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➢ Advantages of dynamic probabilistic risk

assessment (DPRA) [1]:

➢ Time-dependent results can be obtained

➢ Many accident scenarios can be studied

➢ In particular, complex structures of new

reactor designs can be analyzed more easily

than classical methods.

➢ Challenges of DPRA:

➢ The computational cost is very high

➢ Evaluate the results can take a long time

➢ Number of scenarios that can be examined

is limited.

Objective
How can we 

speed up the 

DPRA process?

How can we 

integrate ML 

methods into the 

DPRA?

ML methods can 

be replaced with 

DPRA tools?
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What is the most 

challenging part of 

the DPRA 

methods?
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Machine Learning Overview
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Unsupervised 
Learning

• Clustering

• Dimensionality 
Reduction

Supervised 
Learning

• Classification

• Regression

Reinforcement 
Learning

Figure 1. Types of Machine Learning

➢ Advantages of Machine Learning (ML) 

[2]:

➢ Large data sets can be analyzed 

effectively,

➢ Total simulation time can be greatly 

reduced,

➢ Performs standardized, repetitive 

actions 

➢ Continuous model improvement

Figure 2. Deep Neural Network Architecture [3]
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Methodology – Recurrent Neural Networks (RNN)
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• The main advantage and necessity of using

RNNs is feedback connection that plays vital

role in capturing the context information

• RNNs have “mem ry” which remembers all

information incorporated into the model

• Training an RNN is a difficult task with gradient

exploding and vanishing problems [4].

➢ Long Short Term Memory (LSTM) a unique

kind of RNN, capable of learning long-time

period dependencies,

➢ LSTM is well-suited to classify, process and

predict time series.

➢ It is solution to vanishing and exploding

gradient issues [5].

Figure 3. RNNs Architecture [4]

Figure 4. LSTMs Architecture [5]
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Methodology – Transfer Learning 
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Traditional ML Transfer Learningvs.

Dataset 1

Dataset 2

Dataset 1

Dataset 2

Learning 

System Task 1

Learning 

System Task 2

Learning 

System Task 1

Knowledge

Learning 

System Task 2

• Isolated, single task learning

• Knowledge is not retained or

accumulated.

• Learning new tasks relies on previously

learned task.

• Learning process can be faster, more

accurate and/or need less training

data.
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Analysis – System Overview

• Typical 4-loop Pressurized Water Reactor (PWR)

• Initiating event: Station Blackout Accident (SBO)

• Possible scenarios following the initiating event were

generated using RAVEN [6] and RELAP5-3D [7]

• RAVEN was used as the driver for the 4-loop PWR

simulations

Parameter Unit Value

Core Thermal Power MWth 3850

Total Primary Volume ft3 14300

Secondary Volume ft3 30500

Steam Generators PORV Setup Point psia 1235

Pressurizer PORV Opening Setup Point psia 2350

Pressurizer PORV Closing Setup Point psia 2330

PORV: Pilot-operated Relief Valve
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Source NRC

Table 1. Major RELAP5-3D Modeling Parameters [4]
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Analysis – Dataset Overview
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Table 2. Example BCs and Data for RELAP5-3D SBO Simulations [8] 

BC Parameter Distribution From To

Offsite Power Recovery Recovery Time Uniform 5 hours 10 hours

Diesel Generator Power 

Recovery
Recovery Time Uniform 1 hour 10 hours

Auxiliary Feedwater (AFW) 

System
AFW Power Off Uniform 1 second 4 hours

Primary system safety valve 

reclosing failure

Valve Stuck Open Time Uniform 1 second 10 hours

Valve Stuck Open Cycle Uniform 1 20

Reactor coolant pump (RCP) 

Seal LOCA

Break Opening Time Uniform 30 minutes 10 hours

Break Size Uniform 0.005 ft2 0.12 ft2

RCP Controlled Bleed-off Isolation Time Uniform 5 minutes 5 hours

Secondary side 

depressurization procedures

Depressurization Procedure 

Starting Time
Uniform 0 s 10 hours

Cooling Slope Uniform 0.01 K/s 0.02 K/s

• Scenario datasets were generated from selected initiating events and branching conditions.

