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Introduction

• Cyber-Attack response is a sequential decision-making problem that requires 
consideration of attacker-defender interactions.

The ICS under attack
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“interaction” between the attacker and the defender

Modeled using game theory.
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Introduction

• Planning based methods were used to solve game-theory 
based cyber-attack response problems.

• Planning requires explicitly constructing the models of the 
players.

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second edition. 
Cambridge, Massachusetts: The MIT Press, 2018.



Introduction - Reinforcement Learning

Environment / System

Agent

ActionRewardObservation
𝑎𝑎𝑡𝑡

𝑠𝑠𝑡𝑡 → 𝑠𝑠𝑡𝑡+1|𝑎𝑎𝑡𝑡

𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡+1

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second edition. 
Cambridge, Massachusetts: The MIT Press, 2018.



Elements of a Reinforcement Learning Problem
𝑆𝑆,𝐴𝐴,𝜋𝜋 ,𝑃𝑃,𝑅𝑅,𝜸𝜸

• 𝑆𝑆 represents the set of all possible states of the system / environment.
• 𝐴𝐴 is the action space of the agent - the set of possible actions of the agent.
• 𝜋𝜋 - A mapping from 𝑆𝑆 to the probabilities of taking different actions.

• The manner in which an agent behaves is defined by the policy.
• 𝜋𝜋(𝑎𝑎|𝑠𝑠) is the probability of taking action 𝑎𝑎 in state 𝑠𝑠.

• 𝑃𝑃: 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 → [0,1] is the state transition probability mapping. The agent observes the state of the 
environment 𝑠𝑠𝑡𝑡, implements the action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 on the environment, and the environment transitions 
to a new state 𝑠𝑠𝑡𝑡+1, with a probability of transition 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• 𝑅𝑅: 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 → ℝ is the reward function. 
• At any timestep 𝑡𝑡, if the environment is in state 𝑠𝑠𝑡𝑡, the agent takes action 𝑎𝑎𝑡𝑡 and the 

environment transitions to state 𝑠𝑠𝑡𝑡+1, the agent receives an immediate reward 𝑟𝑟𝑡𝑡 =
𝑅𝑅(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1). The reward 𝑟𝑟𝑡𝑡 is a real number.

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second edition. 
Cambridge, Massachusetts: The MIT Press, 2018.



• 𝛾𝛾 ∈ [0,1] is the discount factor that represents the weight assigned to future rewards.
• The discounted cumulative reward obtained by the agent over the course of time is:

𝐺𝐺𝑡𝑡 = �
𝑗𝑗=0

∞

𝛾𝛾𝑗𝑗𝑟𝑟𝑡𝑡+𝑗𝑗

where 𝑟𝑟𝑡𝑡+𝑗𝑗 is the reward received 𝑗𝑗 time steps after 𝑡𝑡.

• The agent’s objective is to maximize the expected cumulative reward 𝔼𝔼𝜋𝜋[∑𝑗𝑗=0∞ 𝛾𝛾𝑗𝑗𝑟𝑟𝑡𝑡+𝑗𝑗]. 

Elements of a Reinforcement Learning Problem

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second edition. 
Cambridge, Massachusetts: The MIT Press, 2018.

Presenter Notes
Presentation Notes
Value function is the long term goodness of a state.



• Value function represents the expected cumulative reward obtained starting from state 𝑠𝑠 if the 
policy 𝜋𝜋 is followed and 𝑡𝑡 is any time step.

𝑣𝑣𝜋𝜋 𝑠𝑠 = 𝔼𝔼𝜋𝜋 𝐺𝐺𝑡𝑡 𝑆𝑆𝑡𝑡 = 𝑠𝑠
• Q-value, is defined for every state-action pair 𝑠𝑠, 𝑎𝑎 representing the expected cumulative reward if 

action 𝑎𝑎 is taken at state 𝑠𝑠, and then the policy 𝜋𝜋 is followed subsequently from any time step 𝑡𝑡.
𝑞𝑞𝜋𝜋 𝑠𝑠,𝑎𝑎 = 𝔼𝔼𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎]

• Bellman equation for the Q-value function
𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
= �

𝑠𝑠𝑡𝑡+1∈𝑆𝑆

𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) × 𝑅𝑅(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1) + 𝛾𝛾 × �
𝑎𝑎𝑡𝑡+1∈𝐴𝐴

(𝜋𝜋(𝑎𝑎𝑡𝑡+1|𝑠𝑠𝑡𝑡+1) × 𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1))

Elements of a Reinforcement Learning Problem

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second edition. 
Cambridge, Massachusetts: The MIT Press, 2018.



