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• We’ve divided HUNTER into five topics
o Introduction – Ron Boring
o Task Module (= Procedures) – Tom Ulrich
o Environment Module (= RELAP5-3D Interface) – Yun Heo
o Individual Module (= Performance Shaping Factors) – Jooyoung Park
o Graphical User Interface – Jeeyea Ahn

• Represents work primarily from the period Summer 2021 – Spring 2022

The HUNTER Session
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HUNTER Origins
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• HUNTER: Human Unimodel for Nuclear Technology to Enhance Reliability
o A unimodel is a cognitive 

framework that favors 
simplified decision models

o The HUNTER name is a tongue-in-
cheek reference to many of the INL
animal-named modeling and simulation
codes

• HUNTER is the human element
coupled to the hardware model, e.g., 
MOOSE-HUNTER or  RAVEN-HUNTER

• We disavow any reference to harming
the animal-named codes we work with
of course! J

What’s in a Name?
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• HUNTER Introduced at PSAM in Korea
o Goal: Create a dynamic version of SPAR-H
o Develop simple, easy-to-use dynamic HRA as proof of concept

• Stepping stone to more complete dynamic HRA methods like ADS-IDAC
o Framework required many parts beyond SPAR-H

HUNTER in Context
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original HUNTER framework, here called HUNTER 1. There are two important considerations in this 
early model of HUNTER. First, the HUNTER framework was designed to interact with other dynamic 
risk analysis tools like RAVEN (Rabiti et al. 2017). Previous HUNTER efforts focused on connecting 
HUNTER with RAVEN (Boring et al. 2016). As the HRA counterpart to RAVEN, HUNTER was used to 
quantify HEPs for operator actions in a station blackout scenario based on time-dependent plant response 
data and operator actions. Second, the existing HUNTER framework has considered three major 
concepts—cognitive models, PSFs, and data sources—for analyzing dynamic operator actions. In the 
previous HUNTER efforts, the Goals, Operators, Methods, and Selection rules (GOMS) - HRA (Boring 
and Rasmussen 2016), the Standardized Plant Analysis Risk-HRA (SPAR-H) autocalculation (Boring, 
Rasmussen, Smith, Mandelli, and Ewing 2017), and dynamic dependency (Boring 2015b) approaches 
were developed to implement the concepts within the HUNTER framework. These are described in the 
next subsections. 

 

 
Figure 1. The original HUNTER framework (adapted from Boring et al. 2016). 

2.2 GOMS-HRA 
GOMS-HRA (Boring et al. 2016; Boring and Rasmussen 2016) was developed to provide cognition-

based time and HEP information for dynamic HRA calculation in the HUNTER framework. It is 
theoretically derived from the GOMS method, which has been used to model proceduralized activities 
and evaluate user interactions with human-computer interfaces in human factors research (Card, Moran, 
and Newell 2018). As a predictive method, GOMS-HRA is well-equipped to simulate human actions 
under specific circumstances in a scenario. The basic approach of GOMS-HRA consists of three steps: (1) 
breaking human actions into a series of task-level primitives, (2) allocating time and error values to each 
task-level primitive, then (3) predicting human actions or task durations. 

In GOMS-HRA, human actions are broken into task-level primitives, consisting of the most elemental 
types of human activities. GOMS-HRA uses six types of task-level primitives defined in the Systematic 
Human Error Reduction and Prediction Approach (SHERPA; Torres, Nadeau, and Landau 2021). The 
following are the SHERPA error types: 
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• Context for HUNTER
o Origins were in creating a dynamic version of one of the simplest HRA methods, 

SPAR-H
o Dynamic HRA and PRA have not been widely adapted

• The approaches are necessarily complex
• They have been slow to become releasable software tools

• A lot of research needed just to get them going
• The tools have successfully answered many research questions but have not

translated into widespread use
o If we can create the right tools, dynamic HRA has strong advantages over static 

HRA
• Modeling what-if scenarios that are not possible in static HRA
• Modeling more realistic contexts and event progressions
• Providing coupled data between plant models and human models
• Providing new metrics beyond HEPs

• E.g., HUNTER calculates time on task in addition to HEPs

Another HRA Method?



