic, but in this document the phrase uncertainty is restricted only to statistical uncertainty.
The expansion to the full range of uncertainties is considered in the further work section.

The cumulative risk and instantaneous risk in a maintenance case are shown in Figure 1 below.

Figure 1: Maintenance Outage and Instantaneous Risk
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It should be noted that in Figure 1, above, a constant failure rate is assumed and the cumulative risk
has been calculated using a Poisson distribution and is not actually proportional to the time; in
particular the cumulative probability does not rise linearly to one. For realistic values of the Poisson
parameter and short time periods the relationship is very close to being proportional to the time near
the origin. In general the failure rate of a component is not constant, for example a bathtub shaped
curve could be modelled using a Weibull distribution, but over the short time period that maintenance
occurs, a constant failure rate is a reasonable assumption.

To consider maintenance cases in a time varying model, the variation with time of the probability of
an event must be considered. A saw tooth curve is produced by the basic assumption that a
component’s failure rate is constant with time, and that maintenance perfectly restores a component to
working order.

Figure 2: Classic Saw Tooth Maintenance Curve
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The contribution of maintenance outages can be usefully considered as a proportion of “baseline risk”.
It is shown that the uncertain nature of the probability component can distort the relative importance of
time effects depending on the way in which the uncertainty is handled. Historically, uncertainty in
probability estimates has been handled by using conservative estimates for the probability. Despite a
shift in thinking towards best estimate values, in practice conservative judgement is frequently
invoked in difficult situations. The purpose of making the argument presented in this paper is to
reinforce the viewpoint that even where a best estimate is difficult, it should not be replaced by a
conservative estimate; in the opinion of the author a large uncertainty distribution (if necessary) is
preferable to recourse to a conservative estimate. It is shown that the combination of conservative
estimates, in the sense of multiple lines of protection, yields an optimistic viewpoint of the relative risk
during time periods in which a line of protection is removed. This is first demonstrated by comparing
conservative estimates and best estimates, and then the case of using best estimates plus uncertainty
for the failure parameters is considered. The best estimate plus uncertainty method yields similar
results as the best estimate method, but retains the possibility to interpret the results in a conservative
way.

An appropriately designed maintenance schedule is an important contributor to the safe operation of
an nuclear power plant (NPP). The issue of estimating the effect of maintenance is a multi-faceted
problem, and numerous models of maintenance have been developed [4, 5], but the argument made in
this paper is not dependent on the particular maintenance model used. Hence, for clarity, only the most
simple model assuming a constant failure rate with time, as shown in Figure 2 above is considered
here. Two cases are considered, using a very basic model in which safety systems have a fixed
probability of failure on demand, that is time independent. Using this model we seek to estimate the
increase in the risk due to unavailability of a single system. Time at risk is the key concept in this
formulation since the risk due to a particular plant state is directly proportional to the time spent in that
plant state using the simplifying assumptions. The theoretical consequences of conservative estimates
of the probabilities of failure on demand are considered in Section 2. This is illustrated using a simple
example in Section 3. Section 4 then further develops the argument to include uncertainty distributions
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for the failure parameters, rather than point estimates. Section 5 discusses the implications of the
results and Section 6 presents areas for further work. Section 7 presents the conclusions of the paper.

2. THEORETICAL JUSTIFICATION

This section provides a theoretical justification for why conservative estimates of failure parameters
lead to the underestimation of the contribution to the total risk of maintenance outages. This is done by
building up the algebra for a simple system with ‘n’ diverse lines of protection.

Let X be a system with n protective systems, each of which provides an independent protective barrier
to the failure of system X. Note, common cause failures are not considered in this setup, as each line
of protection is considered to be a diverse system and hence genuinely independent of each other.
Logically, this can be represented by the fault tree shown in Figure 3 below.