𝑠𝑠𝑡𝑡 𝑠𝑠𝑡𝑡+1𝑠𝑠1 𝑠𝑠2 …………………..
…………. 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡

Take action 𝑎𝑎𝑡𝑡

Receive 
reward 𝑟𝑟𝑡𝑡

𝑎𝑎1
𝑟𝑟1

𝑎𝑎2
𝑟𝑟2

𝑎𝑎𝑡𝑡+1
𝑟𝑟𝑡𝑡+1

Q-Learning

• In an episode 𝑖𝑖, the agent’s action 𝑎𝑎𝑡𝑡 at system state 𝑠𝑠𝑡𝑡 is chosen according to the Q-values learned by the
agent up to the episode 𝑖𝑖 − 1.

• Greedy policy:
𝑎𝑎𝑡𝑡 = arg max

𝑎𝑎
𝑄𝑄𝑡𝑡−1 𝑠𝑠𝑡𝑡, 𝑎𝑎

• 𝜀𝜀-greedy policy: A random action is chosen with a probability 𝜀𝜀. Exploration - agent can explore actions that
are different from those dictated by previous experience.

• Assume that the action 𝑎𝑎𝑡𝑡+1 at state 𝑠𝑠𝑡𝑡+1 is chosen such that, 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1) is maximum
• Q-update equation based only on current sample of (𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1) and 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) :

𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) ← 𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1) + 𝛾𝛾max
𝑎𝑎

𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡+1, 𝑎𝑎)
• Q-value update equation, which combines the Q-values learned previously, with the current updates using a

learning parameter 𝛼𝛼 ∈ (0,1].
𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) ← (1 − 𝛼𝛼) × 𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) + 𝛼𝛼 × [𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1) + 𝛾𝛾max

𝑎𝑎
𝑄𝑄𝑡𝑡−1(𝑠𝑠𝑡𝑡+1, 𝑎𝑎) ]

R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, Second edition. 
Cambridge, Massachusetts: The MIT Press, 2018.



• Cyber-attacks, involve multiple agents acting on the environment simultaneously and trying to maximize their 
individual rewards. 

• The system is affected by the actions of all the agents.
• The corresponding reward received by every individual agent is dependent on actions of all other agents.
• Markov game framework – Two players: attacker and defender.

𝑆𝑆, {𝐴𝐴,𝐷𝐷}, 𝜋𝜋𝑎𝑎 ,𝜋𝜋𝑑𝑑 ,𝑃𝑃, 𝑅𝑅𝑎𝑎 ,𝑅𝑅𝑑𝑑 , 𝛾𝛾

• 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2,𝑑𝑑3 … } is the defender’s action space and 𝐴𝐴 = {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 … } is the attacker’s action space. 

• 𝜋𝜋𝒅𝒅 and 𝜋𝜋𝒂𝒂 are the action policies of the defender and the attacker.

• 𝑃𝑃: 𝑆𝑆 × 𝐷𝐷 × 𝐴𝐴 × 𝑆𝑆 → [0, 1] is the state transition probability mapping.

• 𝑅𝑅𝒅𝒅: 𝑆𝑆 × 𝐷𝐷 × 𝐴𝐴 × 𝑆𝑆 → ℝ is the reward function of the defender. 
• 𝑅𝑅𝒂𝒂: 𝑆𝑆 × 𝐷𝐷 × 𝐴𝐴 × 𝑆𝑆 → ℝ is the attacker’s reward function. 

Elements of Multi-Agent RL



Elements of Multi-agent RL

𝜋𝜋𝑑𝑑,𝜋𝜋𝑎𝑎

𝑝𝑝 𝑠𝑠𝑗𝑗 𝑠𝑠𝑡𝑡 ,𝑑𝑑1𝑡𝑡 , 𝑎𝑎1𝑡𝑡 )

(𝑑𝑑1𝑡𝑡 , 𝑎𝑎1𝑡𝑡 )

𝑠𝑠𝑡𝑡

𝑠𝑠𝑗𝑗 𝑠𝑠𝑘𝑘

(𝑑𝑑1𝑡𝑡 , 𝑎𝑎2𝑡𝑡 )

𝑝𝑝 𝑠𝑠𝑘𝑘 𝑠𝑠𝑡𝑡 ,𝑑𝑑1𝑡𝑡 ,𝑎𝑎1𝑡𝑡 )

𝑟𝑟𝒅𝒅 = 𝑅𝑅𝒅𝒅(𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑘𝑘 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑗𝑗)
𝑟𝑟𝒂𝒂 = 𝑅𝑅𝒂𝒂(𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑘𝑘 , 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑗𝑗)

• 𝑄𝑄𝒅𝒅 and 𝑄𝑄𝒂𝒂 the action-value functions of the defender the attacker.
• functions of defender and attacker action pairs.



