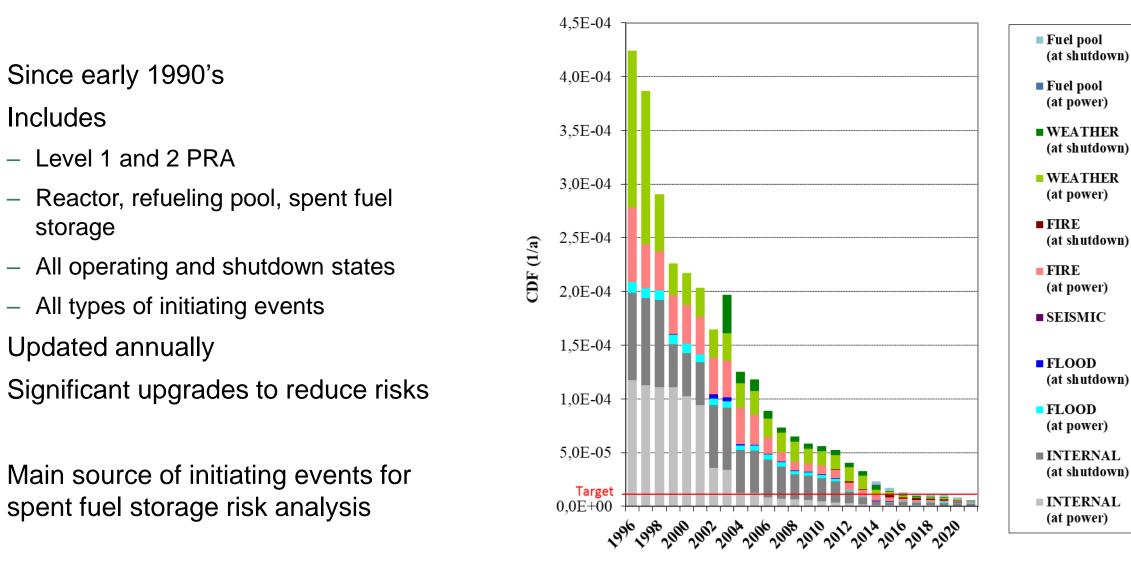

Loviisa spent fuel storage risk analysis

PSAM16 / 26.6.-1.7.2022 / <u>Jukka Koskenranta</u> (Seismic), Ilkka Paavola (Internal events), Rasmus Hotakainen (HRA), Taisto Laato (Level 2)

Introduction

Loviisa Nuclear Power Plant

- Located in southern Finland
- 2 x 500 MWe VVER-440 units (1977/1980)
- Current operating license until 2027/2030
 - Extension applied for 2050 for both units


Loviisa PRA

•

•

—

Loviisa 1 Risk distribution

Loviisa spent fuel storage PRA

- Details and background of Loviisa NPP SFS
- Loviisa SFS PRA analysis 2030 (2018, revised in 2021)
 - General scope
 - Results
 - Seismic initiating events
 - Need of further development

Loviisa spent fuel storage (SFS)

- Loviisa NPP spent fuel cycle:
 - 1. Refueling pool in reactor building 1 2 years
 - 2. Water pools in spent fuel storage 10 years many decades
 - 3. Final repository at Olkiluoto First in the world, starting in few years
- History of Loviisa NPP SFS
 - About first 10 15 years of Loviisa NPP operation spent fuel was sent to Russia
 - After regulation changed Loviisa NPP needed to store more spent fuel at the site and expand the original SFS
- Two units in two buildings
 - SFS1 is original SFS: Build with same criteria as storage pools in reactor building
 - SFS2 has been build in two stages: 1981 ... 1984 and 1996 ... 1999
 - New upgrades or changes needed if Loviisa NPP continues operation after current license 2030

 \rightarrow Differences need to be taken into account in SFS PRA

SFS PRA General scope

Repair Consideration

- Recovery failure probabilities are calculated by formula EXP(-T₂/T₁)
 - First row: Average time needed to recover (T_1)
 - Mainly based on engineering judgements
 - First column: Average time available to recover (T_2)
 - Based on heating power at maximum capacity of current license 2030
- Minimum value for recovery failure probability is 1E-6

Time windows/mission time

- From No time to recover
 - building collapse
- To 1 month (SFS1) or 2 month (SFS2)
 - stop of spent fuel pool cooling

