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Abstract: For the quantification of common cause failures (CCF), GRS has developed the coupling 

model. This model has two important features: Firstly, estimation uncertainties which arise from 

different sources, e.g. statistical uncertainties, uncertainties of expert judgments or uncertainties due to 

inhomogeneities of statistical populations, are taken into account in a consistent way. Secondly, it 

automatically allows for the extrapolation of CCF events two groups of different sizes (“mapping”). 

This feature has been very important since for most component types groups of several different sizes 

can be found in German NPP. The model assumptions necessary to allow for this feature, however, 

also lead to undesirable convergence properties when a large amount of operating experience is 

available. Therefore GRS has started a project to research possible improvements of CCF modeling 

with respect to this aspect including the development of models that avoid making use of the 

restrictive modeling assumptions, which allow a comprehensive treatment of uncertainties, and which 

are applicable to data available in the German CCF data pool which does not contain information on 

single failures. Two different models have been developed, including a conservative mapping 

procedure. Comparisons of the results of the new estimation procedures and the coupling model show 

that the results are compatible. 
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1.  INTRODUCTION 
 

Common cause failures (CCF) contribute to a large extent to the unavailability of redundant systems, 

especially for highly redundant systems. Probabilistic safety assessments (PSA) have shown that these 

unavailabilities may make a significant or even dominant contribution to the estimate of the core 

damage frequency of a nuclear power plant. Therefore an appropriate estimation of CCF probabilities 

including an adequate uncertainty analysis is of great importance. Since in most cases CCFs are very 

rare events statistical uncertainties have to be considered. Uncertainties arising from other sources like 

uncertainties of expert judgments on the impairments of components in CCF events or the possible 

inhomogeneity of populations have to be considered as well. To accomplish this, GRS has developed 

the coupling model and associated estimation procedure [1]. In the coupling model, uncertainties are 

treated in a consistent way by applying Bayesian statistical methods. The coupling model and the 

procedures for event assessment and parameter estimation have been continuously advanced in recent 

years [2,3] including a new procedure to consistently represent the remaining uncertainties related e.g. 

to a possible inhomogeneity of populations. One main feature of the coupling model is that it 

automatically allows for the extrapolation of CCF events to groups of different sizes. Model 

assumptions associated with this feature also cause undesirable convergence properties which may 

become more important since an increasing part of German operating experience has been evaluated 

recently with regard to CCF [4,5] and hence the number of CCF events available has increased. 

Therefore GRS has started a project to research possible improvements of CCF modeling with respect 

to this aspect. In the present paper, the first results of these efforts are discussed.  

 

The paper is organized as follows: In chapter 2 the present coupling model and estimation procedure 

are described, including a recent development for the modeling of sources of additional uncertainties 

not included before (section 2.4). The convergence properties are also discussed (section 2.5). In 

chapter 3 two alternative models are developed which avoid the restrictive modelling assumptions 

leading to the undesirable convergence properties of the coupling model. In chapter 4 the estimation 

results of the different models are compared and discussed. In chapter 5 the use of operating 
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experience from component groups of different size (so-called mapping) is briefly discussed. A simple 

mapping procedure is introduced and compared to estimation results of the coupling model. In chapter 

6 conclusions are made. 

 

For the sake of simplicity and compactness, no complete mathematical treatments are presented in this 

paper. These will be given in [6].   

 

2.  PRESENT COUPLING MODEL AND ESTIMATION PROCEDURE 
 

2.1.  Basic Equations of the Coupling Model 

 

Like in the binomial failure rate (BFR) model [7], it is assumed in the coupling model that if a CCF 

phenomenon occurs in a component group, the individual components fail independently of each other 

with a probability   or remain unaffected with a probability     . The parameter   is denoted 

“coupling parameter”. Unlike in the BFR model, it is not assumed that the coupling parameter is 

identical for all CCF phenomena. Therefore CCF failure probabilities are estimated separately for all 

observed CCF phenomena. The total common cause probability of a (  out of  ) failure is calculated 

as the sum over all phenomena. 

 

The probability        of a common cause (  out of   )-failure due to the CCF phenomenon   is given 

by 

 

           (
 
 
)  

 (    )
   

 (1) 

 

with   denoting the size of the target component group,    denoting the coupling parameter of CCF 

phenomenon   and    denoting the probability that a CCF due to phenomenon   occurs in the target 

component group.  