𝑄𝑄𝒅𝒅 – defender Q-values 𝑄𝑄𝑎𝑎 – Attacker Q-values
Attacker Actions 1 2 3 1 2 3

Defender 
Actions

1 3.72 -4.27 3.5 -5.75 -4.8 -3.67
2 -7.5 -2.25 -2.75 4.52 -3.61 -2.50
3 -2.94 -7.6 1.67 -3 -2.54 4.57

Elements of Multi-agent RL

How to choose optimal actions? – Game theory*

Q-update equations:
𝑄𝑄𝑡𝑡𝑑𝑑(𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑡𝑡, 𝑎𝑎𝑡𝑡) = 1 − 𝛼𝛼 × 𝑄𝑄𝑡𝑡−1𝑑𝑑 (𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑡𝑡, 𝑎𝑎𝑡𝑡) + 𝛼𝛼 × 𝑟𝑟𝑡𝑡𝑑𝑑 + 𝛾𝛾 × 𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑂𝑂𝑎𝑎𝑂𝑂 𝑄𝑄𝑡𝑡−1𝑑𝑑 𝑠𝑠𝑡𝑡+1 𝑑𝑑𝑡𝑡+1 𝑎𝑎𝑡𝑡+1

𝑄𝑄𝑡𝑡𝑎𝑎(𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑡𝑡, 𝑎𝑎𝑡𝑡 ) = (1 − 𝛼𝛼) × 𝑄𝑄𝑡𝑡−1𝑎𝑎 (𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑡𝑡, 𝑎𝑎𝑡𝑡 ) + 𝛼𝛼 × [𝑟𝑟𝑡𝑡𝑎𝑎 + 𝛾𝛾 × 𝑂𝑂𝑝𝑝𝑡𝑡𝑖𝑖𝑂𝑂𝑎𝑎𝑂𝑂 (𝑄𝑄𝑡𝑡−1𝑎𝑎 (𝑠𝑠𝑡𝑡+1,𝑑𝑑𝑡𝑡+1,𝑎𝑎𝑡𝑡+1 )) ]



• In a two player Stackelberg game  one of the players acts as the leader and the other is a follower.
• Used in security games – with the defender as the leader and the attacker as the follower.
• Leader: can enforce their strategy (action).
• Follower: responds to leader’s strategy in a rational manner, i.e., in a manner that optimizes their 

reward.
• The procedure to calculate Stackelberg equilibrium involves a two-step backward calculation. 
• In the first step the follower’s optimal response to every one of leader’s actions is identified. 
• In the second step the leader’s action that generates the optimal reward given that the follower 

responds with the actions identified in the first step is obtained. 
• The leader needs to know all Q-functions, while it is sufficient for the follower to know just their 

Q-functions. 

Stackelberg Equilibrium



Step – 1:
• Identify the attacker’s (follower’s) action that generates the maximum reward (in this case Q-value) for every 

possible defender action.
𝑎𝑎𝒮𝒮(𝑑𝑑𝑡𝑡) = arg max

𝑎𝑎,𝑑𝑑𝑖𝑖∈𝐷𝐷
𝑄𝑄𝑎𝑎(𝑠𝑠,𝑑𝑑𝑡𝑡 , 𝑎𝑎)

where 𝐷𝐷 is the defender’s (leader’s) action space,
𝑑𝑑𝑡𝑡 ∈ 𝐷𝐷 is the defender’s (leader’s) action, and

𝑎𝑎𝒮𝒮(𝑑𝑑𝑡𝑡) is the optimal response by the attacker (follower) for defender’s (leader’s) action 𝑑𝑑𝑡𝑡.

