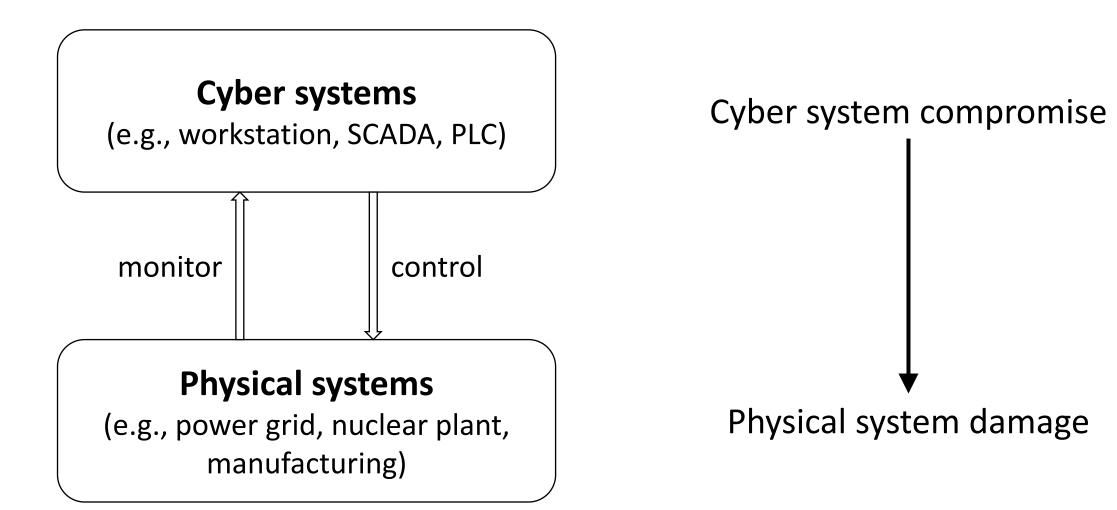
Bayesian games for optimal cybersecurity investment with incomplete information on the attacker

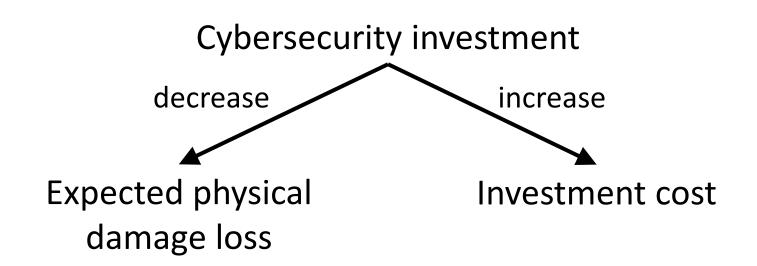
Yunfei Zhao^a, Linan Huang^b, Quanyan Zhu^b, and Carol Smidts^a

