# Accountability of Dynamic Calculations

**Pavel Krcal, Pengbo Wang, Ola Bäckström** 27 June 2022

RISK SPECTRUM

- Different from previous talks
- Exhaustive risk assessment
- Dynamic vs static



## Example: a simple pumping system





#### A fault tree capturing failure combinations





#### A fault tree capturing failure combinations



• Freq x Prob<sub>1</sub> x Prob<sub>2</sub>

#### A fault tree capturing failure combinations



- Freq x Prob<sub>1</sub> x Prob<sub>2</sub>
- Failures in operation:
  - Failure rate
  - Mission time
- Meaning:



## Minimal cut set list and the top failure frequency

- Validation, explanation, interpretation of quantitative results
  - Clear meaning of minimal cut sets
  - Simple mathematical connection to minimal cut set frequencies

| op Event neglency r = 4,000E'04 |             |       |            |                 |                 |         |  |  |  |  |
|---------------------------------|-------------|-------|------------|-----------------|-----------------|---------|--|--|--|--|
| No                              | Probability | %     | Event 1    | Event 2         | Event 3         | Event 4 |  |  |  |  |
| 1                               | 1,45E-04    | 29,01 | IE-S-TRANS | CCF-CCW-PMA-ALL |                 |         |  |  |  |  |
| 2                               | 1,45E-04    | 29,01 | IE-S-TRANS | CCF-SWS-PMA-ALL |                 |         |  |  |  |  |
| 3                               | 6,04E-05    | 12,09 | !IE-LMFW   | CCF-SWS-PMA-ALL |                 |         |  |  |  |  |
| 4                               | 6,04E-05    | 12,09 | !IE-LMFW   | CCF-CCW-PMA-ALL |                 |         |  |  |  |  |
| 5                               | 5,01E-06    | 01,00 | !IE-LMFW   | CCF-RHR-PMD-ALL | FEED&BLEED      |         |  |  |  |  |
| 6                               | 4,23E-06    | 00,85 | IE-LOOP    | ACP-GT01-A      | CCF-RHR-PMD-ALL |         |  |  |  |  |
| 7                               | 3,63E-06    | 00,73 | IE-LOOP    | ACP-GT01-A      | CCF-ACP-DGA-ALL |         |  |  |  |  |
| 8                               | 2,87E-06    | 00,57 | !IE-LMFW   | CCF-EFW-PMD-ALL | DPS-MANH        |         |  |  |  |  |
| 9                               | 2,47E-06    | 00,49 | IE-S-TRANS | CCF-ACP-DGA-ALL | OFFSITE-POWER   |         |  |  |  |  |
|                                 |             |       |            |                 |                 |         |  |  |  |  |

#### Top Event frequency F = 4,999E-04



# **Dynamic Calculations**

## Repairs, cold stand-by redundancies



- Pumps can be repaired.
- Pump<sub>2</sub> is a cold stand-by for Pump<sub>1</sub>.
- Event sequences instead of failure combinations
- Formalisms:
  - Dynamic Fault Trees
  - Boolean logic Driven Markov Processes
  - Stochastic Petri Nets
  - Fault Trees with repairs



# **Dynamic Calculations**

SPECTRU

#### A stochastic process captures failure sequences



• Failures in operation:

- Failure rate
- Safe-end state (E.g., a repair of the initiator)
- Mean Time To Repair
- Meaning:



Analysis possibilities

SPECTRUM



• A Continuous Time Markov Chain



MCS-based methods

# Accountability of Dynamic Analysis Results

Can we achieve a similar level as for static analyses?