7

Concept Purpose
GOMS-HRA Taxonomy of task-level primitives that can be paired to 

operating procedures to provide base error rates and 
timing for each human action

PSF 
Autocalculation

Calculate modifiers on HEPs based on objective plant 
conditions that realistically change over an event

Dynamic 
Dependency

Method to aggregate HEPs across multiple tasks for 
backwards compatibility to static HRA

Original HUNTER Elements

• Original HUNTER Addressed Three Main Concepts
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• GOMS-HRA
o GOMS (Goals-Operators-Methods-Selection rules) was method developed to support 

task analysis
o GOMS-HRA is INL method to develop a taxonomy of basic elements of human 

performance

Original HUNTER Elements

Term Abbreviation Definition 

Task 
Level 

Primitive 
TLP 

A basic human operation 
occurring at the subtask 
level. Multiple operations 
are typically required to 
achieve specific actions 
and goals. 

Procedure 
Level 

Primitive 
PLP 

A human activity 
occurring at the 
procedure step level. 
Often, multiple task level 
primitives will be required 
to achieve a procedure 
level primitive activity. 

Task 
Level 
Error 

TLE 

A nominal human error 
associated with a task 
level primitive. Each task 
level primitives is 
associated with multiple 
possible task level errors. 
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• Actions (A)—Performing required physical actions on the control boards (AC) or in the field (AF) 

• Checking (C)—Looking for required information on the control boards (CC) or in the field (CF) 

• Retrieval (R)—Obtaining required information on the control boards (RC) or in the field (RF) 

• Instruction Communication (I)—Producing verbal or written instructions (IP) or receiving verbal 
or written instructions (IR) 

• Selection (S)—Selecting or setting a value on the control boards (SC) or in the field (SF) 

• Decisions (D)—Making a decision based on procedures (DP) or without available procedures 
(DW) 

This GOMS-HRA taxonomy is captured in a cognitive model, as depicted in Figure 2, with an added 
element for time spent in waiting (W). This figure shows how tasks are aligned to stages of information 
processing, beginning with sensation and perception, progressing to cognition, and culminating in 
behavioral actions. Note that items like Instructions (IR and IP) can be either verbal (e.g., communication 
between shift supervisor and reactor operator) or written (e.g., use of printed operating procedures). 

 
 
 

 
 

Figure 2. GOMS-HRA cognitive model (from Boring, Ulrich, and Rasmussen 2018). 
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• GOMS-HRA
o GOMS Task Level 

Primitives provide 
basic error rates, 
calibrated to THERP 
or SPAR-H 

Original HUNTER Elements
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Table 5. GOMS-HRA nominal HEP values for the task level primitives. 
 

Operator Description Nominal 
HEP 

THERP 
Source Notes 

AC 
Performing required 

physical actions on the 
control boards 

0.001 20-12 (3) 
Assume well-

delineated 
controls 

AF 
Performing required 

physical actions in the 
field 

0.008 20-13 (4) Assume series of 
controls 

CC 
Looking for required 
information on the 

control boards 
0.001 20-9 (3) 

Assume well-
delineated 
indicators 

CF Looking for required 
information in the field 

 
0.01 

 
20-14 (4) Assume unclear 

indication 

RC 
Obtaining required 
information on the 

control boards 
0.001 20-9 (3) 

Assume well-
delineated 
indicators 

RF Obtaining required 
information in the field 

 
0.01 

 
20-14 (4) Assume unclear 

indication 

IP Producing verbal or 
written instructions 

 
0.003 

 
20-5 (1) Assume omit a 

step 

IR Receiving verbal or 
written instructions 

 
0.001 

 
20-8 (1) Assume recall 

one item 

SC 
Selecting or setting a 
value on the control 

boards 
0.001 20-12 (9) Assume rotary 

style control 

SF Selecting or setting a 
value in the field 

 
0.008 

 
20-13 (4) Assume series of 

controls 

DP Making a decision based 
on procedures 

 
0.001 

 
20-3 (4) Assume 30-

minute rule 

DW 
Making a decision 
without available 

procedures 

 
0.01 

 
20-1 (4) Assume 30-

minute rule 
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• GOMS-HRA
o GOMS also provides nominal timing data in addition to human error probabilities
o Derived from studies conducted in INL’s Human Systems Simulation Laboratory

Original HUNTER Elements
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Table 1. Time information for each task-level primitive (from Boring et al. 2016). 