^aDepartment of Mechanical and Aerospace Engineering, The Ohio State University

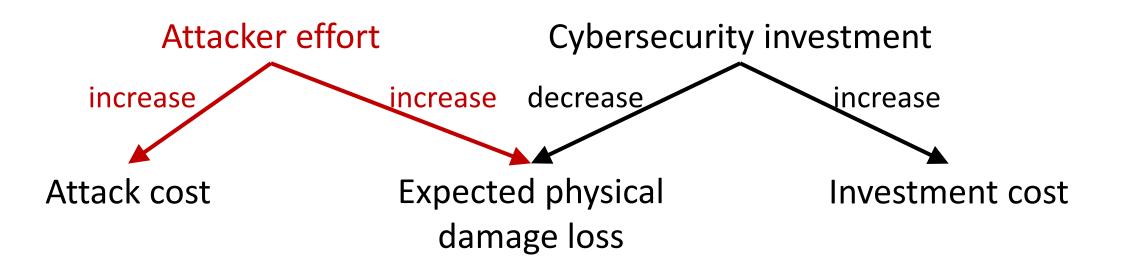

^bDepartment of Electrical and Computer Engineering, New York University

PSAM 16, Honolulu, HI

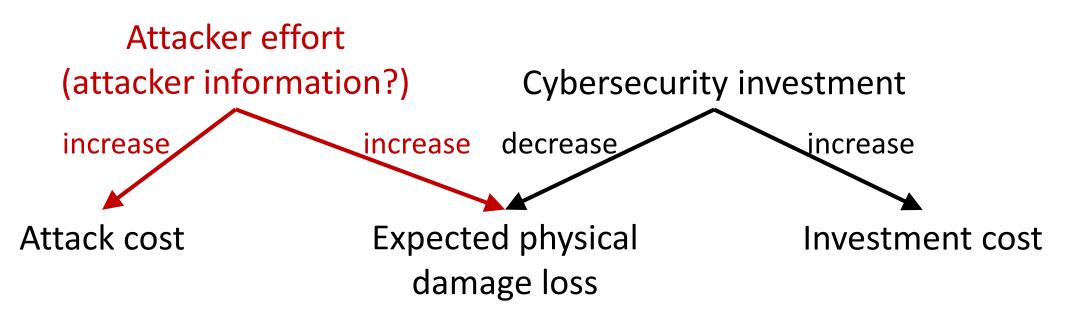
June 30, 2022



Background



Single-agent decision-making

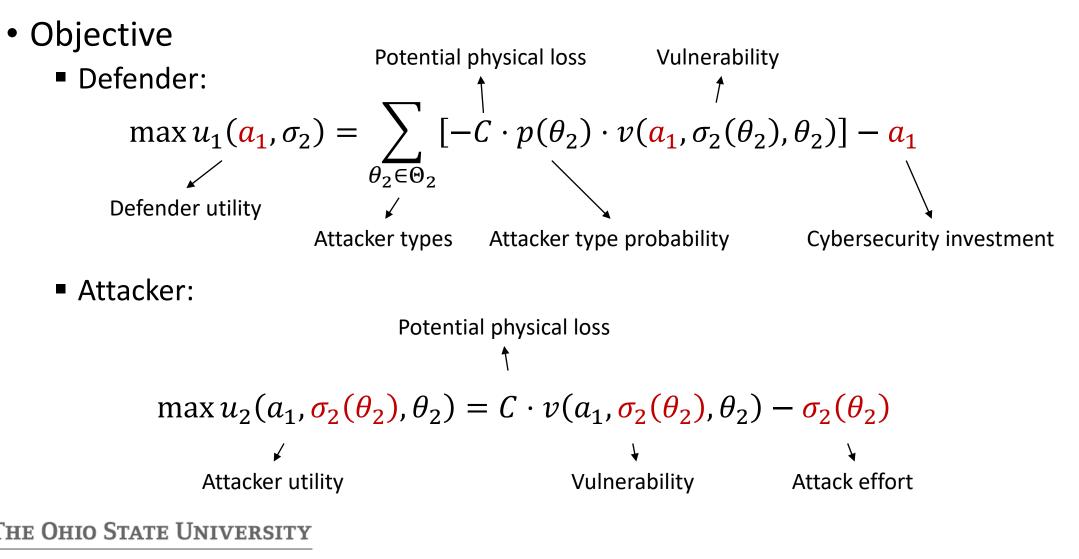

Optimal cybersecurity investment: the level of investment that achieves the **minimum sum** of **physical damage loss** and **investment cost**.

Multi-agent decision-making

Optimal cybersecurity investment: the level of investment that achieves the **minimum sum** of **physical damage loss** and **investment cost** considering **the effort of the attacker**.

Multi-agent decision-making with incomplete information

Optimal cybersecurity investment: the level of investment that achieves the **minimum sum** of **physical damage loss** and **investment cost** considering **the effort of the attacker** and with **incomplete information on the attacker**.


The Ohio State University

Problem formalization

- Problem
 - A piece of cyber equipment: if compromised, will incur physical loss of C
 - Players: defender 1; attacker 2
 - Defender cybersecurity investment: $a_1 \in [0, +\infty)$
 - Attacker type: $\theta_2 \in \Theta_2$
 - Attacker type distribution: $p(\theta_2)$
 - Attacker attack effort: $a_2 = \sigma_2(\theta_2) \in [0, +\infty)$
 - Cyber equipment vulnerability: $v(a_1, \sigma_2(\theta_2), \theta_2)$

Problem formalization (cont.)