Figure 3: Simple Example — A System with n Lines of Protection
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Let P(B;) be the probability of failure of the i protective barrier. In general the probability of failure
of a barrier can be described by some unknown distribution D;; i.e. P(B;) ~ D(a, ). The estimation of
the distribution D is, in general, a difficult task with numerous associated difficulties for which there is
an existing and extensive literature; References 8, 9, 10 and 11 provide a good background on some of
the estimation methods used in modern risk analysis and discussion of the associated difficulties. In
practice the distribution D is never known, although some of the sources of variability may have been
partially estimated. Historically conservative values have been used, usually attempting to estimate
the 95™ percentile of the distribution D. The conservative estimate will be represented by P(B;)os. The
“best estimate” of P(B;) is some measure of central tendency. Usually in risk analysis models the mean
is used. However, for purity of the results, and strictness of inequalities the median is used in this
document; it is noted that the extension to the use of a mean estimate is straightforward, except for the
existence of certain caveats relating to heavily skewed distributions. The best estimate median value is
represented by P(B;)so. It is noted that for any probability distribution that is not a single point the
following strict inequality holds:

P(Bi)os > P(Bi)s0 (1)
It is hence reasonable to assume that for any “good” estimate, the following strict inequality will also

hold:
P(B)9s >P(B))s0 (2)
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It is noted that for most distributions:
P(B;)os > P(B;), (3)

Hence the results presented in this document will almost always also hold if the mean of the
distribution D is used in place of the median.

Let P(X) be shorthand for the probability that system X fails. Then given independence of the lines of
protection we see that:

P = [P @
Using the notation above we can find a best estimate of the probability of failure of X using:
5 5 5
P(X)so = HP(BL')SO )
And a conservative estimate of the probability of failure of X using:
5 5 6
P(X)os = | [PBDss ©

Now, consider the effect of removing one train of protection, for example for maintenance. Without
loss of generality assume that the j™ line of protection is removed. Using the subscript ‘mj’ to denote
maintenance of barrier ‘j’, the system failure estimates now become:

PXsom; = | [ PBIso ™)

And: I
P)osmy = | | P(Bos ®)

i#j

Risk models for complex engineering systems are acknowledged to be approximate tools. Most
analysts agree that the absolute value of probabilities calculated using the risk model are very
approximate. However, ranking of risks and estimating relative magnitudes is still a useful output,
even in absence of good absolute measures. The estimate of the relative risk of different plant
components and configurations is a valuable output from risk models. For this reason the risks above
can be usefully considered in the context of the baseline risk when all lines of protection are available.
The relative risks are:

P(X)s0.m; _ 1 9)
P(X)so  P(Bj)so

And:
PX)osmy 1 (10)
P(X)os  P(Bj)os

Now, noting that the 95™ percentile estimate is larger than the 50™ percentile estimate we see that:

11 (11
P(B)os P(Bj)so

This equation tells us that using a 95™ percentile estimate of every line of protection gives a lower
estimate of the relative increase in risk during maintenance compared to the relative increase in risk
that occurs if a median estimate of the probability of failure of each line of protection is used. In
general, this means that conservatively estimating failure probabilities results in optimistic estimates
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of the relative risk increases during maintenance. Furthermore, the level of optimism is proportional to
the level of conservatism, if we define “conservatism” to mean a multiplication factor from the best
estimate.

It is noted that the above demonstration did not require the introduction of time at all into the
argument. The time argument remains a linear argument that affects only the magnitude of the above
effect. The extension to consider a time variant model is trivial but provides the same message with
more complicated algebra. The next section considers the effect of the conservatism described above
on a simple example model, and shows that the using conservative values gives an under estimate of
the proportion of risk that is incurred during maintenance compared to during normal operation with
all plant available.

3. SIMPLE EXAMPLE

This section works through an example fault tree representation of a simple system, to demonstrate the
effect described in section 2. A system with two lines of protection, instead of n lines of protection, is
used for clarity. The failure logic of this simple system is shown as a fault tree in Figure 4 below:

Figure 4: Simple Example — Two Protective Barriers
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Figure 4 shows the base case for the system, in which the house event is set to false. It is assumed that
each line of protection provides has a probability of failure on demand, as per the equations developed
in section 2 above. A maintenance case can be considered using the same fault tree by setting the
house event to true. This has the effect of taking one line of protection out of service.

A hypothetical conservative and best estimate cases are considered. The probability of failure on
demand of each protective barrier in each case is shown in Table 1 below.

Table 1: Probability of Failure on Demand of Each Protective Barrier vs Estimation Technique

P(A Fails on Demand) P(B Fails on Demand)
Conservative 1E-02 1E-02
Best Estimate 1E-03 1E-03

Table 2 below shows the probability of failure on demand of safety system X, for each system state
and for each failure probability assumption.
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Table 2: Probability of Failure on Demand of Safety System X

Base Case Maintenance Case
Conservative 1E-04 1E-02
Best Estimate 1E-06 1E-03

The key point is demonstrated in Table 3 below, which shows the increase in the probability of failure
on demand of safety system X during maintenance under conservative and best estimate assumptions.