Task-Level 
Primitive 

Distribution Mean 
(log scale) 

Standard 
Deviation 
(log scale) 

5th Percentile 95th Percentile 

AC Lognormal 2.23 1.18 1.32 65.30 

CC Lognormal 2.14 0.76 2.44 29.90 

DP Exponential 0.02 N/A 2.62 152.80 

IP Lognormal 2.46 0.76 3.35 40.70 

IR Lognormal 1.92 0.93 1.47 31.80 

RC Lognormal 2.11 0.60 3.08 21.90 

SC Lognormal 2.93 1.11 3.01 115.60 

W Lognormal 2.66 1.26 1.79 113.60 

 

 

The time and error values are allocated for task-level primitives of human actions analyzed in the first 
step. Table 1 and Table 2 summarize the time and HEP information for each task-level primitive. The 
time information includes the statistical distribution, mean, standard deviation, 5th and 95th percentile, 
which have been derived from the time data collected through experiments using actual operators in the 
Human Systems Simulation Laboratory (HSSL) at INL (Joe and Boring 2017; Ulrich et al. 2017a). For 
the HEP information, these are assumed based on data suggested in the Technique for Human Error Rate 
Prediction (THERP; Swain and Guttmann 1983) method. 

  



11

• GOMS-HRA
o GOMS Task Level 

Errors map common 
types of errors that 
occur

Original HUNTER Elements

TLP Task Level Errors 
A TLE-A1: Failure to execute desired action 

TLE-A2: Execute desired action incorrectly 
C TLE-C1: Wrong information checked 

TLE-C2: Information missed 
TLE-C3: Information misinterpreted 
TLE-C4: Failure to check information 

R TLE-R1: Information not attended to 
TLE-R2: Information not perceived 
TLE-R3: Information misinterpreted 

IP TLE-IP1: Failure to produce desired communication 
TLE-IP2: Failure to produce correct communication 

IR TLE-IR1: Communication not attended to 
TLE-IR2: Communication not perceived 
TLE-IR3: Communication misinterpreted 

S TLE-S1: Failure to select 
TLE-S2: Selection make incorrectly 

D TLE-D1: Incorrect goals or priorities 
TLE-D2: Incorrect use of information 
TLE-D3: Incorrect mental model 

W TLE-W1: Incorrect inaction 
TLE-W2: Waiting too long 
TLE-W3: Waiting too short 
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• Autocalculation of SPAR-H Performance Shaping Factors (PSFs)
o Use plant parameters to calculate influence of PSF on the nominal error rate
o PSF is calculated without analyst intervention

Original HUNTER Elements

 

 63 

 
Figure 27. Temporal evolution of the complexity multiplier for the stochastic case. 

 
 
 

7.8 Quantifying Operator Performance 
 
Operator performance was quantified as a final HEP value using the GOMS-HRA and SPAR-H 
nominal HEP values. Table 27 below shows the nominal HEP values, the PSF multiplier, and the 
final HEP values for each procedure step modeled in the simulation. SPAR-H and GOMS-HRA 
were both included to support comparisons and reveal any potential discrepancies between the 
two methods. 
 
  

LOOP$
EDG$failure$

Ba0ery$
failure$

time (minutes)

Complexity PSF
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• HUNTER Mapping of 
Dynamic Dependency
o Dynamic HRA consists of 

continuous not discrete action 
sequences

o Traditional static ways of 
calculating discrete human 
error probabilities (HEPs) for 
human failure events (HFEs) 
may not carry over to 
dynamic models

Original HUNTER Framework
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• HUNTER Mapping of Dynamic Dependency
o What are the effects of one task on another?
o PSFs do not just turn on and off; they lag and linger

Original HUNTER Framework
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Table 6. Dynamic functions that may affect the general calculation of the PSF. 