 

Equation (1) has the form of a product of the probability that a CCF due to phenomenon   occurs in 

the target component group and the conditional probability that k out of r components fail, given that a 

CCF due to phenomenon   has occurred. Under the assumptions mentioned above, the number of 

failed components follows a binomial distribution with parameter    , when CCF phenomenon   

occurred in the target component group. 

 

The probability    that a CCF due to phenomenon   occurs in the target component group is calculated 

as  

 

             (2) 
 

with    denoting the applicability factor,    denoting the expected failure detection time for the CCF 

phenomenon   and   denoting the rate of CCF phenomenon   in the observed population. The 

applicability factor is defined as the relative rate of an occurrence of the CCF phenomenon in the 

target component group with respect to the component group in which the CCF event occurred. The 

estimation of    is based on possible technical and operational differences between the observed and 

the target component group. If no substantial technical and operational differences exist, the observed 

CCF event   is fully applicable to the target group and therefore      holds, which applies in most 

cases. 

 

Equation (2) is only valid if    is small, i.e.            holds. This generally is true in normal 

applications.  
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As noted before, the total common cause probability of a (  out of  ) failure      is calculated as the 

sum of the probabilities        over all observed CCF phenomena: 

  

 
     ∑      

 

   

 (3) 

 

with   denoting the number of CCF events that occurred in the observed population of component 

groups. 

 

2.2.  Estimation of Model Parameters 

 
To estimate the CCF failure probabilities with the coupling model, first the coupling parameters    

have to be estimated (see equation (1)). Since the number of components m in the component group 

where a CCF took place is usually quite small, there is a large uncertainty associated with this 

estimation. This uncertainty is treated by using a Bayesian approach to estimate the coupling 

parameters. Using a non-informative prior [8]  (  )    √         for the coupling parameter the 

a posteriori probability distribution is given by the Beta distribution 
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if   out of   components failed during the CCF event  . 
 

Operating experience shows that in many CCF events components are found which are more or less 

severely degraded but have not failed yet. In the coupling model, however, it is assumed that if a CCF 

phenomenon occurs in a component group, the components either fail or remain unaffected. Hence, 

degraded components are not directly modeled. This is done for two reasons: Firstly, in a PSA 

component states are also only modeled as failed or unaffected. Secondly, a CCF model would require 

additional parameters to model degraded states. Since the number of CCF events found in operating 

experience is very limited, estimation of such parameters would be difficult and would lead to large 

estimation uncertainties. In the coupling model this is resolved by interpreting degradations as 

probabilities of failure. Therefore, the number of failed components on which the estimation of the 

coupling parameter    (equation (1)) is based has to be treated as an uncertain quantity. This 

uncertainty has been termed “interpretation uncertainty” in [2]. It is treated in the following way: The 

probability      that   out of   components would fail during an additional demand is estimated for 

all       using engineering judgment. These probabilities are represented by a so-called 

interpretation vector                      where the condition ∑     
 
      must hold.  

 

Generally, it is not feasible for technical experts to directly assess such kinds of subjective 

probabilities. Therefore, a method was developed which automatically generates an interpretation 

vector  . This method consists of assessing degradation levels for each component of the component 

group where the CCF event took place. The degradation level is interpreted as the probability that the 

component would fail during the next demand due to the CCF phenomenon observed (e.g. 1 for failed 

components and 0 for completely unaffected components). Given the component impairments the 

interpretation vector   is determined using probability calculus [2]. This approach is well proven and 

is also used for other CCF models [9].  

 

After determination of the interpretation vector  , the coupling parameter j  for each CCF event j 

can be estimated. For each single interpretation alternative, the a posteriori distribution is determined 
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according to equation (4). This results in an a posteriori distribution of the coupling parameter j  

which has the form of a weighted mixture of Beta distributions: 

 

 
 (  )  ∑    

 

   

 
      

                   
   

     
 (    )

       
 (5) 

 

This distribution expresses the uncertainty about the coupling parameter    taking into account both 

the statistical and the interpretation uncertainty. 

 

To include the statistical uncertainty of the rates of the CCF events, the Bayes a posteriori distribution 

      is calculated using the non-informative prior [8]  (  )    √  . This results in a Gamma 

distribution as a posteriori distribution of     
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     (6) 

 

Using equation (2), the probability distribution of        can be calculated. This is done with Monte 

Carlo methods. 

 

2.3.  Uncertainty Related to Expert Judgments  

 

Since expert judgments are afflicted with uncertainties, a considerable number (usually 4 or more) of 

expert judgments on the impairment of the components and on the applicability factor is collected for 

each event observed. The procedure for clarifying the technical facts and performing the expert 

judgments is described in detail in [10]. Below, the entirety of expert assessments is denoted by  . 

