Use of PSA for SMRs PSAM 16

RISK

SPECTRUM

Ola Bäckström Pavel Krcal Xuhong He

Overview

- Current focus in development of PSA tools
- Challenges with SMRs
- Focus on a few issues
- Conclusion

PSA methods development

Focus over the past years

- Manage larger and more complex models
- Calculation efficiency
- Calculation accuracy
- Including dynamic features

SMR challenges for PSA

A list of the most commonly discussed topics

- **Risk metrics and safe state** (especially for non-LWR SMRs)
- **Reliability data** estimation for components
- Passive systems reliability modelling
- **Digital I&C** systems reliability
- Human reliability (dependencies among multi-modules, long time windows)

4

- The use of traditional **mission times might be not applicable** (e.g. 24h)
- **Multi-module** interactions (positive and negative from risk point of view)

SMR challenges for PSA

A list of the most commonly discussed topics

- Risk metrics and safe state (especially for non-LWR SMRs)
- Reliability data estimation for components
- Passive systems reliability modelling
- Digital I&C systems reliability
- Human reliability (dependencies among multi-modules, long time windows)
- The use of traditional **mission times might be not applicable** (e.g. 24h)
- **Multi-module** interactions (positive and negative from risk point of view)

Passive systems reliability and dynamic approches

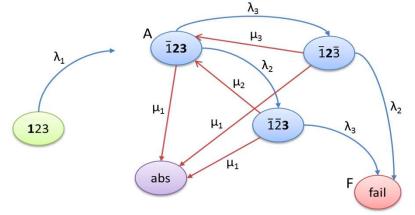
- Passive systems are challenging to represent
 - Characterized by uncertainties
 - Lack of data potentially insufficient understanding of phenomenon
 - Expected thermohydraulic simulations
- Are dynamic PSA tools the answer?
 - Can a SMR be fully represented in simulation tools?
 - Dependent on the design of the SMR
- Impossible to solve such models with the resolution used in PSA?
 - If the SMR contains similar systems like standard nuclear, with additional passive systems this will likely NOT be possible to simulate using dynamic approaches

Passive systems reliability and dynamic approches

- Does this mean that dynamic approaches should not be considered?
 - Absolutely not
- The community should take the opportunity to embrace dynamic approaches as a complement
- Identification of relevant sequences and conditions that can be considered in the PSA model
 - Example "Treatment of Phenomenological Uncertainties in Level 2 PSA for Nordic BWR Using Risk Oriented Accident Analysis Methodology"

7

• Passive system reliability – will surely be needed to improve the current estimates


The use of traditional mission times might be not applicable

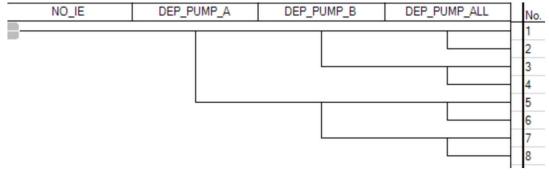
- Longer mission times should most likely be considered (days, weeks?)
 - At long mission times, the assumption to not consider repair is highly questionable
- Possible approaches tested in "Prosafe" project
 - Graded treatment of repair ("per cutset")
 - RiskSpectrum I&AB (repair and long calculation times)
 - Simulation based approaches ("Dynamic")

The use of traditional mission times might be not applicable

I&AB approach, implemented in RiskSpectrum

- Offers an integrated solution to model the dynamic behavior of failure and repair processes
- It is a simplification of a full Markov-chain
 - When the initiating event is repaired, the sequence terminates.
 - All stand-by objects are started at time zero
- The approach scales to large PSA

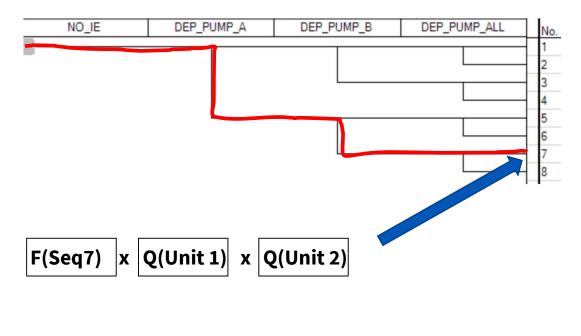
- Current use is very limited
 - Most countries do not require multi unit risk
 - Different types of reactors, or different age
- For SMRs, will this still hold? Likely not!
- How can multi-unit risk be addressed in a reasonable way?
 - SITRON project (NKS-419)
 - Studied existing reactors, but should be applicable also to SMRs