Dynamic PSF Function Effect on PSF Notation 

lag A PSF will be slow to change at 
the outset of a new effect 

<HI(/!"#) = lim
$→$!"#

& <HI(/) 

linger 
A PSF will be slow to change at 
the termination of an existing 

effect 
<HI(/!"#) = lim

$→$!"#
" <HI(/) 

memory 

General form of lag and linger, 
denoting that the effect of the 

current PSF is a function of 
preceding values for that PSF 

<HI(/!"#) = O(/!) 

decay A PSF will settle to its original 
state over time <HI(/) = <HI(0)					O"#	/ ≫ /' 

 

To consider the effects over time on PSFs in the HUNTER Individual module, this report extends the 

PSF concept from static to dynamic HRA, as shown in Figure 13. In static HRA, PSFs are primarily used 

for quantifying at the task or human failure event (HFE) level. In other words, human reliability analysts 

evaluate PSFs for each task independently, while the relationship between PSFs across different tasks is 

rarely considered in the analysis. In the extended PSF concept for dynamic HRA (also shown in Figure 

13), it is assumed that PSFs in a task affect those in other tasks performed after the task. There are two 

influences suggested in the concept: 

• The intra-PSF influence of a PSF on the same PSF for the next tasks, and  

• The inter-PSF influence of a PSF on different PSFs for the next tasks.  

• The inter-PSF influence of a PSF on different PSFs during the same task. 

An example of intra-PSF influence occurs when the stress PSF in Task 1 affects the stress PSF in 

Task 2. The case in which the complexity PSF in Task 1 influences the available time PSF in Task 2 

shows the example of inter-PSF influence. In this report, we mainly focus on intra-PSF rather than inter-

PSF influence. In this conceptualization of PSF influences, it is also assumed that dynamic modeling 

includes dependency effects between human actions. The third influence—inter-PSF influence during the 

same task—is primarily an artifact of the lack of independence between PSF definitions (Boring et al. 

2006) and does not constitute a specific area of interest for dynamic HRA. 
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New HUNTER Developments
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• The Original HUNTER was a Disparate Collection of Research Tools

• A Review of the Technology Readiness Level of HUNTER Suggested 
These Parts Were Mature, but the Overall Tool Was Not Complete
o HUNTER needs to be developed as

a standalone software program
o HUNTER needs to have a library of

analyses
o Addressing these issues will help make

HUNTER a useful tool for
human reliability analysts

Toward HUNTER 2.0
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Development maturity is captured specifically in terms of Technology Readiness Level (TRL; 

Government Accountability Office 2020). TRLs were originally developed and applied by the National 

Aeronautics and Space Administration but were later widely adopted by the U.S. Department of Defense 

and other agencies. TRLs depict how close to deployment a technology is, with higher numbers (up to 

TRL 9 on the scale) representing higher readiness for deployment. TRLs are depicted in Figure 3. A 

crosswalk between TRLs and RISA pathway goals is found in Table 3. TRLs are especially useful for 

gauging the maturity of research, which starts conceptually but may fail to reach deployment if not 

aligned to a systematic development process. High-value technologies should not languish at low TRLs, 

and the review of RISA tools identifies tools that would benefit industry through deployment and 

prioritizes this process. A goal of the RISA pathway is that tools should be usable for industry 

demonstrations, suggesting a TRL 7 or higher. Tools that fall below this TRL should be brought to a 

higher TRL. Of course, technology maturation is not an overnight process, and it is not necessarily 

possible to leapfrog multiple levels in a short time. Elevating TRLs serves as a goal to drive the 

systematic advancement of capabilities and maintain advancement momentum over the necessary 

development life cycle. 

 

 

Figure 3. Technology readiness levels (from See and Handley 2019). 

 

Table 4 summarizes the assessment of the original HUNTER. Only the first three criteria in the 

technology maturity assessment could be evaluated in terms of TRLs for HUNTER. These are: 

• Development level—deemed of high importance but with a TRL of 3. The technical basis was in 

place, but the standalone software was not. 

• Use of proven technology—deemed of high importance but with a TRL of 5. The HRA theories 

and methods underlying HUNTER were developed and ready for more complete demonstrations. 