Table 3: Ratio of the probability of failure on demand of system X to failure probability on
demand in the base case.

Ratio of Maintenance: Base case probability of failure on
demand of System X

Conservative 100

Best Estimate 1,000

Let the base case failure on demand be P(X)cpc and P(X)gpc under conservative and best estimate
assumptions respectively, and similarly let the maintenance case failure on demand be P(X)cy and
P(X)pMm under conservative and best estimate assumptions respectively. Further assume that a fixed
proportion py of the time is spent in the maintenance state. The proportion of time spent in the base
case is then 1- py. This proportion is a constant across both cases. The proportioned probabilities of
failure on demand of the system are P(TX)cp and P(X)g p respectively. Then we have:

P(TX)cp = (1 —pm)PX)cpc + PmPX)em (12)
P(X)pp = (1 —pn)PX)gpc + PmPX)pum (13)

A sensible question to ask is “what contribution of the weighted probability of failure on demand is
does the maintenance state make?” This contribution is py P(X)cm / P(TX)cp and pm P(X)sm /
P(TX)pp for the conservative and best estimate case respectively. Table 4 considers how this
contribution changes as the proportion of time spent in the maintenance state changes.

Table 4: The percentage contribution of maintenance

Percentage Contribution of Maintenance
Proportion of time in Conservative Best Estimate
the Maintenance State
pm = 12 hours per 365 12% 58%
days
pm = 4 days per 365 53% 92%
days

The first row of Table 4 represents a case in which the time that spent in the maintenance case is very
low, only 12 hours per year. The conservative analysis predicts that only one eighth of the total risk is
due to the maintenance state, while the best estimate shows that in fact the majority of the annual risk
(58%) is incurred during the twelve hour maintenance period.

Although this observation is very simple, it has important implications for how risk models are
interpreted. Most quantitative analysts acknowledge that the absolute numerical prediction of the risk
is not the most important contribution of risk models. As this example demonstrates, any conservative
bias can result in the distortion of the risk profile, which may affect decisions and the allocation of
resources. At present a culture of erring towards conservatism in safety risk models still exists, and
this example provides a cogent reason to avoid conservatism.
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Section 4 discusses the case when uncertainty in the probability of failure on demand is also taken into
account.

4. BEST ESTIMATE PLUS UNCERTAINTY

The preceding sections have established that the use of conservative estimates can significantly alter
the risk profile of a plant. However, there is a useful concept implicitly encoded in the use of
conservative estimates; namely that of uncertainty in the estimate. Although it is not usually explicitly
described, by vague allusions to the 95™ percentile confidence interval, conservative values do in fact
implicitly take account of uncertainty in estimated values. However, this is not true of a best estimate
point value, and represents a significant shortcoming of using best estimates in isolation. Where a
conservative estimate overly penalises the risk and in so doing distorts the risk profile, best estimates
alone ignore the issue of uncertainty making the results vulnerable to estimates which are not precise.
The next logical stage in the process is to include uncertainty explicitly, based on a probability
distribution around the best estimate. This has the effect of preserving the uncertainty information that
is only encoded implicitly in conservative estimates.

It is useful to note that there are several common operations on distributions such as convolution,
product distribution and multiplication of functions; more information on these is available from any
standard text. Convolution of distributions is the required operation to combine events using an OR
gate, however, this document exclusively considers AND gates so only the product distribution is
required. The general form of this for 2 inputs to an AND gate is given below, where Z is the product
distribution XY formed from the random variables X and Y.

P(Z) = ﬂ P(x g) |%|dxdz

The general form for n inputs can be found by iteratively re-naming the product distribution. The
resultant product distribution can look very different depending on the input distributions. However, a
typical form is shown in Figure 5, below, for the product distribution of two lognormal distributions.

