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Outline 

 Context 
 New developments in CCF modeling 
 ICDE project 

 Modeling of CCF 
 Key ideas 
 General Multiple Failure Rate Model  

 Statistical Estimation 
 Empirical Bayes method 

 Case Study 
 MOVs 

 Summary 
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Common Cause Failures (CCF) 

 CCF is a dependent failure  
 in which two or more component fault states exist  
 simultaneously, or within a short time interval, as a direct 

result of a shared cause 
 CCF events can significantly impact the availability 

of safety systems of nuclear power plants 
 

 ICDE project started in 1994 
 systematically collecting and analysing CCF data 
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Objectives 

 Review status of the CCF modeling techniques  
 Alpha factor, Multiple Greek letter and Binomial rate 

 Investigate the technical aspects of Empirical 
Bayes method 

 Implement the methods for data mapping and 
statistical estimation of CCF rates 

 Present case studies to illustrate the analysis of 
CCF data 
 MOV data 
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Terminology 

 𝛬𝛬𝑘𝑘/𝑛𝑛 = Failure rate (system level)  
 failure of  ANY 𝑘𝑘 out of n component 

 
 𝜆𝜆𝟏𝟏𝟏𝟏 = Failure rate (component level) 

 Failure of specific components 1 and 2 
 

 Symmetry assumption  
 𝜆𝜆12 = 𝜆𝜆13 = 𝜆𝜆13 = 𝜆𝜆𝟐𝟐/𝟑𝟑  same rate for dual failures 

 Combinatorial relations between system and 
component rates 
 𝛬𝛬2/3 = 3𝜆𝜆2/3 
 𝛬𝛬𝑘𝑘/𝑛𝑛 = 𝑛𝑛

𝑘𝑘 𝜆𝜆𝑘𝑘/𝑛𝑛 
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Alpha Factors 

 αk/n It is the ratio of the failure rate Λk/n to the total 
rate Λn  

 𝛼𝛼𝑘𝑘/𝑛𝑛 = 𝛬𝛬𝑘𝑘/𝑛𝑛

𝛬𝛬𝑛𝑛
   and    𝛬𝛬𝑛𝑛 = ∑ 𝛬𝛬𝑘𝑘/𝑛𝑛

𝑛𝑛
𝑘𝑘=1  
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Data Mapping 

 CCF data are sparse 
 Probabilistic concepts are developed to borrow the 

data from CCG of different sizes  
 The CCF data are mapped to a target system of 

CCG n 
 Mapping down 

 Data from CCG > n  
  Mapping up 

 Data from CCG < n  
   
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Statistical Estimation 
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Data 

 Population  
 Number of systems susceptible to CCF 

 Exposure Time 
 Duration during which CCF data are recorded 

 Number of failures 
 Failures observed in the population 
 It is an involved task  

 Impairment states 
 C = complete failure (1), D = degraded (0.5) 
 I = Incipient (0.1), W = working (0) 

 Impact Vector 
 Probability of CCF failures under a demand and the 

observed impairment states 
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Estimation Methods 

 Two methods 
 Maximum likelihood method (objective method) 
 Bayesian Method (subjective method) 
 

 Maximum Likelihood Estimation (MLE) 
 Simple and straightforward method  
 Ample data are needed for robustness 

 𝜆̂𝜆𝑖𝑖 = 𝑁𝑁𝑖𝑖
𝑇𝑇𝑖𝑖

 

 Variance of the estimator 𝜎𝜎 𝜆̂𝜆𝑖𝑖 = 𝑁𝑁𝑖𝑖
𝑇𝑇𝑖𝑖2
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Empirical Bayes (EB) 

 A prior distribution is assigned to λ   
 Gamma distribution (conjugate prior) 

 The posterior distribution of the failure rate is also a 
gamma distribution 

 Mean and variance of the CCF data are used to 
calculate two parameters (α, β) of gamma dist.  