  

The calculation of the distributions of        as described in the last chapter is carried out individually 

for all experts, resulting in an expert-specific subjectivist probability distribution of       . To 

combine the judgments of the different experts, the mixture distribution is calculated from these 

individual expert-specific subjectivist distributions. According to equation (3) the total probability of a 

CCF event with   failures is the sum of the individual phenomenon-specific probabilities       . These 

calculations are carried out using Monte Carlo methods. 

 
2.4.  Consideration of Additional Uncertainties 

 
Finally, the remaining uncertainties not considered before have to be included. Most prominent is the 

uncertainty related to a possible inhomogeneity of populations. This possible inhomogeneity implies 

that if      is the probability of a (  out of  )-CCF estimated from operating experience from a 

specific population, the probability of a (  out of  ) CCF  ̂    in a specific CCF group modelled in a 

PRA in general deviates from that value. This is quantified by a conditional distribution    ̂         . 

The probability distribution of  ̂    can be expressed as 

 

 
   ̂      ∫   ̂   |    )            

 

 

 (7) 

 

In general there is no information that the different sources of uncertainty take effect differently in 

different component groups or component types. Hence a universal distribution    ̂          is 

assumed for all component groups. Due to the limited number of CCF events it is not possible to 

estimate the functional form of    ̂   |    )  or its characteristics from operating experience. 

Therefore, the following assumptions are made:  
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1. Preservation of expectation value: It can neither be expected that  ̂    is larger nor that it is 

smaller than      Therefore it is assumed that    ̂   |    ) preserves the expectation value, 

which implies ∫  ̂      ̂   |    )  ̂        
 

 
. 

2. Scale-independence: The shape and relative width of   shall be independent of     . This 

implies that the standard deviation of    ̂          is proportional to      (with the 

proportionality factor denoted by  ).  

3. Minimal width: The 95%-quantile should at least be 4 times as large as the mean. This criterion 

has been determined by expert judgments and is in agreement with the previous “broadening” 

described in German PRA guidelines [11]. 

 

These assumptions are applicable for        . This is generally valid in normal applications. 

 

   ̂          is assumed to be a beta distribution, i.e.:   
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(   ̂   )

   
  ̂   

   

       
 (8) 

 

with         denoting the beta function.  

The assumptions described above allow to determine the two (    -dependent) parameters as 
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(9) 

 

Assumption 3 implies         . Equation (8) can seamlessly be implemented in the Monte Carlo 

simulation described above.  

 

2.5.  Convergence Properties 

 
As mentioned above, the coupling model has been developed to estimate CCF probabilities from 

operating experience data comprising usually only a small number of events for each component type. 

However, the model assumptions introduced to facilitate this also imply undesired convergence 

properties. Firstly, if the data is not compatible with the model assumption that the number of failed 

component obeys a Binomial distribution for each CCF phenomenon (eq. 1), a convergence to the true 

values      is generally not possible. More importantly, the assumption that different CCF phenomena 

may be characterized by different coupling parameters implies a separate estimation of the coupling 

factor for each event (eq. 4). This implies that distributions         are not getting narrower when the 

number of events grows. As an example, the resulting distributions are identical if one (2 out of 4)-

event has been observed during an observation time   to a case where ten (2 out of 4)-events have 

been observed during observation time     . This does not reflect the fact that the evidence on the 

probabilities of the various failure combinations has grown significantly, which should lead to a 

smaller estimation uncertainty and thus narrower width of the distributions. 

  

As an increasing part of German operating experience has been evaluated with regard to CCF and 

hence the number of CCF events available has increased considerably [4,5] this issue is growing in 

importance. Therefore, GRS has started a research project to evaluate methods to improve CCF 

modelling with respect to this aspect, which will be described in the following chapter. 

