

Use of Machine Learning Techniques to Reduce the Computational Effort in Dynamic Probabilistic Risk Assessment

> Gulcin Sarici Turkmen Alper Yilmaz, and Tunc Aldemir

Outline

- Objective
- Machine Learning Overview
- Methodology
 - Recurrent Neural Networks
 - Long Short-Term Memory (LSTM)
 - Transfer Learning
- Analysis
 - System Overview
 - Dataset Overview
 - Data Pre-Processing
 - Implementation Details and Training Process
- Results
- Conclusion and Future Work
- References
- Question and Answers

Objective How can we What is the most speed up the challenging part of DPRA process? the DPRA methods? Advantages of probabilistic dynamic risk assessment (DPRA) [1]: Time-dependent results can be obtained Many accident scenarios can be studied \geq In particular, complex structures of new \geq reactor designs can be analyzed more easily than classical methods. Challenges of DPRA: The computational cost is very high Evaluate the results can take a long time Number of scenarios that can be examined is limited. How can we integrate ML ML methods can methods into the be replaced with DPRA? **DPRA** tools?

Machine Learning Overview

Figure 2. Deep Neural Network Architecture [3]

Methodology – Recurrent Neural Networks (RNN)

- The main advantage and necessity of using RNNs is feedback connection that plays vital role in capturing the context information
- RNNs have "memory" which remembers all information incorporated into the model
- Training an RNN is a difficult task with gradient exploding and vanishing problems [4].

- Long Short Term Memory (LSTM) a unique kind of RNN, capable of learning long-time period dependencies,
- LSTM is well-suited to classify, process and predict time series.
- It is solution to vanishing and exploding gradient issues [5].

THE OHIO STATE UNIVERSITY

Methodology – Transfer Learning

- Isolated, single task learning
- Knowledge is not retained or accumulated.

- Learning new tasks relies on previously learned task.
- Learning process can be faster, more accurate and/or need less training data.

THE OHIO STATE UNIVERSITY

Analysis – System Overview

- Initiating event: Station Blackout Accident (SBO)
- Possible scenarios following the initiating event were generated using RAVEN [6] and RELAP5-3D [7]
- RAVEN was used as the driver for the 4-loop PWR simulations

Parameter	Unit	Value
Core Thermal Power	MWth	3850
Total Primary Volume	ft ³	14300
Secondary Volume	ft ³	30500
Steam Generators PORV Setup Point	psia	1235
Pressurizer PORV Opening Setup Point	psia	2350
Pressurizer PORV Closing Setup Point	psia	2330
PORV: Pilot-operated Relief Valve		

Table 1. Major RELAP5-3D Modeling Parameters [4]

THE OHIO STATE UNIVERSITY

Analysis – Dataset Overview

- Scenario datasets were generated from selected initiating events and branching conditions.
- Total number of RELAP5-3D SBO simulations is 9,587.
- RELAP5-3 branching conditions (BCs) (total of 9) included power recovery, steam generator safety valve reclosing failure, reactor coolant pump seals integrity and emergency power duration [8].

BC	Parameter	Distribution	From	То
Offsite Power Recovery	Recovery Time	Uniform	5 hours	10 hours
Diesel Generator Power Recovery	Recovery Time	Uniform	1 hour	10 hours
Auxiliary Feedwater (AFW) System	AFW Power Off	Uniform	1 second	4 hours
Primary system safety valve	Valve Stuck Open Time	Uniform	1 second	10 hours
reclosing failure	Valve Stuck Open Cycle	Uniform	1	20
Reactor coolant pump (RCP)	Break Opening Time	Uniform	30 minutes	10 hours
Seal LOCA	Break Size	Uniform	0.005 ft2	0.12 ft2
RCP Controlled Bleed-off	Isolation Time	Uniform	5 minutes	5 hours
Secondary side	Depressurization Procedure Starting Time	Uniform	0 s	10 hours
	Cooling Slope	Uniform	0.01 K/s	0.02 K/s

Table 2. Example BCs and Data for RELAP5-3D SBO Simulations [8]

