

Development of Feedwater Line & Main Steam Line Break Initiating Event Frequencies for Ringhals Pressurized Water Reactors

Presentation at PSAM 12, Thursday 6/26/2014, Honolulu, Hawaii, USA

Working together for a safer world

Outline

- Introduction
- Technical approach
- Damage mechanism evaluation
- Equivalent break size (EBS)
- Conditional rupture probability models
- Results
- Conclusions

Introduction

- During the last years LOCA frequencies for the three Ringhals PWR units has been updated piping reliability data from the R-Book.
 - Current version of the R-Book only covers ASME Code Class 1 and 2.
- FWLB and MSLB data however stem from much older data, i.e. WASH-1400.
- Also, during past ten years RI-ISI has been implemented at the PWR units at Ringhals.
- Desire to have FWLB and SLB frequencies consistent with LOCA frequencies and RI-ISI data.
- Scope of the project was therefore formulated as:
 - Application of state-of-the-art piping reliability models.
 - Use of operating experience data representing current body of industry-wide and plantspecific data
 - Completeness and modelling uncertainty shall be addressed.
 - Ringhals piping integrity management practices and procedures shall be taken into account

Technical approach

• The technical approach is based on the model expressed by following equations:

$$\rho_{ix} = \sum_{k} \lambda_{ik} P(R_x | F_{ik}) I_{ik} \qquad F(IE_x) = \sum_{i} m_i \rho_{ix}$$

- Where:
 - F(IE) Frequency of pipe break of size x
 - *m* Number of pipe components of type *i*.
 - *I* Frequency of rupture of component type *i* with break size *x*
 - Failure rate per "location-year" for pipe component type *i* due to failure mechanism k
 - P(RXF) Conditional probability of rupture of size x given failure of pipe component type i due to damage or degradation mechanism k

Damage mechanism evaluation

- The causes of pipe failure (e.g., loss of structural integrity) are attributed to damage or degradation mechanisms.
- In piping reliability analysis, two classes of failure are considered:
 - Event-Driven Failures; e.g. vibration, water hammer, operator failure
 - Failures Attributed to <u>Environmental Degradation</u> defined by unique sets of conjoint requirements that include operating environment, material and loading conditions, e.g. SCC.
- The source of all piping service experience data supporting this study is the proprietary PIPExp Database.
 - "Parent database" of the OPDE (2002-2011) and CODAP (2011-2014) databases
- In piping reliability, a "failure" is any degraded condition that necessitates repair or replacement.
- The high-level database summary on next slide is used to formulate specifications for a quantitative analysis of pipe failure parameters.

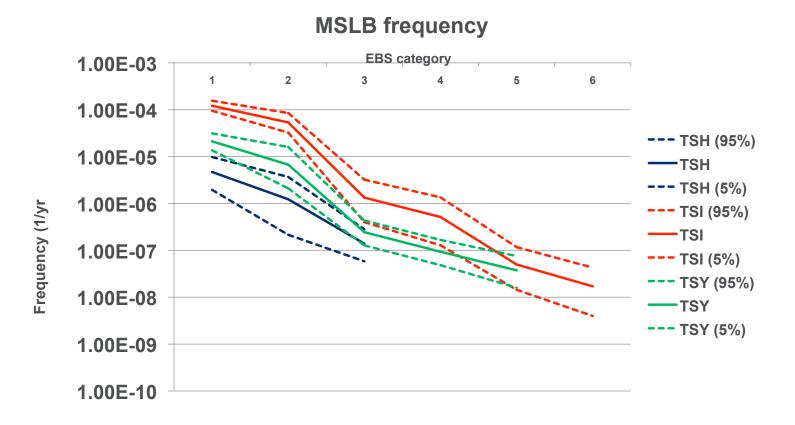
			PIPE DAMAGE & DEGRADATION / FAILURE MANIFESTATIONS							
				SI / ISI	ISI (NDE) / Visual Inspection / Walkdown Inspection / Leak Detection / CR Indication (ESFAS Actuation)					
			Recordable / Rejectable Flaw			Γhrough- face ted)	Crack - Through-Wall (No Active Leakage)	Active Leakage (< TS Limit)	Active Leakage (≥ TS Limit)	Structural Failure ("Significant" Through- Wall Flow Rate)
			FLAW	INITIATION	FLAW GROW		ROWTH		FAILURE	
EVENT-DRIVEN FAILURE (Stress Driven Failures)	HM	Hydraulic Transient / Water Hammer								
	D&C (Damage State)	Construction / Fabrication Defect								
		Design Error								
		Maintenance / Repair Error								
		Programmatic / Procedural Error								
		Welding Error / Weld Defect								
	FATIGUE	High-Cycle Fatigue	T							
		Low Cycle Fatigue	1							
		Thermal Fatigue (TT, TASCS)		•						
FAILURE A TRIBUTED TO ENVIRONMENTAL DEGRADATION	CORROSION	Crevice/Pitting Corrosion	<u></u>							
		Galvanic Corrosion	<u>+</u>							
		General Corrosion								
		MIC - Microbiologically Influenced Corrosion								
	CF	Corrosion Fatigue	I -							
	FLOW- ASSISTED DEGR.	Steam Jet Impingement Erosion]							
		Erosion-Corrosion								
		Erosion-Cavitation								
		FAC - Flow-Accelerated Corrosion								
DE	STRESS CORROSION CRACKING	ECSCC - CI Induced SCC (ID/OD)	T							
АТЯ		TGSCC								
RE		PWSCC - Ni-Base Alloys		_₩						
FAILUI		SICC - Strain Induced Corrosion Cracking								
		IGSCC - Stabilized Austenitic SS							-	
		IGSCC-PWR - Unstabilized Austenitic SS								
		IGSCC-BWR - Unstabilized Austenitic SS	↓ ↓		`	/				
										>