 

 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

3.  ALTERNATIVE MODELING OF CCF 

 

3.1.  Boundary Conditions of CCF Probability Estimation 

 

Any further development of the model and the procedures for CCF probability estimation has to take 

into account the boundary conditions prevailing in Germany. According to German PRA guidelines, 

plant specific operating experience has to be used for quantification whenever possible. Therefore 

usually plant specific operating experience is used to quantify unavailabilities due to independent 

failures, while common cause failures are quantified using generic operating experience. As a 

consequence, only CCF-related information is available in the German CCF data pool. Events with 

non-systematic (single) failures are not included. Therefore, models which relate the CCF rate to 

single component failure rates – like the alpha-factor model – cannot directly be applied. The exact 

number of demands of stand-by components is not available. Instead, observation times have been 

determined. For the failures during demands operating times have also been calculated. Therefore 

CCF failure rates have to be estimated (see eq. 1). Not only true CCF, but also “potential CCF” events 

where multiple components were impaired due to a systematic cause while only one or even no 

component actually failed are included in the data pool. To improve the accuracy of estimations, this 

information should also be utilized for CCF quantification. For all events, component impairments and 

applicability factors have been quantitatively assessed by several experts to allow the consideration of 

the uncertainty of expert assessments. These uncertainties should be adequately represented in the 

improved model as well. Generally, the treatment of uncertainties should be as comprehensive and 

consistent as in the coupling model. Also, the results of CCF quantification (a posteriori distributions) 

should be representable in a form suitable for practically carrying out PRA calculations including data 

handling. Ideally they would be independent parametric distributions of the CCF probabilities or well 

approximable by such distributions.  

 

Modelling approaches to fulfil these requirements are presented in the following section. 

 

3.2.  Alternative CCF models 

 

To avoid the undesirable convergence properties associated with the model assumptions discussed 

above, they would need to be replaced with less restrictive assumptions. An obvious way to achieve 

this is to replace the phenomenon-dependent binomial distribution with a categorical distribution. 

Such distributions however do not have group-size independent parameters; hence the “auto-mapping” 

feature of the coupling model is lost. Therefore, separate mapping algorithms are needed. 

Alternatively, (  out of  )-CCF with different   could be considered independent elementary events. 

Here, separate mapping algorithms are needed as well. In the following, two model structures are 

discussed: 

 

Model A  

 

In model A, CCF events with k out of r failed components occur with a rate     . The probability of a 

(  out of  )-CCF is 

 

             (10) 

 
Model B 

 
In model B, CCF events occur with a rate  . With conditional probability        of   components fail 

if a CCF occurs (with      ). Hence ∑     
 
      is valid. The probability of a (  out of  )-

CCF is 

 

               (11) 
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The model structures are shown in Figure 1. OK denotes a state where no CCF has occurred. 
 

  
 

Figure 1: Model structures for model A (left) and B (right) for a CCF group of size 4.    

 
It should be noted that these models are equivalent since             is valid. Therefore, 

estimations from operating experience should lead to the very same results, if equivalent a priori 

distributions are used. However, the different model structures suggest using different a priori 

distributions, as will be discussed later.  

 

For these models the total observation time   and the numbers      of CCF with   failed components 

(      ) form a sufficient statistic. It can be written as (   )-tuple                 . In 

general   is not precisely known as mentioned in chapter 2.2. A probability distribution        has 

to be calculated from the expert assessments   of component impairments and applicability factors. 

This can be done using probability calculus. 

 

It is possible, however, to implement        in a Monte Carlo procedure without calculating the 

(   )-dimensional distribution        by noting that for each event the interpretation vector   (see 

section 2.2) is an expert-specific distribution of the number of failed components. The Monte Carlo 

procedure consists of first randomly choosing one of the available experts for each event. This reflects 

the assumption that all experts are equally competent in assessing the events. Then, a number of failed 

components is drawn from   as estimated by that expert. With probability   (applicability factor) this 

number is accepted, with     the number of failed components is set to 0. This is repeated for every 

event observed. The total number of cases where         component failures occurred is summed up 

over all events to calculate the sample of  . 

 

Given  , the model parameters can be calculated. For model A, the model parameter      is only 

dependent on     . This suggests choosing independent a priori distributions for all model 

parameters, i.e.  (            )   ∏     (    )
 
   . If a non-informative approach is followed, all 

     are chosen identically. Using Jeffreys’ rule the a priori distribution becomes  

 

 
 (            )  ∏(    )

    
 

   

 (11) 

 

The a posteriori distribution then also factorizes: 

 

 
 (              )  ∏

         

           
       

        
        

 

   

 (12) 

 

with   denoting the Gamma function. Hence the model parameters are independent and distributed 

according to Gamma distributions with parameters          and  . 
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For model B the model parameter   is only dependent on the total number of CCF events     
∑     

 
   , not the individual     . This suggests choosing the a priori distribution        

         with          ,     } denoting the parameter set of the categorical distribution. If a 

non-informative approach is followed and Jeffreys’ rule is applied the a priori is  

 

 
 (             )       ∏(    )

    
 

   

 (13) 

 

This implies for the a posteriori distribution 

 

 

         
       

         
       

        
      

∏       
         

   

                      
 (14) 

 

with  (         )  ∏        
 
     (∑     

 
   )    is distributed according to Gamma distribution 

with parameter        and  .   is distributed according to a Dirichlet distribution with parameter 

set                      . This mathematically is similar to the alpha factor model; it should 

be noted though that the meaning of the model parameters is different (see above). 