• PRA capability and applicability—deemed of high important and with a TRL of 7. HUNTER was 

designed for HRA and PRA use but needs further demonstrations and refinements. 

The remaining criteria were not evaluated in terms of TRL, because information was not readily 

available. These included documentation, clear system requirements, easy installation, a graphical user 

interface, version control, verification and validation (V&V), quality assurance (QA), a tool web page, 

user support, a training program, and a software license. In the effort now to develop HUNTER as a more 

technologically mature software tool to support PRA and HRA, these criteria serve as requirements for 

future development. 
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• New HUNTER Developments
o Captured in report released by DOE 

LWRS in March 2022
o Includes refined overall framework
o Standalone software

• Emphasis on simplified graphical user 
interface that promotes ease of use

o New use case to demonstrate 
capabilities

o Clear delineation between HUNTER
dynamic HRA and dynamic PRA
software like EMRALD

Toward HUNTER 2.0
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• Software Architecture Emphasizes Adaptability
o Flexible

• HUNTER should be able to model a variety of applications
• From main control room to balance of plant
• Much of the advantage of dynamic HRA may be realized in areas not yet captured by static 

HRA

o Modular
• HUNTER code should not be fixed to one HRA method
• Initial efforts have centered on SPAR-H and new GOMS-HRA
• Should be able to align with other HRA methods like IDHEAS or IDAC

o Scalable
• Features can be added in the future as they are developed
• Features can be turned on or off depending on the granularity of analysis

Toward HUNTER 2.0
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• New Conceptual Model
o Three basic modules

• Individual: What affects person performing the task (PSFs)
• Task: What task is being performed (procedures)
• Environment: What system is being used (plant model)

Toward HUNTER 2.0
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movement. Despite its focus on physical movement, the model readily generalizes to all human activities, 
including both physical actions and mental endeavors like decision-making. This basic model and its 
three factors as shown in Figure 4 serve as the software pillars for the new implementation of HUNTER, 
whereby each pillar serves as a module in the architecture. Joining the modules in the figure are classes, 
which are depicted in blue. For the present purposes, modules describe the basic elements of human 
behavior, while classes are the functions that enable the modules to work. Put another way, modules 
represent who (individual), what (task), and where (environment). Classes represent how, why, and when 
activities occur within the modules. Modules are the figurative nouns and verbs of HUNTER, while 
classes are the adjectives and adverbs. 

This definition differs somewhat from the formal definition of module and class used in many 
software programming environments, but it nonetheless captures the fundamental structure of HUNTER. 
The modules and classes described in this section should be seen as describing the functional nature of the 
HUNTER framework, while the specific software implementation may consolidate or expand the specific 
modules and classes. The net effect remains the same: functionally and conceptually, the HUNTER 
framework consists at a high level of these basic elements. Further details on the actual software 
implementation follow in Sections 4 - 7. The functional modules and classes are described next. 

 

 

Figure 4. Conceptual modules (in black) and classes (in blue) of HUNTER 2. 

 

3.3.2 HUNTER Modules 
The three modules, depicted as corner nodes in black text in Figure 4, are briefly noted at a 

conceptual level here. We use the example of a virtual control room operator model for illustration here, 
but HUNTER is not limited to only this representation of plant personnel. 

• Individual Module—this is the representation of the human performing the activity, 
sometimes referred to as a “virtual operator.” It incorporates relevant characteristics of the 
individual that impact that individual’s performance. Such factors could be considered 
internal PSFs, which are the psychological considerations—like internal stress, experience, 
knowledge, and fitness for duty—that the individual brings to the task. These factors may 
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• HUNTER 2.0 Maps to the Original HUNTER
o Note that blue are support classes

Toward HUNTER 2.0
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general conceptual model. This change reflects the greater emphasis on adaptability in HUNTER 2 and 
the corresponding desire not to lock down the implementations for the modules and classes. 

