

University of Stuttgart Institute of Machine Components

Reliability Department

A Machine Learning Approach to Enhance the Information on Suspensions in Life Data Analysis

Probabilistic Safety Assessment and Management PSAM 16 June 27, 2022, Honolulu, Hawaii Tamer Tevetoğlu, M.Sc

icons: [1]

Motivation

Motivation:

- Budget and time constraints
- Small sample sizes and censoring:
 - Biased estimates
 - Low coverage probabilities

State of the art

- Countermeasures:
 - Maximum likelihood estimation (MLE):
 - (IVILL). → takes failur
 - \rightarrow takes failures and suspensions into account
 - Bias-correction methods
- Most research focuses on analytical studies with an infinite population

Focus of this paper

- Enumerative study with finite population
- Using machine learning to enhance the existing information (failures & suspensions):

Motivation and Goals

- Extending the Weibull analysis
- Analyzing the practicality and performance
- Simulation study

Case Study

Finite Population (Turbofan Engine Degradation Simulation Data Set) → time-series data until end-of-life

Enumerative study

Weibull Time To Event Recurrent Neural Network (WTTE-RNN) → predicting the RUL of suspensions

Motivation and Goals

Can we generally use WTTE-RNN to predict RULs in life data analyses, and if so, does it help to obtain more accurate confidence bounds?

緔

Time

Assessment Criteria

Coverage Probability (CP)

- Frequentist probability that the confidence interval contains the true B₁₀-life
- Monte-Carlo approximation:

 $CP = \frac{n_{\rm b}}{n_{\rm t}}$

• Adequate: CP = 0.89...0.91

2

UNI STUTTGAR

Dataset

Turbofan engine degradation simulation data set

- Simulation was carried out using C-MAPSS (Commercial Modular Aero-Propulsion System Simulation)
- Dataset being used: FD001
 - 100 turbines
 - 1 failure mode (HPC Degradation)
 - 21 sensors (e.g. temperature, pressure, ...)
 - end-of-life available

TURBINE	CYCLE	SETTING 1	 SETTING 3	SENSOR 1	 SENSOR
ID					21
1	1	-0,0007	 100	518,67	 234.190
1	2	0,0019	 100	518,67	 234.236
1	3	-0,0043	 100	518,67	 233.442
			:		
1	190	-0,0027	 100	518,67	 230.675
1	191	0,0000	 100	518,67	 231.295
1	192	0,0009	 100	518,67	 229.649

Ground Truth:

B ₁₀	Weibull Shape Parameter β	Weibull Scale Parameter η		
135.06 cycles	4.41	225.03 cycles		

Simulation Setup

Bias-Corrections

Hirose and Ross method

- <u>Mean</u> correction
- Considers right-censored data

$$\hat{\beta}_{\text{HRBU}} = \frac{\hat{\beta}_{\text{MLE}}}{1.0115 + \frac{1.278}{df} + \frac{2.001}{df^2} + \frac{20.35}{df^3} - \frac{46.98}{df^4}}$$
$$\hat{\beta}_{\text{HRBU}} = \frac{\hat{\beta}_{\text{MLE}}}{1 + \frac{1.37}{df - 1.92} \cdot \sqrt{\frac{n}{df}}}$$

df: failures *ds*: suspensions

Simulation Setup

WTTE-RNN

UNI STUTTGART

Simulation Setup

11

2

Simulation Setup

Simulation Setup

Simulation Setup

Simulation Setup

16

UNI STUTTGART

Results

- All WTTE RNN perform better than the conventional approaches for n = 8
- Bias-corrected conventional Weibull analyses result in a higher coverage probability than non-corrected ones
- Using the predicted RUL as suspensions rather than as failures in the MLE performs better
- For n = 12: All approaches perform about the same
- For n=16 and n = 20: Conventional approaches perform better

Results and

Discussion

Coverage Probabilities: Comparing the Approaches

Results

UB: upper bounds LB: lower bounds

University of Stuttgart | Institute of Machine Components | Reliability Department | Tamer Tevetoğlu

Results and Discussion

Results

UB: upper bounds LB: lower bounds

Results and

Discussion

Discussion

- WTTE-RNN (f) using predicted RUL as actual failure data are significantly closer to the ground truth than WTTE-RNN (s)
- Overall, conventional approaches have less deviating lower and upper bounds
- The data shows that using the predicted RUL as suspensions rather than as failures in the MLE performs better
- Bias-variance tradeoff:
 - Green line: n = 100 failures. •
 - Blue line: n = 80 (60 failures, 20 suspensions) •

Discussion

Conclusion

- Study type (enumerative or analytical) and population type (focus of this paper: finite) are very important regarding the coverage
- The CP decreases for a finite population in an enumerative as the sample size increase
 → contrary to infinite populations
- WTTE-RNN can help to increase the CP for small sample sizes
- Predicted information (RUL) as enhanced information on suspensions is recommended

Results and

Discussion

Summary

• The data shows that...

...using the predicted **RUL as suspensions** rather than as failures in the MLE performs better

...the **type of study** (enumerative or analytical) and **type of population** are very important regarding the coverage probability

- The CP decreases for a finite population in an enumerative as the sample size increases
- WTTE-RNN can help to increase the CP for small sample sizes

Outlook

- High potential in optimizing data-driven approaches for Weibull analyses
- Future data-driven models in life data analysis should find the sweet spot between prediction accuracy and variance
- Conduct more simulation studies with available data

Summarv and

Outlook

Bibliography

ID	Source					
[1]	www.flaticon.com					
[2]	Engineering Statistics 5th Edition – Montgomery et al.					