 

It is worth noting that  (             ) factorizes into     one-dimensional Gamma distributions 

and  (               ) factorizes into a Gamma and a Dirichlet distribution, while        does 

in general not factorize. Hence the resulting distributions of model parameters, given the expert 

assessments, also do not factorize. The same is true of the CCF probabilities     . Therefore, in 

principle, joint probabilities should be used when carrying out uncertainty analyses. The effect of 

properly including the statistical dependencies in PRA uncertainty calculations is currently under 

investigation in a GRS research project.  

 

Well-known properties of Gamma and Dirichlet distributions imply that the estimates (12) and (14) in 

the limit of an infinite number of events converge to their true values. If the number of relevant events 

is relatively small, however, the different a priori assumptions of model A and B may have a 

considerable effect on the estimation results.  

 

If, for example, no failures occurred, in model A all      are (independently) distributed with a 

Gamma distribution with parameters     and  . Hence the expectation values are 〈    〉         . 

In model B   is distributed with a Gamma distribution with Parameters     and  .               are 

distributed according to a Dirichlet distribution with parameters            . Hence, the expectation 

values are 〈    〉              , which is smaller by a factor of      . This may be significant 

for large CCF groups. 

 

Generally, due to the different a priori assumptions for a finite number of events the expectation 

values 〈    〉 are always larger for model A than for model B. Also the width of the uncertainty 

distributions is larger (see also figures 2-4). 

 

4. COMPARISON OF ESTIMATION RESULTS 

 
To compare the different models, they were used for CCF quantification in various different CCF data 

sets of German operating experience. The information contained in the German CCF database is partly 

proprietary. Therefore, representative modified data sets have been prepared which allow to compare 

the quantification results while protecting the proprietary information. Two of these datasets will be 

discussed below. Data set one represents populations with a large number of observed events, while 

data set two represents populations with a very small number of observed events. Data set one has 

been created by first dropping from an original dataset all events that occurred in a CCF group of a 
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size different from 4 and then dropping a small number of random additional events and multiplying 

the observation time   by a random number. This data set comprises 15 events. In some events all 

components were impaired. No more than two components completely failed. Data set two has been 

created by picking a typical event from component datasets where very few events occurred. In this 

particular event, one component failed and the remaining three were considered impaired by three 

experts and unaffected by one expert. The observation time   was selected arbitrarily. The 

intermediate results before the additional uncertainties (see section 2.4) are included are shown in 

figure 2. 

  
 
Figure 2: Intermediate estimation results for dataset 1 (left) and dataset 2 (right). Shown are the 
expectation values (circles) and 95%-confidence intervals (error bars) of estimates of      (top) 
and      (bottom). Estimates of model A are shown in blue, estimates of model B in red, 
estimates of the coupling model in green. 

 
For the parameter describing failures where substantial empirical evidence is present (     for data set 

1) the results are quite similar (deviations of less than a factor 1.4 in the mean and 1.5 in the 97.5%-

quantile). For parameters describing failures that are “extrapolated” from the events observed the 

deviations between all models are somewhat larger (deviations of up to a factor 5.67 in the mean and 

5.52 in the 97.5%-quantile). This can be attributed to the different modelling and a priori assumptions.  

 

The 95%-confidence intervals [            ] show a very large overlap. In all cases the expectation 

values of all models lie within the confidence intervals of all other models.  

 

In figure 3 the final results after considering the additional uncertainties are shown. 

  
 
Figure 3: Final estimation results for dataset 1 (left) and dataset 2 (right) after “broadening”. 
Shown are the expectation values (circles) and 95%-confidence interval (error bars) of estimates 
of      (top) and      (bottom). Estimates of model A are shown in blue, estimates of model B in 
red, estimates of the coupling model in green. 
 