 Challenge 
 Pooling the data collected over different exposure time 
 Impact vector (uncertainty about CCF failures) 
 



Examples 



13 

Illustrative Example -  Data 

   
 

MLE Vaurio's EB 

Mean S.D.  Mean S.D. 

1 31 236.9020 0.1309 0.0235 0.1539 0.1343 0.0238 

2 157 115.9440 1.3541 0.1081 0.1534 1.3532 0.1077 

3 30 36.8120 0.8150 0.1488 0.1513 0.8229 0.1480 

4 13 7.5970 1.7112 0.4746 0.1405 1.6664 0.4469 

5 7 5.4660 1.2806 0.4840 0.1358 1.2723 0.4525 

6 7 1.6890 4.1445 1.5665 0.1070 3.2439 1.1536 

7 0 1.1230 0.0000 0.0000 0.0926 0.4846 0.5089 

8 0 0.5520 0.0000 0.0000 0.0655 0.6974 0.7323 
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Example-EB Prior 

 Prior distribution estimated by EB 
 α = 0.907, β = 0.7485  
 Mean failure rate = 1.2 failures/time 
 Standard deviation = 1.27 failures/time 

0 1 2 3 4 5

Failure Rate

PD
F

Mean Rate
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Example-Bayesian Updating 

 Posterior of failure rate of system 4 
 Prior α = 0.907, β = 0.7485  
 Data: Ni = 13, Ti = 7.597 
 Posterior mean rate = 1.66 failures/time 
 Posterior SD = 0.44 failures/time 

0 1 2 3 4 5

Failure Rate

PD
F Posterior

Prior
Median 1.62 

5th 
percentile 

1.0 

95th 
percentile 
 

2.46 

Posterior failure rate 
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Example-Bayesian Updating 

 Posterior of system 8 
 Prior α = 0.907, β = 0.7485  
 Data: Ni = 0, Ti = 0.552 
 Posterior mean rate = 0.7 failures/time 
 Posterior SD = 0.73 failures/time 

Median 0.464 

5th 
percentile 

0.027 

95th 
percentile 
 

2.162 

Posterior failure rate 

0 1 2 3 4 5
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Illustrative Case Study 

 Data 
 Sample similar to that of motor operated valves (MOV) in 

nuclear safety systems 
 A system of CCG of 4 is considered, data mapping was 

performed 
 System 

size   Number of failures 𝑁𝑁𝑘𝑘/𝑛𝑛  

𝑛𝑛   1/𝑛𝑛 2/𝑛𝑛 3/𝑛𝑛 4/𝑛𝑛 5/𝑛𝑛 6/𝑛𝑛 

2 
original 36 1 0 0 0 0 
mapped 36 0.6400 0.3200 0.0400 0 0 

4 
original 18 2 10 1 0 0 
mapped 18 2 10 1 0 0 

8 
original 6 1 0 0 0 0 
mapped 3.5714 0.2143 0 0 0 0 

16 
original 13 1 0 0 0 1 
mapped 4.0456 0.4209 0.1099 0.0082 0 0 

sum mapped 61.6170 3.2752 10.4299 1.0482  
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Results-1 

 Comparison of MLE and EB 
 



19 

Results-2 

 Comparison of standard deviations  
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Posterior Distributions (EB) 
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Summary 

 Application of CCF models and data mapping 
method to ICDE data 

  “General multiple failure rate model” for modeling 
CCF data  

 Investigation of statistical estimation methods 
 Empirical Bayes (EB)  

 A case study is presented  
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Concluding Remarks 

 This project demonstrates the development of a 
capacity to analyze CCF rates using the Empirical 
Bayesian (EB) method 

 Bayesian approach is a logical and consistent way 
to analyze problems confounded by “uncertainties” 

 Empirical Bayes allows to pool the data from 
different CCGs and plants 

 Implementation of EB method in practice is feasible 
(Excel-based programs) 
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Recommendations 

 More case studies considering real data from plant 
safety systems should be undertaken 

 The impact of testing scheme, such as staggered 
testing, should be considered 
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Thanks for your attention 
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