Bayesian games for cybersecurity investment

- What we just described is actually a Bayesian game
 - The defender has incomplete information on the attacker
 - This incomplete information is described by the various types of attacker and the probability distribution over the types
- We can solve the game using the solution concept of Bayesian Nash equilibrium
 - i.e., obtain the Bayesian Nash equilibrium (a_1^*, σ_2^*) such that
 - For the defender:

$$u_1(a_1^*, \sigma_2^*) \ge u_1(a_1, \sigma_2^*), \forall a_1 \in [0, +\infty)$$

For the attacker of any type:

 $u_2(a_1^*, \sigma_2^*(\theta_2), \theta_2) \ge u_2(a_1^*, \sigma_2(\theta_2), \theta_2), \forall \theta_2 \in \Theta_2, \forall \sigma_2(\theta_2) \in [0, +\infty)$

Obtain the Bayesian Nash equilibrium

• Obtain and solve the following system of partial differential equations

$$\frac{\partial u_1(a_1,\sigma_2)}{\partial a_1} = \frac{\partial \left[\sum_{\theta_2 \in \Theta_2} \left[-C \cdot p(\theta_2) \cdot v(a_1,\sigma_2(\theta_2),\theta_2)\right] - a_1\right]}{\partial a_1} = 0$$

$$\frac{u_2(a_1,\sigma_2(\theta_2),\theta_2)}{\partial \sigma_2(\theta_2)} = \frac{\partial \left[C \cdot v(a_1,\sigma_2(\theta_2),\theta_2) - \sigma_2(\theta_2)\right]}{\partial \sigma_2(\theta_2)} = 0, \forall \theta_2 \in \Theta_2$$

 ∂

Numerical case study

- Two types of attacker:
 - One with high capability ($\theta_2 = H$)
 - The other with low capability ($\theta_2 = L$)
- Cyber equipment vulnerability

• For
$$\theta_2 = H$$

 $v(a_1, \sigma_2(H), H) = \frac{\sigma_2(H)}{\alpha_H(a_1 + \sigma_2(H) + \beta)}$
 $\alpha_H \ge 1 \text{ and } \beta > 0$
• For $\theta_2 = L$
 $v(a_1, \sigma_2(L), L) = \frac{\sigma_2(L)}{\alpha_L(a_1 + \sigma_2(L) + \beta)}$
 $\alpha_L > 1 \text{ and } \alpha_L > \alpha_H$

Numerical case study (cont.)

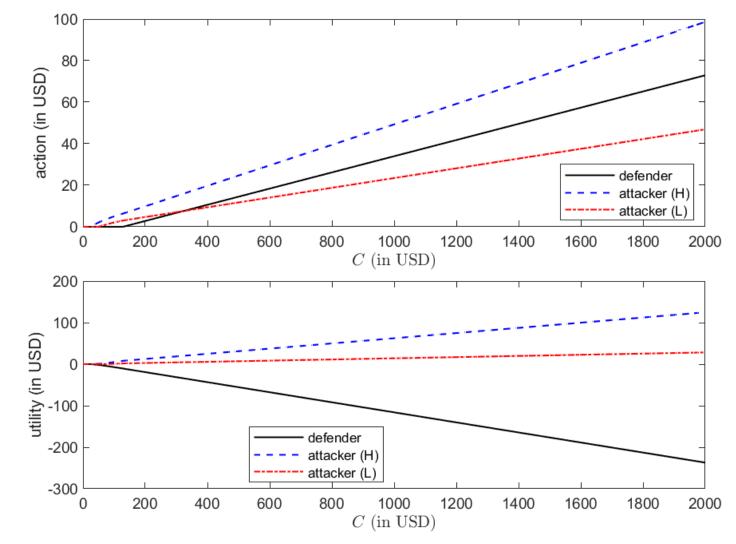
• Additional information about the problem:

Parameters (unit)	Parameter description	Nominal Value	Value Range
C (in USD)	Potential physical loss	1000	[0, 2000]
p(H) (unitless)	Belief in $\theta_2 = H$	0.6	[0, 1]
α_H (unitless)	Parameter defining vulnerability for $\theta_2 = H$	5	[1, 10)
α_L (unitless)	Parameter defining vulnerability for $\theta_2 = L$	10	(5, 20]
eta (in USD)	Parameter defining vulnerability	5	[1, 10]

• For each parameter setting, we can obtain the corresponding (a_1^*, σ_2^*)