• 𝑎𝑎𝒮𝒮(𝑑𝑑 = 1) = 3, 𝑎𝑎𝒮𝒮(𝑑𝑑 = 2) = 1 and 𝑎𝑎𝒮𝒮(𝑑𝑑 = 3) = 3

Stackelberg Equilibrium

𝑄𝑄𝒅𝒅 – defender Q-values 𝑄𝑄𝑎𝑎 – Attacker Q-values
Attacker Actions 1 2 3 1 2 3

Defender 
Actions

1 3.72 -4.27 3.5 -5.75 -4.8 -3.67
2 -7.5 -2.25 -2.75 4.52 -3.61 -2.50
3 -2.94 -7.6 1.67 -3 -2.54 4.57



Step – 2:
• Identify the defender’s (leader’s) action that generates the maximum reward, for the attacker’s (follower’s) 

actions calculated in step – 1.
𝑑𝑑𝒮𝒮 = arg max

𝑑𝑑∈𝐷𝐷
𝑄𝑄𝑑𝑑(𝑠𝑠,𝑑𝑑, 𝑎𝑎𝒮𝒮(𝑑𝑑))

where 𝐷𝐷 is the defender’s (leader’s) action space,
𝑎𝑎𝒮𝒮 𝑑𝑑 is the optimal response by the attacker (follower) for defender action 𝑑𝑑, and

𝑑𝑑𝒮𝒮 is the optimal defender action.

• 𝑑𝑑𝒮𝒮 , 𝑎𝑎𝒮𝒮 𝑑𝑑𝒮𝒮 = 1,3 is the pure strategy Stackelberg equilibrium.

Stackelberg Equilibrium

𝑄𝑄𝒅𝒅 – defender Q-values 𝑄𝑄𝑎𝑎 – Attacker Q-values
Attacker Actions 1 2 3 1 2 3

Defender 
Actions

1 3.72 -4.27 3.5 -5.75 -4.8 -3.67
2 -7.5 -2.25 -2.75 4.52 -3.61 -2.50
3 -2.94 -7.6 1.67 -3 -2.54 4.57



Case Study – PWR 

Feedwater system

Source: https://www.nrc.gov/reading-rm/basic-ref/students/animated-
pwr.html



Digital Feedwater Control System (DFWCS)

Main Computer

Backup Computer

Steam 
Generator Feedwater

Feedwater 
flow sensor

Main feedwater 
Valve

Bypass feedwater 
Valve

Feedwater 
Pump

Control signals

Flow measurement 
signals

Level, Temperature 
sensor signals

T. Aldemir et al., “NUREG/CR-6942: Dynamic Reliability Modeling of Digital Instrumentation and Control Systems for Nuclear Reactor 
Probabilistic Risk Assessments,” 2007.
Zhao, Y., Huang, L., Smidts, C. and Zhu, Q., 2020. Finite-horizon semi-Markov game for time-sensitive attack response and probabilistic risk 
assessment in nuclear power plants. Reliability Engineering & System Safety, 201, p.106878.



System Component states and Modes

Digital Components:
1. Sensors
2. Main Computer (MC)
3. Backup Computer (BC)

States:
1. Normal and in Use.
2. Normal and in standby (not used)
3. Compromised and in Use
4. Compromised and not used.

4. Control Mode
States:
1. Automatic
2. Manual

5. Sensing Mode
States:
1. Sensors are used.
2. Approximate model is used.

6. Reactor Core
States:
1. Normal
2. Damaged

Zhao, Y., Huang, L., Smidts, C. and Zhu, Q., 2020. Finite-horizon semi-Markov game for time-sensitive attack response and 
probabilistic risk assessment in nuclear power plants. Reliability Engineering & System Safety, 201, p.106878.



Attacker and Defender actions

Attacker Actions:
1. Compromise the Sensors
2. Compromise the Main 

Computer (MC)
3. Compromise the Backup 

Computer (BC)
4. Do nothing.

Defender Actions:
1. Switch from the sensors to using 

approximate model.
2. Switch control from MC to BC.
3. Switch control from BC to manual 

control.
4. Do nothing.

Zhao, Y., Huang, L., Smidts, C. and Zhu, Q., 2020. Finite-horizon semi-Markov game for time-sensitive attack response and 
probabilistic risk assessment in nuclear power plants. Reliability Engineering & System Safety, 201, p.106878.