Figure 5 shows the original HUNTER framework from Figure 1 superimposed with the more generic 
modules and classes from HUNTER 2. As can be seen, there is a direct mapping of some elements. The 
modules, as would be expected, are comprised of multiple sub-elements, while the classes link these 
modules functionally. What’s clearly missing from the original HUNTER framework is a way to account 
for inputs like setting the initial configuration of the model. The original HUNTER framework in Figure 1 
represents more of an architectural snapshot. As such, the need to reflect the states of the model was not 
depicted but was implicitly accounted for in the model. 

 

 
Figure 5. Crosswalk of HUNTER 1 to HUNTER 2. 

 
HUNTER 2, as shown in the figure and documented in this report, is both an extension and 

generalization of the original HUNTER framework. The original HUNTER figure remains a useful sketch 
of a software implementation of HUNTER, while this section has cast a more conceptual framework. The 
next sections summarize the implementation of this framework as standalone software. 

 

4. TASK MODULE IMPLEMENTATION 
4.1 Background 

The HUNTER framework was translated into a simulation application written in the Python 
programming language. The simulation code supports the ability to execute scenarios comprised of a set 
of procedures. The procedures are predefined as inputs to the application and contain all the necessary 
data elements to execute the human tasks based on the simulated nuclear plant state, evaluate the virtual 
operator human reliability context, and proceed down the procedure path appropriately. In the interest of 
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• Task Module
o Built on plant operating procedures (task = procedure step)

• Steps mapped to GOMS-HRA task level primitives
• Steps have input and output to environment such as controls and indicators

o Logic to handle if-then and response not obtained

Toward HUNTER 2.0
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steps are numbered, substeps are usually treated alphabetically, Step 1a, 1b, etc., meaning main 
Step 1 followed by substeps a and b. 

• Point—refers to addresses or names for parameters in external plant simulations. This 
information may also be dummy coded if no plant simulation is referenced. 

• Primitive—refers to the GOMS-HRA task level primitives, which the HUNTER code uses to 
determine time durations and nominal HEPs for tasks. More than one task level primitive may be 
associated with a step. 

 

 

 

 
Note: Step 9 is highlighted to show the dummy coding used in the parser flag column to denote response obtained and RNO step types. 

Figure 6. Region of the HUNTER input file demonstrating the use of dummy coding to represent 
additional elements under the same procedure step. 
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• Individual Module
o Currently handles PSFs based on SPAR-H
o Dynamic implementations for Stress, Fitness for Duty (Fatigue), and Available Time

• Not all PSFs lend themselves to dynamic assignment, but may have trigger points (e.g., upset 
event at plant)

• Even manually triggered PSFs may have lag and linger effects

Toward HUNTER 2.0
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Figure 13. Extension of the PSF concept from static to dynamic HRA. 

 
 

Table 7. Categorization of PSF qualification and quantification functions. 

 Qualification Function 
Manually Assigned Automatically Assigned 

Quantification 
Function 

Static 

The level of the PSF and its 
multiplier are manually 
assigned in the model, 

equivalent to static HRA. 

The level of the PSF is 
automatically assigned, and 

static (i.e., predefined) 
multipliers are applied for 

each level. 

Dynamic 

The level of the PSF is 
manually assigned, but the 
multiplier is automatically 

calculated (e.g., adjusted for 
lag and linger effects). 

The level of the PSF is 
automatically assigned and 

the PSF multiplier is 
autocalculated. 

 

 

5.3 Treatment of SPAR-H PSFs in the Individual Module 
Table 7 summarizes how to treat the SPAR-H PSFs in the Individual module. The Individual module 

consists of two functions:  

• The PSF qualification function, and 

• The PSF quantification function.  
The PSF qualification function is responsible for manually assigning PSF levels, similarly to how this 

is performed in the existing static SPAR-H method. Alternately, PSF levels may be assigned 
automatically based on information such as procedure instructions or plant response data from thermal-
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• Environment Module
o HUNTER represents a virtual operator who must interact with a virtual world
o Current focus has been on coupling HUNTER with RELAP5-3D thermalhydraulics
o Tight coupling means operator action triggers change in model and operator responds 