(14)

Figure 5: Product Distribution of Two Lognormal Distributions
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The mean, median and 95™ percentile are marked on the distribution in Figure 5. The product of two
95™ estimates is also marked on the product distribution to illustrate that it does not coincide with the
true 95™ percentile of the product distribution. The true 95" percentile of the product distribution (in
the given example) is 3.7E-06, while the 95™ percentile calculated by just multiplying two 95"
percentiles together is 1.4E-05, which is actually the 99" percentile of the true product distribution.
This is a further distortive effect of conservative estimates that occurs after the use of just a single
AND gate, and provides additional justification for not using them. If the mean is used as the best
estimate then this estimate at least is not distorted by the process of using an AND gate; i.e. the value
of the product of mean best estimates equals the mean of the product distribution of the two “true”
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distributions. However, using the mean alone fails to recognize the uncertainty information. The
purpose of including a full uncertainty distribution is to add back in the information which is “lost”
when moving from a conservative estimate to a best estimate paradigm. This “loss” of information is
easily seen by considering two distributions with the same mean, but different levels of uncertainty.
One distribution may be very narrow, while the other may be broad, but using the mean estimate for
both would appear to equate the two. Hence, in most scenarios, simply using a best estimate will result
in a naive understanding of the risk. To complete the picture it is essential to have an explicit estimate
of the uncertainty as well as using a best estimate of the central tendency.

5. DISCUSSION

The results presented here provide additional confirmation that the use of conservative judgements in
risk analysis does not provide results which properly reflect the risk profile. In particular it has been
shown that in the case of maintenance arguments, it leads to undervaluing the contribution to risk of
removing lines of protection which have been conservatively assessed. This extent of this distortion
increases the greater the conservatism. This can have a real impact on decision making; for example a
particular barrier may afford (in reality) excellent protection but where analysis for it is very
conservative, this would lead to a significant under-valuing of its protective capability. This
conservatism may not be apparent in the cutset results and risk importance results. However, during
maintenance it means that the risk model would fail to inform the analyst about the risk spike which
would occur when that excellent barrier was unavailable due to maintenance.

There are parallels here with assessment of software. Software testing is an exceptionally hard
problem which continues to challenge the software community [12]. A major contributor to the
difficulty is the high dimension of the parameter space which needs to be checked, meaning that only a
small volume can practically be checked. For this reason the current approach in assessing software in
risk analyses is to use an ultra-conservative approach. To the author this is an outdated viewpoint,
which needs to be addressed. While it is acknowledged that predicting software reliability is hard, it
should still be subject to the best estimate philosophy; uncertainty estimates then provide a way to
qualify that best estimate and to, rightfully, acknowledge that the software reliability is currently
approximate.

An explanation for this attraction to conservative estimates is found in what appears to be the basic
psychological wiring of humans showing an aversion to uncertainty, which has been dubbed the
“uncertainty effect” [13]. Indeed, the uncertainty effect goes further than merely devaluing a package
compared to the mean due to uncertainty; a package including uncertainty is often valued,
subjectively, as worth less than the worst possible outcome. For example an uncertain lottery in which
payouts are gift certificates with a face value between $50 and $100 is valued, by a significant
proportion of people, as being worth less than a certain payout of a gift certificate with a face value of
$50 [13]. This is a surprising result indeed, but the only point drawn from this result here is that this
type of observation is indicative of the level of human aversion to uncertainty, even if the precise
characterisation of that aversion requires further investigation in the psychological literature.
However, this type of psychological bias must not be allowed to creep into the way in which risk
analysis is performed. Even if psychological biases are unavoidable in the eventual decision making,
psychological effects should be deferred as far down the process as possible; i.e. it should not feature
until the “end” of the quantitative risk analysis estimation problem, after the risk profile has been
estimated as faithfully as possible, including estimates of uncertainties as far as possible. This helps to
avoid a compounding of these effects throughout the process.

Human perception of risk and reward is known to be a complex topic and subject to numerous
psychological effects [14, 15]. Humans are bad at internalising small probabilities, and are known to
distort the value of small probabilities, with a strong tendency over-value them. The value gradients
are observed to be steep near certainty and near impossibility [14]. Since the absolute magnitude of
small probabilities is not readily processed by humans, this presents a strong argument for the use of
relative probabilities in assessing different scenarios, as far as possible. Relative probabilities are, in
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general, closer to the range of 50:50, which is a probability region in which humans tend to respond
more rationally [14].