8

Analysis – Dataset Pre-Processing

- Each branch of a scenario contains a large number of state variables, and the resulting data are highdimensional in both state variables and time.
- To describe the temporal behavior of all system state variables (e.g., pressure and temperature), we represent each scenario x_i (i=1,...,I) by M state variables xi (m=1,...,M) and time length T as the M*L matrix:

$$\boldsymbol{x}_{i} = \begin{bmatrix} x_{i1}(t_{1}) & \cdots & x_{i1}(t_{L}) \\ \vdots & \ddots & \vdots \\ x_{iM}(t_{1}) & \cdots & x_{iM}(t_{L}) \end{bmatrix}$$

$$\overline{\boldsymbol{x}}_{im} = \frac{\boldsymbol{x}_{im} - \min(\boldsymbol{x}_{im})}{\max(\boldsymbol{x}_{im}) - \min(\boldsymbol{x}_{im})}$$

- Another issue that arises when dealing with nuclear transients is due to different scales of the variables used.
- Hence, each variable in scenario needs to be normalized into the range of 0 and 1.

Analysis – Implementation Details and Training Process

- Total number of input parameters: 19
- Total number of predicted output parameters: 3

Table 4. List of predicted output parameters

Parameter

Peak Clad Temperature

Core Outlet Temperature

Subcooling level in the cold leg - CL4

Table 3. List of input parameters

Parameters				
Primary coolant inventory				
Steam Generator (SG) coolant inventory – SG1, SG2, SG3, SG4				
Cumulative volumetric follow rate from small RCP LOCA break				
Subcooling level in the cold leg (CL) – CL1, CL2, CL3				
Upper Plenum Liquid Temperature				
Pressurizer Pressure				
Pressurizer Level				
Core Inlet Temperature				
Auxiliary Feedwater Tank inventory – FW1, FW2, FW3, FW4				
Total amount of generated hydrogen				
Availability of the power from the grid				

Analysis – Implementation Details and Training Process

Table 5. Training Hyperparameters

Parameter	Value
Number of layers	3
Hidden size	100
Learning rate	0.01
Number of epochs	60
Batch size	100

- LSTM network is implemented using open-source AI framework PyTorch [10] which contains various architectures of neural networks, and which can be easily utilized with input and output data.
- The training process is completed on a computer with NVIDIA GTX1080 GPU.
- Loss function Mean Squared Error (MSE)
- Optimizer Adam

Figure 5. Comparison of Adam to Other Optimization Algorithms Training a Multilayer Perceptron [9]

$$MSE = \frac{1}{n} \Sigma \left(\underbrace{y - \widehat{y}}_{\text{The square of the difference}} \right)^2$$

n: number of samples

Analysis – Implementation Details and Training Process

Figure 6. Flowchart of LSTM training with Transfer Learning

12

Results

Figure 7. Training results for Peak Clad Temperature

Figure 9. Training loss

Conclusion and Future Work

- This study is aimed at using DPRA data sets for a typical PWR to train the LSTM-RNN model to make predictions of possible reactor behaviour under accident conditions as the accident evolves.
- Results show that the LSTM method is suitable for nuclear reactor data.
- Transfer learning application has provided a great benefit in obtaining more accurate results with less computational time.
- When using the data from different reactors, it is necessary to pay attention to the compatibility of the input and predicted parameters.

- In order to make the most accurate prediction of nuclear reactor behavior, other machine learning methods will be used and results compared.
- The resulting method will be applied for dynamic probability safety analysis of multi-unit small modular reactors.

References

- [1] Aldemir, T., (2013), A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants, Annals of Nuclear Energy, 52, 113-124.
- [2] Schmidhuber, J. (2015) 'Deep learning in neural networks: an overview', Neural Networks, Vol. 61, pp.85–117.
- [3] Baker, Bowen, Gupta, Otkrist, Naik, Nikhil, Raskar, Ramesh, 2016. Designing neural network architectures using reinforcement learning.
- [4] Zha, B., Yilmaz, A., & Aldemir, T. (2019). Off-Site Dose Prediction for Decision Making Using Recurrent Neural Networks. Transactions, 121(1), 204-206.
- [5] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
- [6] Alfonsi, Andrea, and et al. 2020. RAVEN Theory Manual. INL/EXT-16-38178, Idaho National Laboratory.
- [7] RELAP5-3D Code Development Team, RELAP5-3D Code Manual (2005).
- [8] Aldemir, Tunc, Yilmaz, Alper, Hassan, Yassin, Alfonsi, Andrea, Mandelli, Diego, and Guler Yigitoglu, Askin. 2021.
 "Integrating Static PRA Information with Risk Informed Safety Margin Characterization (RISMC) Simulation Methods." Technical Report, United States.
- [9] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015

Question and Answers