# **Minimal Cut Set Based Methods**

## I&AB, Bounded Repairs, SDFT

Decomposition into minimal cut sets



[Initiator, Pump\_1\_Operation, Pump\_2\_Operation] [Initiator, Pump\_1\_Operation, Pump\_2\_Start] [Initiator, Pump\_1\_Start, Pump\_2\_Operation] [Initiator, Pump\_1\_Start, Pump\_2\_Start]



# **Minimal Cut Set Based Methods**

## I&AB, Bounded Repairs, SDFT

• Decomposition into minimal cut sets



• Dynamic treatment of cut sets

[Initiator, Pump\_1\_Operation, Pump\_2\_Operation]





# **Minimal Cut Set Based Methods**

## I&AB, Bounded Repairs, SDFT

• Decomposition into minimal cut sets



• Dynamic treatment of cut sets

[Initiator, Pump\_1\_Operation, Pump\_2\_Operation]





# **Approximation 1: Repairs Only**

## Initiator and All Barriers (I&AB)

- An (approximate) analytic solution for a CTMC which models repairs
- Applied to minimal cut sets





# **Approximation 2: Triggers and Repairs**

**Bounded repairs** 

**SPECTRUM** 

Only X repairs considered -> Acyclic Markov Chain 



# Accountability of Dynamic Analysis Results

#### Can we achieve a similar level as for static analyses?

| No | Probability | %     | Event 1          | Event 2         | Event 3          | Event 4          | Event 5   |
|----|-------------|-------|------------------|-----------------|------------------|------------------|-----------|
| 1  | 2,54E-09    | 18,77 | CCF_GEV_LGR_INIT | DGA_LONG_FAILF  | DGB_SHORT_FAILF  | INFNHOUSE_FAILF  | TAC_FAILF |
| 2  | 2,54E-09    | 18,77 | CCF_GEV_LGR_INIT | DGA_SHORT_FAILF | DGB_LONG_FAILF   | INFNHOUSE_FAILF  | TAC_FAILF |
| 3  | 2,20E-09    | 16,29 | CCF_GEV_LGR_INIT | CCF_DG_FAILF    | INFNHOUSE_FAILF  | TAC_FAILF        |           |
| 4  | 1,63E-09    | 12,04 | CCF_GEV_LGR_INIT | DGA_LONG_FAILF  | DGB_LONG_FAILF   | INFNHOUSE_FAILF  | TAC_FAILF |
| 5  | 1,44E-09    | 10,68 | CCF_GEV_LGR_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF  | INFNHOUSE_FAILF  | TAC_FAILF |
| 6  | 3,69E-10    | 02,73 | CCF_GEV_LGR_INIT | DGA_SHORT_FAILF | DGB_LONG_FAILF   | ONDEMHOUSE_FAILI | TAC_FAILF |
| 7  | 3,69E-10    | 02,73 | CCF_GEV_LGR_INIT | DGA_LONG_FAILF  | DGB_SHORT_FAILF  | ONDEMHOUSE_FAILI | TAC_FAILF |
| 8  | 3,10E-10    | 02,29 | CCF_GEV_LGR_INIT | CCF_DG_FAILF    | ONDEMHOUSE_FAILI | TAC_FAILF        |           |
| 9  | 2,26E-10    | 01,67 | CCF_GEV_LGR_INIT | DGA_LONG_FAILF  | DGB_LONG_FAILF   | ONDEMHOUSE_FAILI | TAC_FAILF |
| 10 | 2,23E-10    | 01,65 | CCF_GEV_LGR_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF  | ONDEMHOUSE_FAILI | TAC_FAILF |
| 11 | 8,25E-11    | 00,61 | GRID_INIT        | CCF_DG_FAILF    | INFNHOUSE_FAILF  | TAC_FAILF        |           |
| 12 | 5,67E-11    | 00,42 | GRID_INIT        | DGA_SHORT_FAILF | DGB_SHORT_FAILF  | INFNHOUSE_FAILF  | TAC_FAILF |
| 13 | 3,49E-11    | 00,26 | SUBSTATION_INIT  | CCF_DG_FAILF    | INFNHOUSE_FAILF  | TAC_FAILF        |           |
|    |             |       |                  |                 |                  |                  |           |

#### Top Event frequency I&AB = 1,352E-08



#### Local assessments

Interpreting an effect of repairs

IE, DGA\_LONG, DGB\_SHORT, INFNHOUSE, TAC

- Does it matter at all?
- Importance/sensitivity for repairs of individual events and all events together

|           | No repair | %   | Half MTTR | % |
|-----------|-----------|-----|-----------|---|
| DGA_LONG  | 3.70E-9   | 145 | 2.54E-9   | 0 |
| DGB_SHORT | 5.89E-9   | 232 | 2.54E-9   | 0 |
| BOTH      | 6.18E-9   | 243 | 2.54E-9   | 0 |

