

University of Stuttgart Institute of Machine Components Reliability Department

Probabilistic Safety Assessment and Management PSAM 16, June 26–July 1, 2022, Honolulu, Hawaii

Non-orthogonality in test design Practical relevance of the theoretical concept in terms of regression quality and test plan efficiency

Philipp Mell, M.Sc.

Motivation Typical DoE scenario

- Approval tests or performance sensivity assessment for arbitrary components or (sub-)systems
- Case: "performance" y depends on several influencing factors; e.g.:
 - 1. temperature
 - 2. voltage

Motivation

Typical DoE scenario

Motivation

Typical DoE scenario

UNI STUTTGART

Overview

- Problem definition
- Theory: orthogonality as a DoE principle
- Application: sources of non-orthogonality
- Simulation study
- Summary & future work

Problem definition

Parameter space

Parameter space		Temperature	Voltage
Parameter combination (experiment)	Minimum	$T_{min} = -30 \ ^{\circ}C$	$V_{min} = 400 V$
	Maximum	$T_{max} = 220 \ ^{\circ}C$	$V_{max} = 900 V$

Theory: orthogonality as a DoE principle

What are the effects?

Non-orthogonal test plan

Orthogonal (factorial) test plan

- In the non-orthogonal case, the variances increase
- Additionally, the estimates are suddenly correlated (not shown)

Change in the estimation variance of					
c _o (mean)	c_1 (main effect x_1)	c_2 (main effect x_2)	c_3 (interaction x_1x_2)		
-70 %*	+34 %	+12 %	+284 %		

*mainly due to narrower parameter space

Example (a): parameter combination shift

- Certain values of a single parameter cannot be set and have to be lowered, e.g. due to ...
 - high cost (high energy consumption, high cooling effort),
 - limited test setup (no high temperatures at low pressure without phase change),
 - physical boundaries (no arbitrary combinations of humidity and temperature),
 - triggering of a different failure mechanism.

Example (b): parameter combination omitted

- A particular parameter combination has to be omitted due to ...
 - timely constraints (consequences of earlier delays, or management decisions),
 - unplanned unavailability of the test setup (damage, or use for another project),
 - insufficient sample size (costly product, or limited number of prototypes).

Example (c): parameter combination repeated

- A particular parameter combination is repeated due to ...
 - an originally planned, but then cancelled repetition,
 - human errors (e.g. miscommunication between different test bench workers),
 - "It can't hurt, can it?"

Example (d): normal scattering of all parameter combinations

- All parameter combinations are slightly off their ideal value due to...
 - inexact test setup (which might be cheaper than high-end machinery),
 - influence of the operator,
 - changes during the experiment (e.g. ambient temperature, pressure, electric fields).

Take-aways

- Some kind of non-orthogonality is always present, the question is just to which degree
- This especially applies to the last case (parameters being slightly & unsystematically off)

While perfect non-orthogonality is impossible in the evaluation, perfect orthogonality is impossible in the execution

What next?

Process

Results

Results

Results

100 Percentage points 80 60 40 20 0 -20 C_1 C_2 C_3 C_0 (main effect x_1) (main effect x_2) (interaction x_1x_2) (mean) ■ shift (M) ■ shift (L) omission repetition in x2 direction in x2 direction

Results

100 Percentage points 80 60 40 20 0 -20 C_1 C_2 C_3 C_0 (main effect x_1) (main effect x_2) (interaction x_1x_2) (mean) ■ shift (M) ■ shift (L) omission repetition in x2 direction in x2 direction

Results

100 Percentage points 80 60 40 20 0 -20 C_1 C_2 C_3 C_0 (main effect x_1) (main effect x_2) (interaction x_1x_2) (mean) ■ shift (M) □ shift (L) omission repetition in x2 direction in x2 direction

Results

100 Percentage points 80 60 40 20 0 -20 C_1 C_2 C_3 C_0 (main effect x_1) (main effect x_2) (interaction x_1x_2) (mean) □ shift (M) ■ shift (L) omission repetition in x2 direction in x2 direction

Summary & future work

How important is orthogonality?

UNI STUTTGART

Summary & future work

How important is orthogonality?

Summary & future work

Future work

- How do combinations of the basic non-orthogonality scenarios perform?
- How do different degrees of input quantity scattering affect the results?
- How does the behaviour change for different ratios of parameter influence? (main effect to main effect, main effect to interaction, interaction to interaction)
- What is the dependency on...
 - ... the number of repetitions?
 - ... the number of dimensions?
- etc...

University of Stuttgart Institute of Machine Components Reliability Department

Thank you!

Philipp Mell, M.Sc.

e-mail philipp.mell@ima.uni-stuttgart.de phone +49 (0) 711 685-69859 www.ima.uni-stuttgart.de

University of Stuttgart Pfaffenwaldring 9 – 70569 Stuttgart – Germany

"Find us on LinkedIn"