to changes in plant parameters

Toward HUNTER 2.0
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To reflect the interplay between plant state and operator response, HUNTER’s virtual operator is 
linked to an external plant model.  In HUNTER, an operator manipulation is applied to the plant simulator 
or thermal-hydraulic code. It must be possible to perform actions (i.e., tasks) that directly affect plant 
operations, such as closing valves or operating pumps. In turn, the operator monitors parameters of the 
plant. Some parameters are monitored regularly to determine routine or abnormal plant evolutions. The 
HUNTER virtual operator, as guided by continuous and one-time tasks in the procedures, checks for 
parameter changes or compares plant parameters with specific values presented in the procedures. 
Additionally, when the operator affects a change on the plant, they confirm the changes occurred as 
desired. 

Thus, the interface between the virtual operator in HUNTER and the virtual plant is a two-way feedback 
loop, as depicted in Figure 21. The operator must be able to receive parameters from the plant model, and 
they must be able to manipulate or control aspects of the plant. To accomplish this interaction, we have 
implemented a two-way synchronous coupling between HUNTER and a plant simulator:  

• Monitor (Plant ® Operator): HUNTER reads parameter or component information reflected in 
the plant simulation.  

• Control (Operator ® Plant): In turn, HUNTER can alter the state of the plant simulation through 
virtual operator actions.  

These two functions operate in parallel in a dynamic fashion. The plant model progresses with or without 
virtual operator input. The plant parameters are available to the virtual operator during this progression. 
When the operator intercedes (e.g., by closing a valve), this is reflected in the plant model as a change. 
There is an iterative feedback loop between the HUNTER virtual operator and the plant model, 
progressing to a particular stopping point for the scenario. The human and plant models are synchronized 
through information exchange (i.e., parameter monitoring and operator actions) through the coupling 
mechanism. Hold points may be employed to wait for particular information exchanges. For example, the 
operator model may be in a wait-and-monitor mode awaiting a particular parameter level from the plant 
model. Similarly, the plant model may simulate plant functions for a particular interval up to a 
synchronization point and pause for potential input like operator actions from HUNTER. Coupling may 
occur at regular intervals or may be irregular depending on the type of plant activity being monitored or 
controlled.  

 

 

Figure 22. Concept idea of coupling between HUNTER and plant simulator. 
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• Graphical User Interface
o Python-based code that integrates 

various parts of HUNTER

Toward HUNTER 2.0
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Figure 37. HUNTER Procedure window view. 

 

Symbol Function 

 Move Task Up 

 Move Task Down 

 Add Task 

 Delete Task 

 Edit Task 

Figure 38. HUNTER procedure editing tools. 

The procedure window visualizes, in procedural step units, the procedure relevant to the model’s 
scenario, and offers an interface that helps to easily define procedure step attributes. The procedure 
window consists of the graphical procedure model area (on the left) and the input setting panel (on the 
right). The left-side graphical area includes a tab for each procedure, the name of which is displayed at the 
top. Each tab employs a flowchart-like format to visualize all the steps of the procedure. If the user needs 
to change the contents or the order of the steps, they can edit the steps via the button panel at the top left 
(see Figure 38 for a legend).  
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Figure 29. HUNTER splash screen. 

 

7.2.2 New or Existing Models 
HUNTER scenarios are grouped into models, which link all the subsets files (e.g., procedures). If the 

user chooses to open an existing model, a dialog box appears, as shown in Figure 30, enabling the user to 
select a previously created model file. Models are stored as JSON files. 

 
Figure 30. HUNTER file dialog for loading an existing model. 
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Sample HUNTER Outputs



26

• Modeled Steam Generator Tube Rupture
o Example scenario well documented in HRA (e.g., International HRA Empirical Study, 

NUREG/IA-0216)
o Scenario frequently run in INL’s simulator with available log parameters for validation
o Example presented here is from NUREG/IA-0216

• Focus on modeling simple (HFE-1A) and complex (HFE-1B) identification and isolation of 
ruptured steam generator

Example SGTR 
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two main differences. The main differences are that the event starts off with a major steamline break with 
a nearly coincident SGTR in Steam Generator #1 that will cause an immediate automatic scram (and 
expectations that the crew will enter the EOP E-0 procedure for post-reactor-trip actions). The scenario 
features the autoclosure (as expected) of the main steam isolation valves in response to the steamline 
break along with the failure of any remaining secondary radiation indications (not immediately known nor 
expected by the crew) as part of the simulation design. The combination with the steamline break makes it 
considerably more difficult for the crew to diagnose the existence of the SGTR, especially in response the 
step in the EOP E-0 procedure concerning elevated radiation indications. 

