Exceptional service in the national interest

Risk Estimation Methodology for Launch Accidents

D. J. Clayton¹, R. J. Lipinski¹, R. D. Bechtel²
¹Sandia National Laboratories, Albuquerque, NM 87185
²U. S. Department of Energy, Germantown, MD 20874

PSAM12 Conference, Honolulu, HI June 22-27, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-15002PE

Curiosity on Mars

1% of all Launches Fail Near the Pad Sandia National Laboratories

Delta 241 Jan 27, 1997

Titan 34D

Step-2 GPHS Modules and MMRTG

Safety is built from the inside out and from the outside in. Analysis must quantify this for decision makers.

Presidential Directive / NSC-25 Requires Presidential Approval (or Designee) for All Launches with Nuclear Payload

Risk Estimation Methodology

- Detailed simulations and Monte Carlo sequence codes used to develop the probabilistic risk analysis
 - Potential accidents associated with the launch
 - Probability
 - Environment
 - Detailed understanding of the response of power system to insults
 - Explosion Overpressure
 - Fragments
 - Ground Impact
 - Thermal Environment
 - Re-entry
 - Atmospheric transport and consequences
 - Thermal buoyancy effects from fires
 - Meteorological conditions
 - Population and land usage distribution

Launch Safety Code Suite

Representative Accident Scenarios (RASs)

- Divide mission into six phases
- Construct accident scenarios within each phase
- Groups accident environments into RASs
- Combine results from each RASs into phase and overall results, based on the relative probability

Release Locations and Amounts

- LASEP models
 numerous potential
 scenarios, randomly
 choosing time of
 failure, explosion
 characteristics, etc.
- Release location and amounts determined mechanistically
- Probability
 distributions for
 release are
 determined

Potential release locations from numerous LASEP launch simulations

Example Source Term Results

Source Term Exceedance Graph

Consequence Modeling

Sandia-developed Transport Of Radionuclides Model (STORM) uses NOAA's HYSPLIT code, leveraging NOAA's extensive investment and readily accessible weather database

Potential Exposure Pathways

Florida Crop Use Data

Summary

- Safety analyses are required, and enabling, for the use of radioisotope power systems
- The response to potential accident scenarios is modeled in a stochastic manner with a Monte Carlo simulation
 - Results are summed and weighted by appropriate likelihood values
 - Estimated health risk calculated
- This information is used to guide power system or spacecraft designs, mission architecture or launch procedures
 - Potentially reduce risk
 - Inform decision makers