The final results after inclusion of the additional uncertainties are qualitatively the same. While the 

confidence intervals have grown the mean has not changed (see chapter 2.4).  
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5.  MAPPING 

 
As noted before, for models A and B – in contrast to the coupling model – only those operating 

experience events can be used directly that occurred in groups with size identical to the component 

groups CCF probabilities are estimated for. Therefore, if not enough such operating experience is 

available, separate mapping algorithms have to be used to determine how many components would 

have failed in groups of different size. This would be especially important in Germany where in many 

cases group sizes are different in different plants. For example, emergency diesel generators groups of 

size 2, 3, 4, 5 and 6 exist or existed. Several approaches have been discussed but since CCF genesis 

and detection are complex and multifarious processes it appears difficult to rate the different 

approaches or justify a specific approach (see e.g. [12,13] and references therein). Different aspects 

like the assessment of the modelling uncertainty or the compatibility with a priori beliefs need to be 

considered. E.g. the assumption that a CCF group is statistically equivalent to an arbitrary subgroup of 

a larger group is generally not consistent with choosing a non-informative a priori distribution by 

simply applying Jeffreys’ rule like in eq. (11) and (13), an approach that is usually also used for the 

alpha factor model [12]. This can be easily seen by a simple example: If a group of size three is 

considered a subgroup of a group of size four                        holds which implies 

        . This is not consistent with the non-informative prior chosen according to Jeffreys’ rule 

 (           )    √          where no bounds on      are present. This is due to the fact that 

the information mentioned above is not accounted for. Similarly, the assumption of a Binomial 

distribution often used for mapping is conflicting with the a priori belief of eq. (11) and (13). 

Estimation procedures utilizing such assumptions and conflicting non-informative priors would suffer 

from inconsistency.  

 

Therefore, for the present studies a simple procedure was applied. When mapping down, it consists of 

“deleting” the least affected components. When mapping up, it consists of “duplicating” the most 

affected components. This means an event with 2 failed and 2 impaired components would be mapped 

to an event with 2 failed and one impaired component for group size three or to an event with 3 failed 

and 2 impaired components for group size five. It is evident that this approach is conservative under 

any circumstances. While for large differences in group sizes this approach appears to be overly 

conservative, for small differences, e.g. group sizes differing by only one it may lead to reasonable 

results. One example is shown in figure 4. Here a data set comprising CCF groups of size 3 and 4 was 

considered. The observation time for CCF groups of size 3 was 5 % of the total observation time. 

There is one event in a component group of size 3 and 15 events in groups of size 4. Estimates using 

model A have been calculated both from data from groups of size 3 and from data from groups of 

sizes 3 and 4, applying the mapping algorithm described above. The coupling model has been applied 

to data from both groups of sizes 3 and 4, making use of the “auto mapping” feature. 

  
 
Figure 4: Intermediate (left) and final estimation results (right). Shown are the expectation 
values (circles) and 95%-confidence interval (error bars) of estimates of      (top) and      
(bottom). Estimates of model A using the data set of events and observation time in component 
groups of size 3 are shown in blue, estimates of model A using the data set of events in 
component groups of size 3 and mapped events of group size 4 and appropriate observation time 
are shown in magenta. Estimates with the coupling model are shown in green. 
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The results for model B using the data set including mapped data and the coupling model result in 

similar estimates. In all four cases the expectation values lie within the confidence intervals of the 

other model. The estimates using operating experience only of groups of size 3 are significantly 

different. Both uncertainty and expectation values are larger. This can be attributed to the considerably 

smaller amount of operating experience both in terms of observation time and number of events. 

 

6.  CONCLUSION 
 

The methods for quantification of CCF applied by GRS have been continuously improved. A new 

procedure for the consideration of additional uncertainties not treated before which is consistent with 

the Bayesian framework used in CCF quantification has been established. The convergence properties 

of the coupling model have been researched. Theoretical considerations show that for very large data 

sets the coupling model has undesirable properties preventing an adequate representation of the 

reduction of statistical uncertainty. Therefore comparative studies have been carried out to assess the 

relevance for the actual operating experience with regard to CCF in Germany. Two different models 

have been developed which are suitable for estimating CCF probabilities from the information 

available in the German CCF database. They do not use the restrictive modelling assumption on which 

the coupling model is based and therefore no undesirable convergence properties are present. 

Comparisons show that for present German operating experience no significant deviations are found. 

The deviations of the numerical results between all the three different methods are comparable. 

Therefore, modeling decisions need to be based on theoretical properties and practical considerations. 

While the coupling model has the convenient “auto-mapping” feature, Model A is free from any, 

possibly non-conservative, modeling assumptions. In the further course of the research project these 

properties will be evaluated in more detail. The development and evaluation of suitable mapping 

algorithms will be an additional focus of future research. 
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