Extent of Degraded State / Through-Wall Flow Rate [kg/s]

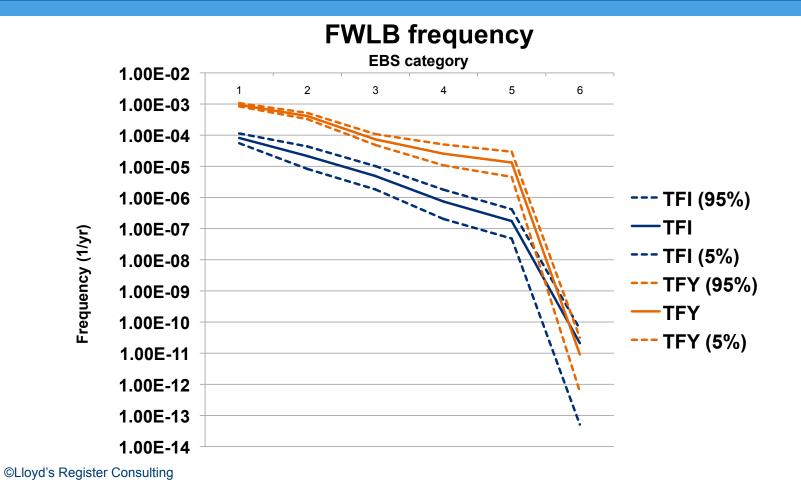
Damage mechanism evaluation

- The process of estimating reliability parameters begins by performing a systematic degradation mechanism (DM) evaluation of all pipe segments within the evaluation boundary.
- Based on the EPRI RI-ISI methodology, and the damage and degradation mechanisms specified there, a set of damage mechanisms to be evaluated was identified:
 - FAC Flow-Accelerated Corrosion (FW)
 - LDIE Liquid Droplet Impingement Erosion (FW/SL)
 - TASCS Thermal Stratification Cycling & Striping (FW)
 - LC-FAT Low-Cycle Fatigue & Pressure (FW/SL)
 - SH Steam hammer (SL)
 - WH Water hammer (SL)
 - VF Vibration fatigue (VF)

Equivalent break size (EBS)


- Another technical consideration is the correlation of IE frequencies with equivalent break sizes as required by a PSA model.
- The break sizes to be considered range from minimum break sizes that requires some kind of actuation up to a double-ended guillotine break.
- Break sizes were divided into the following categories:

Category	>EBS (mm)	Liquid Flow Rate (kg/s) ¹
1	13	10
2	38	75
3	76	300
4	152	1200
5	356	6250
6	762	28600


Conditional rupture probability models

- For certain combinations of material, loading conditions and degradation susceptibility, sufficient service experience exists to support direct CRP estimation.
 - As an example, extensive data exists on FAC-induced pipe rupture
- For other types of degradation mechanisms (DMs), only "precursor data" is available.
 - Service experience data is limited to observations of rejectable non-through-wall flaws
 and minor through-wall flaws
- The approach taken was to utilize service experience insights and results from the expert elicitation documented in NUREG-1829 for all DMs except FAC.
- The expert elicitation NUREG-1829 synthesizes inputs from experts representing two schools of thought :
 - one based on statistical analysis of service data and simple models,
 - and another based on probabilistic fracture mechanics approaches

Results

Results

Conclusions

- Comparison between existing and updated frequencies show that:
 - Mean value for TFI (FWLB) have not changed much
 - Mean values for TSH/TSY (MSLB) is significantly smaller
 - Mean values for TSI (MSLB) and TFY (FWLB) have increased
- Possible sensitivity cases:
 - Vibration fatigue is most dominant DM to TFY (FWLB)
 - VF may be changed to LC-FAT instead since VF should be applied to small diameter piping only
 - Flow-Accelerated Corrosion is second most dominant DM to TFY (FWLB)
 - Consideration not taken to replacement of steam generators

Co-authors: Erik Persson Sunde Cilla Andersson	Lloyd's Register Consulting Ringhals
Bengt Lydell	Sigma-Phase Inc (Lloyd's Register Consulting associate)

Anders Olsson Principal Consultant T +46 70 733 43 08 E anders.olsson@ir.org

Lloyd's Register Consulting www.lr.org/consulting

Working together for a safer world

Lloyd's Register and variants of it are trading names of Lloyd's Register Group Limited, its subsidiaries and affiliates. Copyright © Lloyd's Register Consulting. 2013. A member of the Lloyd's Register group.