The specific HFEs used in the scenario are presented in Table 20. Success criteria for the events are 
typically determined by successfully avoiding irreversible changes to the plant state that affect the 
likelihood of core damage. To this end, the success criteria were determined on the basis of the 
expectations of the trainers for operator response in accordance with their training. The success/failure 
criteria included expected time windows for how long an activity was expected to take. 

 
Table 20. HFEs for two SGTR scenarios from the Halden study. 

HFE Descriptions Base case Complex case 

HFE-1 Failure to identify and isolate the ruptured SG HFE-1A HFE-1B 

HFE-2 Failure to cool down the RCS expeditiously HFE-2A HFE-2A 

HFE-3 Failure to depressurize the RCS expeditiously HFE-3A HFE-3B 

HFE-4 Failure to stop the safety injection (SI) HFE-4A N/A 

HFE-5 Failure to give a closing order to the PORV block valve N/A HFE-5B1 
HFE-5B2 

 
 

Overall, most crews successfully performed the required tasks, as would be expected for a well-
trained DBA. The only challenging task proved to be the isolation of the faulted steam generator in the 
complex case (see Figure 45). All operators were well trained and very familiar with the base SGTR, 
since they participated in a period training program, which has the SGTR scenario trained twice every 
year. The complex SGTR scenario featured a compound fault that was not frequently trained. 

The HFEs were ranked relative to their difficulty considering crew performance. The ranking process 
took into account: the number of “failing” crews and “near misses” for each HFE, the difficulty in 
operational terms, and the supplemental information provided to the HRA teams. The derived difficulty 
ranking of HFEs is: 5B1 > 1B > 3B > 3A > [1A, 2A, 2B] > 5B2 > 4A. In the case of HFE-2 and -3, the 
goal of the tasks is to control the temperature or pressure of the RCS, and as they have characteristics that 
change with time, they were greatly affected by the conditions at the start of the performance. When the 
automatic protection system was activated, it took more time to fully perform tasks, such as RCS 
cooldown due to its effect. In the task of decompressing the RCS, it was also observed that the timing of 
terminating the task occurred too early (e.g., ending without sufficiently decompressing the RCS). This is 
thought to be because the decompression rate was too fast, and there were several stopping conditions that 
had to be stopped or monitored before the decompression was completely achieved. This in turn led to 
slight deviations (slightly below) from the success criteria or insufficient performance. 
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• Modeled Steam Generator Tube Rupture
o Time for simple and complex scenarios

Example SGTR

 Mean Time (s)  
 Basic Complex  
NUREG/IA-0216 370 894  

HUNTER 391 951 ×2.416 Time 
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Next Steps
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• Task Module
o Auto parsing of PDF procedures to populate more scenarios
o Building decision-making module using cognitive modeling
o Building continuous actions

• Individual Module
o More PSFs modeled
o Expanding PSFs with effects for both time and error

• Environment Module
o Coupling HUNTER with additional external codes

• Rancor Microworld Simulator
• GSE Systems Generic Pressurized Water Reactor (GPWR)

• Other
o Population of greater number of scenarios

• HRA for novel applications like design and procedure verification and first-of-a-kind 
steam extraction

• Reusable scenarios to benefit industry
o Consideration of other HRA methods beyond underlying SPAR-H

• IDHEAS? Phoenix? Petro-HRA?

Future Developments in HUNTER



30

How You Can Help

• What modeling scenarios are not currently being covered that we can use 
for demonstrations?
o We are not trying to replace static HRA—just enhance it where it makes sense

• What analysis outputs other than HEPs are needed?

• What software does HUNTER need to integrate with to be useful?
o Simulators?
o PRA software?
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Questions?
Ronald.Boring@inl.gov