I&AB: 2.54E-9



Static: 5.68E-9

#### **Global assessments**

- Effect of repairs on the contribution and position in the MCS list
  - Static:

#### Top Event frequency F = 1,768E-06

| No | Probability | %     | Event 1  | Event 2         | Event 3         | Event 4         | Event 5   |
|----|-------------|-------|----------|-----------------|-----------------|-----------------|-----------|
| 1  | 3,94E-07    | 22,28 | LGR_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |
| 2  | 3,94E-07    | 22,28 | GEV_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |

#### - I&AB:

| Top Eve | Top Event frequency I&AB = 1,352E-08 |       |          |                 |                 |                 |           |  |  |  |
|---------|--------------------------------------|-------|----------|-----------------|-----------------|-----------------|-----------|--|--|--|
| No      | Probability                          | %     | Event 1  | Event 2         | Event 3         | Event 4         | Event 5   |  |  |  |
| •       |                                      |       |          |                 |                 |                 |           |  |  |  |
| •       |                                      |       |          |                 |                 |                 |           |  |  |  |
| -       |                                      |       |          |                 |                 |                 |           |  |  |  |
| 22      | 1,93E-11                             | 00,14 | GEV_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |  |  |  |
| 23      | 1,93E-11                             | 00,14 | LGR_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |  |  |  |



#### **Global assessments**

- Effect of repairs on the contribution and position in the MCS list
  - I&AB original:

| 22 | 1,93E-11 | 00,14 | GEV_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |
|----|----------|-------|----------|-----------------|-----------------|-----------------|-----------|
| 23 | 1,93E-11 | 00,14 | LGR_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |

- I&AB, MTTR of DGA\_SHORT\_FAILF and DGB\_SHORT\_FAILF is 1000 (instead of 5):

| 48 | 4,38E-11 | 00,07 | GEV_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |
|----|----------|-------|----------|-----------------|-----------------|-----------------|-----------|
| 49 | 4,38E-11 | 00,07 | LGR_INIT | DGA_SHORT_FAILF | DGB_SHORT_FAILF | INFNHOUSE_FAILF | TAC_FAILF |

- I&AB, MTTR of GEV\_INIT and LGR\_INIT is 50 (instead of 5):

|   | -        | -     | -        | -         | -      | -     | _      |       | -               | -         |
|---|----------|-------|----------|-----------|--------|-------|--------|-------|-----------------|-----------|
| 7 | 3,06E-09 | 05,95 | LGR_INIT | DGA_SHORT | _FAILF | DGB_S | SHORT_ | FAILF | INFNHOUSE_FAILF | TAC_FAILF |
| 8 | 3,06E-09 | 05,95 | GEV_INIT | DGA_SHORT | _FAILF | DGB_S | SHORT_ | FAILF | INFNHOUSE_FAILF | TAC_FAILF |



#### Trace-based evidence

- Each cut set can be split into event sequences.
- We get an 'event sequence list' for a cut set sorted by contribution to the cut set value.

[IE, PUMP1\_F, PUMP2\_F, PUMP3\_D]



#### Trace-based evidence

- Each cut set can be split into event sequences.
- We get an 'event sequence list' for a cut set sorted by contribution to the cut set value.

[IE, PUMP1\_F, PUMP2\_F, PUMP3\_D]



#### Trace-based evidence

- Each cut set can be split into event sequences.
- We get an 'event sequence list' for a cut set sorted by contribution to the cut set value.

#### [IE, PUMP1\_F, PUMP2\_F, PUMP3\_D]





# Conclusions

#### Dynamic calculations can be as accountable as static ones

#### • Setup:

- Fault trees with repairs and cold stand-by redundancies
- Minimal cut set decomposition
- Dynamic quantification of minimal cut sets
- Effects of dynamic features on cut set value, contribution and position in the list
- Event sequences
  - Easily understandable sequences of failures/repairs
  - Can be quantified
  - Bounded repairs: a complete list can be presented.