- The dependencies that were considered most relevant to study between units were:
 - Shared structures, systems and components (SSCs)
 - Identical components (CCF)
 - Human and organizational dependencies
- Is it possible to use the models of the individual plants to calculate the multi-unit risk?
 - Conclusion was yes and tested in pilots

A possible solution under development with RiskSpectrum Multi-unit event combinations approach

• $MUCDF_{IE} = F_{IE} \times \sum_{i=1}^{n} \left(\prod_{j=1}^{M_i} P_{i,IE,j} \right) \times p(CD_{unit1} | IEi) \times p(CD_{unit2} | IEi)$

• Example:


- Assume two exactly same plants with two shared pumps
- This can be thought of as an event tree and then MCS lists for the units to consider at the end of each sequence

HALWZ			Loss of cooling to HALIN2		F	1,0556561E-02
			¢			
Analysis Res.	is .					
Top Event free	uency F + 1.056E-02					
No	Probability	2	Event 1	Event 2		Event 3
) 1	5,1821342E-03	49.09	PER_MONTH	EXTL PUMP-ALL		
2	2.3319604E-03	22.09	PER_MONTH	INTL PUMP-ALL		
3	\$.6368903E-04	08.18	PER_MONTH	INTL PUMP-248		
4	3.6555708E-04	03.45	PER_MONTH	PUMPA1_FR		PUMPE FR
4	1.00007105.04	111.45	PCD MONTH	PIMPA1 EP		DIMOGI CD

HALWI -			Loss of cooling to HALINT			
HALINZ			Loss of cooling to HALIN2		F	1,0556561E-02
			6			
Analysis Res	ls.					
Top Event free	quency F + 1,056E-02				-	
No	Probability	2	Event 1	Evert 2		Elert3
1	5,1821342E-03	49.09	PER_MONTH	EXTL PUMP-ALL		
2	2.3319604E-03	22.09	PER_MONTH	INTL PUMP-ALL		
3	8.6368903E-04	08.18	PER MONTH	INTL PUMP-248		
4	3.6555708E-04	03.45	PER MONTH	PUMPAT FR		PUMPS FR
	1.00007105.04	101.65	PER MONTH	PIMPUT ED		PLIMPET FR

Example of RiskSpectrum implementation project

Unit 1				PUMPA_FR -> True PUMPB FR -> True				
HALW1			Loss	of cooling to HALVI				
HALW2			Loss	of coolin - X - 2	PUMP-ALL	-> False		
÷						. 4150		
			<					
Analysis Result	s							
Top Event frequ	ency F = 1,056E-02							
No	Probability	%		Event 1	Event 2	Event 3		
1	5,1821342E-03	49,09		PER_MONTH	EXTL_PUMP-ALL			
2	2,3319604E-03	22,09		PER_MONTH	INTL_PUMP-ALL			
3	8,6368903E-04	08,18		PER_MONTH	INTL_PUMP-2AB			
4	3,6555708E-04	03,46		PER_MONTH	PUMPA1_FR	PUMPB_FR		
-	3 6555708E-04	03.46		PER MONTH	PUMPA1 FR	PUMPB1 FR		

Unit 2			PUMPA_FR -> True PUMPB_FR -> True				
HALW2			EXTL	PUMP-AL			
Analysis Result	5		<				
Top Event frequ	ency F = 1,056E-02						
No 1	Probability 5,1821342E-03	% 49.09	Event 1 PER_MONTH	Event 2 EXTL_PUMP-ALL	Event 3		
2	2,3319604E-03	22.09	PER_MONTH	INTL_PUMP-ALL			
3	8,6368903E-04	08.18	PER_MONTH	INTL_PUMP-2AE			
4	3,6555708E-04	03,46	PER_MONTH	PUMPA2_FR	PUMPB_FR		
5	3,6555708E-04	03,46	PER_MONTH	PUMPA2_FR	PUMPB2_FR		
6	3,6555708E-04	03,46	PER_MONTH	PUMPA_FR	PUMPB_FR		
7	3,6555708E-04	03.46	PER_MONTH	PUMPA_FR	PUMPB2_FR		
8	1.2311273E-04	01.17	PER_MONTH	AIRFB_FR	PUMPA2_FR		
	1 2311273E-04	01 17	PER MONTH	AIREA ER	PLIMPR ER		

Conclusions

- Main issues for PSA for SMRs seem to be
 - Passive system reliability, safe state and multi-unit interaction
- Current PSA concepts and tools are fit for purpose for demonstrating the safety case
- Passive system reliability will most likely need additional tools
- Use of dynamic approaches for identifying sequences
- Multi unit risk will likely not be possible to disregard from

Thank you

Please contact:

Ola Bäckström

ola.backstrom@lr.org