		Time needed T_1						
		3 h	6 h	12 h	24 h	2 d	4 d	8 d
Time available T_2	1,5 h	6.1E-01	7.8E-01	8.8E-01	9.4E-01	9.7E-01	9.8E-01	9.9E-01
	3 h	3.7E-01	6.1E-01	7.8E-01	8.8E-01	9.4E-01	9.7E-01	9.8E-01
	6 h	1.4E-01	3.7E-01	6.1E-01	7.8E-01	8.8E-01	9.4E-01	9.7E-01
	12 h	1.8E-02	1.4E-01	3.7E-01	6.1E-01	7.8E-01	8.8E-01	9.4E-01
	24 h	3.4E-04	1.8E-02	1.4E-01	3.7E-01	6.1E-01	7.8E-01	8.8E-01
	2 d	1E-06	3.4E-04	1.8E-02	1.4E-01	3.7E-01	6.1E-01	7.8E-01
	4 d	1E-06	1E-06	3.4E-04	1.8E-02	1.4E-01	3.7E-01	6.1E-01
	8 d	1E-06	1E-06	1E-06	3.4E-04	1.8E-02	1.4E-01	3.7E-01
	16 d	1E-06	1E-06	1E-06	1E-06	3.4E-04	1.8E-02	1.4E-01
	32 d	1E-06	1E-06	1E-06	1E-06	1E-06	3.4E-04	1.8E-02
	64 d	1E-06	1E-06	1E-06	1E-06	1E-06	1E-06	3.4E-04
	128 d	1E-06	1E-06	1E-06	1E-06	1E-06	1E-06	1E-06

SFS PRA General scope

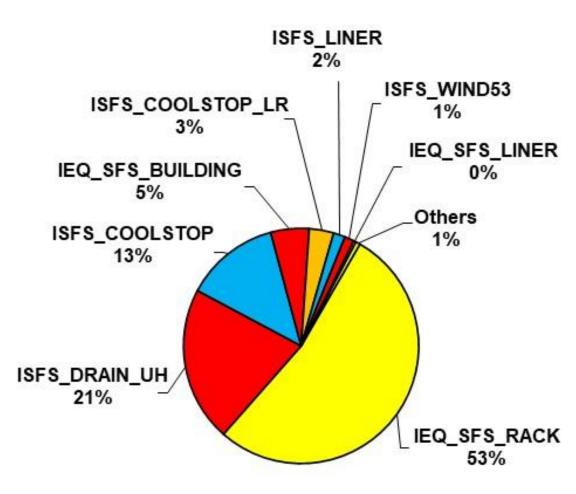
Success Criteria & End States

- Spent fuel rods are submerged
- Residual heat is removed by normal cooling system or by boiling and pool refilling
 - \rightarrow Both are considered acceptable end states
 - \rightarrow Lots of time to recover normal cooling system

Criteria for results evaluation

• Fuel exposure or mechanical damage

Level 2 considerations


- Fuel damage is also large release
 - No containment around SFS

Spent fuel storage 1&2 PRA 2030 Analysis updated 02/2021

- SFS 1&2 Fuel damage frequency (FDF) 1,9E-7/a
 - 1 % of Lo1&2 ∑CDF
- SFS 1&2 Large release frequency (LRF) 1,9E-7/a
 - 2 % of Lo1&2 ∑LRF
- SFS 1&2 Early release frequency (ERF) 5,2E-8/a
 - 28 % SFS FDF
 - 10 % of Lo1&2 ∑ERF

IEQ_SFS_RACK	SFS pool steel liner leak due to fuel rack movement and pool concrete structure crack due to EQ				
ISFS_DRAIN_UH	SFS pool erroneous drainage due to operator error				
ISFS_COOLSTOP	All SFS TG-cooling stop initiators (plant data)				
IEQ_SFS_BUILDING	SFS building collapse due to EQ				
ISFS_COOLSTOP_LR	SFS TG-cooling stop due to reactor CD and large release				
ISFS_LINER	SFS pool liner leakage (plant data)				
ISFS_WIND53	High wind speed (>53 m/s)				
IEQ_SFS_LINER	SFS pool liner and concrete structure leakage due to EQ				

Seismic initiating events

- Seismic initiating events cause 58 % of the total spent fuel storage fuel damage frequency
- Seismic initiating events like pool rupture or building collapse do not benefit low heating rate of the SFS like most of the other initiating events
- Most significant initiating event is fuel rack moving because of earthquake
 - Fuel rack rips steel liner while moving, earthquake cracks water leakages to concrete structures of the pool
 - Initiating event share from the total spent fuel storage fuel damage frequency is 53 %
- Collapse of the building because of seismic initiating event: 5,3 % of the total FDF
- Also some other seismic initiating events, mainly screened out or included in other events

Spent fuel storage 1&2 PRA 2030 (updated 02/2021) Need of further development

- Most development needs are related to seismic initiating events
- SFS PRA is based on 2018 seismic hazard
- Seismic hazard was updated already late 2021 and it is slightly higher
 →SFS PRA will be updated to consider the new seismic hazard
- \rightarrow SFS risks estimate increasing because of the seismic hazard update
- Loviisa NPP SFS has been built in three stages
 - Only some of the variations have been seismically evaluated: ³/₄ fuel racks, ¹/₂ buildings
 - Modelled with lowest known seismic capacities
- \rightarrow Uncertainties in SFS analysis are significant

 \rightarrow Absolute uncertainties are small compared to absolute uncertainties in reactor risk analysis

Thanks! Questions?