The aim of this type of work is to attempt to erase the prevailing mindset that it is better to be
conservative than optimistic in risk estimates. This type of thought process certainly makes sense
when it comes to design but is absolutely flawed when it comes to quantitative risk assessment, since
it is like trying to push down a lump in a carpet. If you are conservative in one area (push down the
lump) then you inadvertently neglect another area by distorting the risk profile (the lump pops up
somewhere else). Not only does this type of behavior reduce how informative the analysis we have
performed on areas of the system we understand well, but it also has the less well defined and
pernicious effect of permitting the belief that, since we have been conservative in all our assessments,
the overall values we are calculating are themselves conservative. The ill-stated implication is that, by
being conservative for known sequences, we have implicitly allowed for model completeness
uncertainty. Unfortunately, this is demonstrably untrue by a comparison between predicted values
from PSA studies and the observed figures of reactor core melts and total reactor operating years
accumulated worldwide, which is (at least) 3 severe accidents (Fukushima, Chernobyl, and Three Mile
Island) in approximately 15,000 operating reactor years. There are strong mitigating arguments against
this type of simplistic frequency observation, including the location dependence of hazards and the
evolution of reactor design compared to reactors that suffered severe accidents. Nonetheless it
provides a strong indication that current risk models may be missing significant risk contributors. The
use of conservative assessments in the development of risk models could be acting to mask this
conclusion by appearing to imply that risk models in their totality are also conservative; this in turn
provides a loose rationale for the neglect of model completeness issues.

6. FURTHER WORK

This paper has demonstrated the distortion of the risk profile due to maintenance outages for a
simplified model of a system in which there are ‘n’ lines of diverse protection, resulting in a
particularly simple class of fault tree, but this analysis could be extended to more complex models.
The analysis was greatly simplified by assuming that only AND gates were necessary. Events under
OR gates could be replaced by a single new basic event with a different failure parameter; it is noted
that by doing this the uncertainty distribution associated with the new basic event would be more
complex, but this does not affect the overall argument above since no assumptions were made about
the form of the uncertainty distribution D(P;). For this reason the results presented here are applicable
to a general fault tree model, although further work could be done to definitively prove this claim
using more complex fault trees. In addition to the level of complexity of the model, other aspects of
risk models typically found in PSA models could also be included in the analysis. For example the use
of time varying models, event trees and the use of boundary conditions to define scenarios of interest.
This would lend even greater weight to the need for the use of best estimates, especially when the
results of risk modelling are being used to inform decision making. Beyond strengthening the
motivation for quantitatively assessing uncertainty, there are numerous maintenance analyses that
could be usefully re-evaluated including uncertainty. For example the design of ‘optimal’ maintenance
schedules could be strongly affected by the inclusion of uncertainty in failure parameter estimates.

The type of uncertainty considered in this document has only been statistical uncertainty. There are
numerous other forms of uncertainty in PSA models, for example scenario uncertainty, success criteria
uncertainty, accident progression and operator reliability uncertainty. Incorporating, explicitly,
uncertainty from these sources would greatly benefit the predictions and insights that can be gained
from PSA models. It is acknowledged that this represents a significant body of work and many
uncertainties will require a bespoke method to incorporate. An example of the assessment of a
“hidden” conservatism resulting from supporting neutronic analysis is presented in Reference 16.
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7. CONCLUSION

The distortive effect of conservative estimates has been examined. This paper has demonstrated that
the risk due to maintenance outages is underestimated if conservative values are used for failure
parameters instead of best estimate values. It was then acknowledged that the conservative estimates,
relied upon historically in the risk community, actually have intrinsic estimates of uncertainty bound
up in them, and this partially justifies their use. It was shown that, in order not to distort the risk
profile of a system, but while also retaining the uncertainty information implicit in conservative
estimates, that best estimates alone are not sufficient and that best estimates plus uncertainty
distributions are required. While there are clearly challenges in quantitatively finding a best estimate,
and an estimate of the uncertainty, the author maintains that this is not a fundamentally different or
more difficult task than producing a conservative estimate. A major difference is in fact exposure;
whereas it is almost always possible to find a conservative number that few people would challenge, a
best estimate is intrinsically more vulnerable to criticism. This is not necessarily a trite consideration;
in some legal settings this could be of significance. However, from a pure risk quantification
perspective it should always be desirable to develop the most accurate risk profile possible.
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