State Vector Description SAFE or not
1 [1 1 2 1 1 1] Auto with normal MC and normal sensors SAFE
2 [3 1 2 1 1 1] Auto with normal MC, compromised sensors UNSAFE
3 [1 3 2 1 1 1] Auto with compromised MC, normal sensors UNSAFE
4 [1 NU 1 1 1 1] Auto with normal BC, and normal sensors SAFE
5 [3 3 2 1 1 1] Auto with compromised MC and sensors UNSAFE
6 [3 NU 1 1 1 1] Auto with normal BC and compromised sensors UNSAFE
7 [NU 1 2 1 2 1] Auto with normal MC and approximate model SAFE
8 [1 NU 3 1 1 1] Auto with compromised BC and normal sensors UNSAFE
9 [NU 3 2 1 2 1] Auto with compromised MC and approximate model UNSAFE
10 [3 NU 3 1 1 1] Auto with compromised BC and sensors UNSAFE
11 [1 NU NU 2 1 1] Manual with normal sensors SAFE
12 [NU NU 1 1 2 1] Auto with normal BC and approximate model SAFE
13 [3 NU NU 2 1 1] Manual with compromised sensors UNSAFE
14 [NU NU 3 1 2 1] Auto with compromised BC and approximate model UNSAFE
15 [NU NU NU 2 2 1] Manual with approximate model. SAFE 
16 [X X X X X 2] Core damaged - END UNSAFE  (end)

Physical system states

NU – Not in use. X –Of no consequence.



Attacker and Defender Action Space
Physical System State Description Attacker actions Defender actions

1 [1 1 2 1 1 1] Auto with normal MC and normal sensors 1, 2, 4 1, 2, 4
2 [3 1 2 1 1 1] Auto with normal MC, compromised sensors 2, 4 1, 2, 4
3 [1 3 2 1 1 1] Auto with compromised MC, normal sensors 1, 4 1, 2, 4
4 [1 NU 1 1 1 1] Auto with normal BC, and normal sensors 1, 3, 4 1, 3, 4
5 [3 3 2 1 1 1] Auto with compromised MC and sensors 4 1, 2, 4
6 [3 NU 1 1 1 1] Auto with normal BC and compromised sensors 3, 4 1, 3, 4
7 [NU 1 2 1 2 1] Auto with normal MC and approximate model 2, 4 2, 4
8 [1 NU 3 1 1 1] Auto with compromised BC and normal sensors 1, 4 1, 3, 4
9 [NU 3 2 1 2 1] Auto with compromised MC and approximate 

model
4 2, 4

10 [3 NU 3 1 1 1] Auto with compromised BC and sensors 4 1, 3, 4
11 [1 NU NU 2 1 1] Manual with normal sensors 1, 4 1, 4
12 [NU NU 1 1 2 1] Auto with normal BC and approximate model 3, 4 3, 4
13 [3 NU NU 2 1 1] Manual with compromised sensors 4 1, 4
14 [NU NU 3 1 2 1] Auto with compromised BC and approximate 

model
4 3, 4

15 [NU NU NU 2 2 1] Manual with approximate model. 4 4
16 [DM DM DM DM DM 2] Core damaged - END 4 4



Initiating Event - 𝐼𝐼 DFWCS Backup systems

Normal / Success (𝑆𝑆1)

Success (𝑆𝑆2)

Success (𝑆𝑆2)

Failure (𝐹𝐹2)

Failure (𝐹𝐹2)

Failed (𝐹𝐹1)

𝐼𝐼

𝐼𝐼𝑆𝑆1𝑆𝑆2

𝐼𝐼𝑆𝑆1𝐹𝐹2

𝐼𝐼𝐹𝐹1𝑆𝑆2

𝐼𝐼𝐹𝐹1𝐹𝐹2
𝑃𝑃(𝐹𝐹1)

𝑃𝑃(𝑆𝑆1) = 1 − 𝑃𝑃(𝐹𝐹1)

𝑃𝑃(𝐹𝐹2) = 10−3

𝑃𝑃(𝑆𝑆2) = 1 − 𝑃𝑃(𝐹𝐹2)

𝑃𝑃(𝐹𝐹2)

𝑃𝑃(𝑆𝑆2) = 1 − 𝑃𝑃(𝐹𝐹2)

Probability of core 
damage =𝑃𝑃(𝐹𝐹1) × P(𝐹𝐹2)

If the attack succeeds i.e., if the system is in an unsafe state, Probability of core damage = P(𝐹𝐹2) = 10−3

If the system is in a completely safe state, Probability of core damage = 𝑃𝑃(𝐹𝐹1) × P(𝐹𝐹2) = 10−5

System Success. 
There is no core 
damage.



