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Large-Scale Networked Infrastructures: Phenomenology

Inherent connectivity systemic benefit/risk tradeoff 
Connectivity is economically driven (rich gets richer, economy of scale, risk sharing, etc.)
Economics fail to address systemic risks of: (cyber)security, cascading failures, etc. 
Conventional Risk Management: use historical data to extrapolate, i.e., “fight the last war”.
Challenge: unexpected consequences due to
- externalities due to strategic selfish or malicious (cybersecurity, terrorism) components
- non-linear component interactions, randomness, e.g., stochastic resonance

Ultimate Goal: systemic risk/benefit control through combination of regulations/incentives



Markov Dynamics => Markov Random Field
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Failure dynamics is described by a homogeneous in time Markov process with 
locally interacting components.
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Example:

Acyclic graph G defines Bayesian network, e.g., Bayesian Attack Graph (BAG) 



Bayesian/Probabilistic Attack Graph 
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The attack graph depicts three attack paths. On the 
right, the attack path starts with a ssh buffer overflow 
exploit from machine 0 to machine 1, which gives the 
attacker the capability of executing arbitrary codes on 
machine 1 as a normal user. The attacker then exploits 
the ftp vulnerability on machine 2 to anonymously 
upload a list of trusted hosts. Such a trust relationship 
enables the attacker to remotely execute shell 
commands on machine 2 without providing a 
password. Consequently, a local buffer overflow 
exploit on machine 2 escalates the attacker’s privilege 
to be the root of that machine. Details of the other 
two attack paths are similar. 

ftp-rhosts(0,1)=v1, 
ftp-rhosts(0,1)=v2,
ftp-rhosts(1,2)=v5, 
rsh(0,1)=v4,
rsh(0,2)=v5,
rsh(1,2)=v6,
sshd_bof(0,1)=v7,
local_bof(2)=v8. 4



Security Risk Metrics  
( )n n n nδ σ χ δ−=Analytical representation of Attack Graph (AG):

Due to acyclic AG, this system has unique solution: ( )n n n nδ σ ϕ σ−=
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In example:
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( ).L δ Average loss:

8 8 8L( ) ( ),σ σ ϕ σ− −=since

Conclusions (good and bad news): 
- Can be extended to modern risk metrics, e.g., CyVaR, CyCVaR, CyEVaR
- Analysis of acyclic AG, if not very large, is computationally feasible
- Acyclic AG does not describe cascading failures
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Markov Field with Cycles 
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Model: 
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( )p q pφ=Mean-field approximation in homogeneous case:
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Bi-stability indicates a possibility of cascading failures



Onset of Cascading Failure
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Since we are interested in contagion emergence, consider expansion of contagion rate

It is known [2] that contagion-free region is given by condition is
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Landau Theory of Phase Transitions  
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Free energy vs. order 
parameter   

Probability density of order parameter 

Landau theory of phase transitions [Lev D. Landau, 1937]:
- Is a phenomenological (mean-field) approximation
- Gives a qualitative, and in some cases, quantitative description
- Closely related to Catastrophe Theory [René Thom, 1960s] 
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Free energy is analytic function 

Second order (continuous) 
phase transition   

First order (discontinuous) 
phase transition    



Landau Potential at Onset of Systemic Failure
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Dimension reduction in a proximity at onset of systemic failure is due to critical 
slowdown, i.e., order parameter evolves on much slower time scale than the rest of 
dynamic variables. This allows us to approximate the evolution of order parameter 
by a Markov birth-death process, and in particular write steady-state distribution of 
order parameter in potential form. [V. Marbukh, NetSciX 2022].

If contagious node experiences loss, the steady-state distribution of 
aggregate normalized loss can be written in potential form:
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Risk of Systemic Failure
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Normalized value at risk

This approach quantifies risk of undesirable contagion inside contagion-free region, 
which accounts  for risk averseness and continuous/discontinuous contagion emergence, 
e.g., discontinuity in (b)  occurs at the point
Also, this approach yields mapping from risk averseness to “safety margin” in terms of 
distance from the boundary of the contagion-free region. 
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Conclusions & Future Research
Conclusions:
• Since systemic instabilities are unavoidable, system designers/ 

operators should take into account systemic risk
• Since cascading failure is in effect a collective phenomenon, we 

propose systemic risk metrics based on Landau theory of phase 
transition.

• These metrics distinguish between  more dangerous abrupt/ 
discontinuous and less dangerous gradual/continuous instabilities.

Future research:
• Verification/validation mean-field approximation through simulations, 

measurements and rigorous analysis (doubtful).
• Possibility of online measurement of the P-F eigenvalue as a basis 

for “early warning system.”
• Possibility of controlling Networked Systems through a combination of 

regulations and pricing, based on the P-F eigenvalue.
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Thank you!
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