Results for the setting with nominal parameter values

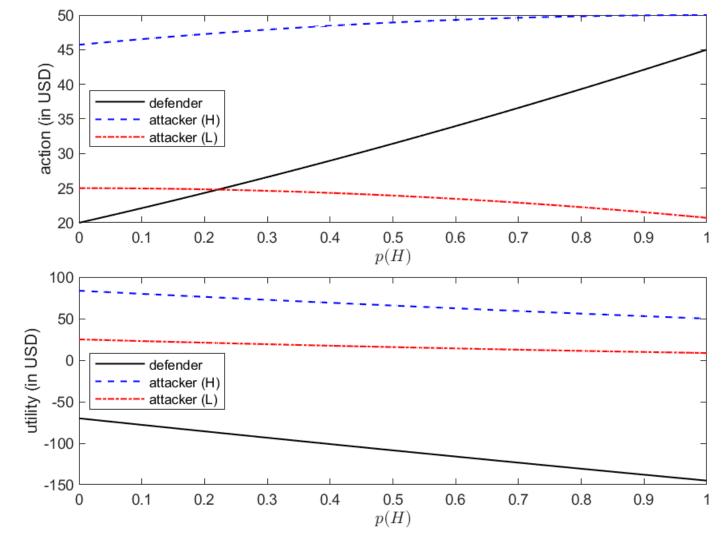
Parameters (unit)	Parameter description	Nominal Value	Value Range
C (in USD)	Potential physical loss	1000	[0, 2000]
p(H) (unitless)	Belief in $\theta_2 = H$	0.6	[0, 1]
α_H (unitless)	Parameter defining vulnerability for $\theta_2 = H$	5	[1, 10)
α_L (unitless)	Parameter defining vulnerability for $\theta_2 = L$	10	(5, 20]
eta (in USD)	Parameter defining vulnerability	5	[1, 10]


• Bayesian Nash equilibrium

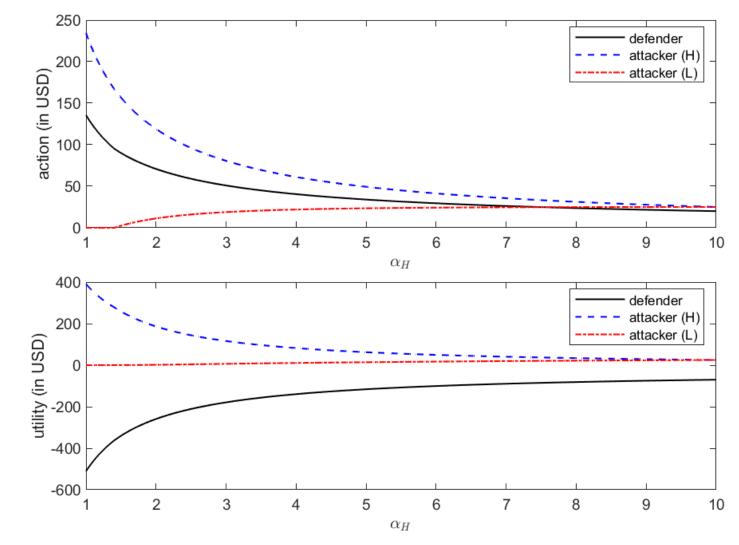
$$(a_1^* = 33.97 USD, \sigma_2^*(H) = 49.31 USD, \sigma_2^*(L) = 23.46 USD)$$

- Utility
 - Defender: $u_1(a_1^*, \sigma_2^*) = -116.03 USD$
 - Attacker of type $H: u_2(a_1^*, \sigma_2^*(H), H) = 62.40 USD$
 - Attacker of type $L: u_2(a_1^*, \sigma_2^*(L), L) = 14.12 USD$

Sensitivity of results to certain parameter values


• The effect of *C* on the outcome

Sensitivity of results to certain parameter values (cont.)


• The effect of p(H) on the outcome

Sensitivity of results to certain parameter values (cont.)

• The effect of α_H on the outcome

Summary and future work

- Cybersecurity investment
 - Defender decision-making while considering the level of attacker effort
 - Incomplete information on the attacker
 - Bayesian games for modeling and solving the cybersecurity investment problem
- Numerical example
 - The outcome for a setting with nominal parameter values
 - Sensitivity of the outcome to various model parameters
- Future work
 - Multiple defenders, multiple attackers
 - Determination of model parameters

Acknowledgement

• This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs.

Thank you!