• Total number of RELAP5-3D SBO simulations is 9,587.

• RELAP5-3 branching conditions (BCs) (total of 9) included power recovery, steam generator safety

valve reclosing failure, reactor coolant pump seals integrity and emergency power duration [8].
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Analysis – Dataset Pre-Processing
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• Each branch of a scenario contains a large number

of state variables, and the resulting data are high-

dimensional in both state variables and time.

• To describe the temporal behavior of all system

state variables (e.g., pressure and temperature), we

represent each scenario 𝒙i (i=1,…,𝐼) by 𝑀 state

variables 𝒙𝑖 (𝑚=1,…,𝑀) and time length 𝑇 as the

𝑀∗𝐿 matrix:

• Another issue that arises when dealing with

nuclear transients is due to different scales of

the variables used.

• Hence, each variable in scenario needs to be

normalized into the range of 0 and 1.
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Analysis – Implementation Details and Training Process
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• Multivariate LSTM time series prediction (many-to-many),

• Total number of input parameters: 19

• Total number of predicted output parameters: 3

Parameters

Primary coolant inventory

Steam Generator (SG) coolant inventory – SG1, SG2, SG3, 

SG4

Cumulative volumetric follow rate from small RCP LOCA 

break

Subcooling level in the cold leg (CL) – CL1, CL2, CL3

Upper Plenum Liquid Temperature

Pressurizer Pressure

Pressurizer Level

Core Inlet Temperature

Auxiliary Feedwater Tank inventory – FW1, FW2, FW3, 

FW4

Total amount of generated hydrogen

Availability of the power from the grid

Table 3. List of input parameters

Table 4. List of predicted output parameters

Parameter

Peak Clad Temperature

Core Outlet Temperature

Subcooling level in the cold leg – CL4 
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Analysis – Implementation Details and Training Process
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Parameter Value

Number of layers 3

Hidden size 100

Learning rate 0.01

Number of epochs 60

Batch size 100

Table 5. Training Hyperparameters

• LSTM network is implemented using open-source AI

framework PyTorch [10] which contains various

architectures of neural networks, and which can be

easily utilized with input and output data.

• The training process is completed on a computer with

NVIDIA GTX1080 GPU.

• Loss function – Mean Squared Error (MSE)

• Optimizer – Adam n: number of samples

Figure 5. Comparison of Adam to Other Optimization 

Algorithms Training a Multilayer Perceptron [9]
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Analysis – Implementation Details and Training Process
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• Total number of scenarios: 9,587

• Total number of time steps in used training: 800 (80%)

• Total number of time steps in used evaluation: 200 (20%)

Start Load Data

Pre-processing

LSTM-RNN Model 

Training

Prediction and Performance 

Metrics Calculations

Evaluation by Performance 

Analysis

End
Transfer 

Learning

Figure 6. Flowchart of LSTM training with Transfer Learning
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Results
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• The loss can be observed to

converge quickly.

• Results show that LSTM is

correctly trained with complex

nuclear reactor data.

Figure 8. Training results for Core Outlet Temperature

Figure 7. Training results for Peak Clad Temperature

Figure 9. Training loss 
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Results
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• Benefit of transfer learning application can

be observed on different scenario

progressions.

Figure 9. Effect of transfer learning application on the results
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Conclusion and Future Work
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• This study is aimed at using DPRA data sets for a typical PWR to train the LSTM-RNN model

to make predictions of possible reactor behaviour under accident conditions as the accident

evolves.

• Results show that the LSTM method is suitable for nuclear reactor data.

• Transfer learning application has provided a great benefit in obtaining more accurate results

with less computational time.

• When using the data from different reactors, it is necessary to pay attention to the

compatibility of the input and predicted parameters.

• In order to make the most accurate prediction of nuclear reactor behavior, other machine

learning methods will be used and results compared.

• The resulting method will be applied for dynamic probability safety analysis of multi-unit small

modular reactors.
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