Transition probabilities to terminal state

States Probability of transition to core damage 
state.

16 – terminal. (Already in core damage state)
5, 10 – Both controller and sensors are compromised and 

in use. 
2, 3, 6, 8, 9, 13, 14 – one component is compromised.

10−3

1 – initial state. 10−5
4 – Automatic mode with normal BC and sensors.

7 – Automatic mode with normal MC and 
approximate model.

3.34 × 10−5

11 – Manual control with normal sensors.
12 – Automatic mode with normal BC and approximate 

model.

6.67 × 10−5

15 - Manual mode with approximate model 10−4



Rewards functions
𝑟𝑟 = 𝑟𝑟𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑟𝑟𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡

𝑟𝑟𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = Cost of taking an action.
• Cost of taking any action i.e., any one of actions 1, 2 and 3 is $ 10,000 for the attacker
• The defender incurs no cost to take any action .

𝑟𝑟𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 (𝑟𝑟𝒅𝒅= 𝑅𝑅𝒅𝒅 𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑘𝑘 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑗𝑗 ; 𝑟𝑟𝒂𝒂 = 𝑅𝑅𝒂𝒂(𝑠𝑠𝑡𝑡 ,𝑑𝑑𝑘𝑘 ,𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑗𝑗))
• the attacker receives an immediate positive reward of $10,000 when they compromise a 

single component (when there is a transition to states 2, 3, 6, 8, 9, 13 and 14) due to their 
actions.

• Similarly, a positive reward of $20,000 when there is a transition to the states 5 and 10 -
states in which two components are compromised.

• The defender receives equivalent negative rewards. 

Zhao, Y., Huang, L., Smidts, C. and Zhu, Q., 2020. Finite-horizon semi-Markov game for time-sensitive attack response and 
probabilistic risk assessment in nuclear power plants. Reliability Engineering & System Safety, 201, p.106878.

Presenter Notes
Presentation Notes
The benchmark system presented in has fault tolerance capabilities. For example, the main computer and the backup computer verify and validate the readings from the sensors. Hence it is assumed that the states in which two components are compromised (states 5 – sensors and main computer are compromised and 10 – sensors and backup computer are compromised) are more advantageous to the attacker compared to states in which only one component is compromised. 



Defender as the Leader Attacker as the leader
State Defender’s 

action
Attacker’s 
action

Defender’s 
action

Attacker’s 
action

1 1 2 2 2
2 1 2 2 2
3 2 1 2 1
4 3 1 3 3
5 1 4 2 4
6 1 4 1 3
7 4 2 2 4
8 3 1 1 1
9 2 4 2 4
10 3 4 1 4
11 4 1 4 1
12 3 4 3 4
13 1 4 1 4
14 3 4 3 4
15 4 4 4 4
16 4 4 4 4

Results



Discussion
• As the leader, the defender is initially prioritizing the use of approximate model

which cannot be subjected to cyber-attacks. 
• It is not possible to compromise both the main computer and the backup computer 

at the same time. So, when the defender is switching to the approximate model, it 
is impossible to reach the states in which two components are compromised at the 
same time.

• When the attacker is the leader, the priority is on compromising the main 
computer initially, which will lead the defender to switch to backup computer, 
thereby providing the attacker with additional opportunities to compromise 
multiple components. 



Conclusions and Future Work

• We presented the use of a multi-agent reinforcement learning approach, specifically 
the multi-agent q-learning algorithm with Stackelberg equilibrium to compute the 
defender’s optimal response strategy against cyber-attacks.

• We assumed that the leader is aware of the follower’s rewards. It is also assumed 
that the attacker (follower) can always observe the strategy enforced by the 
defender (leader).  Future work will be focused towards relaxing these assumptions.



Thank You
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• For the defender (leader) to compute and enforce their strategy, they should have knowledge of the 
attacker’s (follower’s) Q-values to estimate the attacker’s optimal response for every one of their 
actions. 

• This is the result of the assumption that the defender (leader) is aware of the attacker’s (follower’s) 
rewards.

• It is also assumed that the attacker (follower) can always observe the strategy enforced by the 
defender (leader). 

• It is realistic to expect that the defender is unaware of the attacker’s rewards and attacker (follower) 
cannot completely observe the defender’s strategy. 

Stackelberg Equilibrium
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