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Practical challenge of simulation-based DPRA

• An enormous number of scenarios

✓ Considering dynamic behavior → A scenario in a static PRA is divided into several scenarios.

✓ Each scenarios should be analyzed by TH code runs. → High computational cost
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Structural reliability

• Monte Carlo Simulation (MCS)

✓ Stochastic sampling of parameters

✓ 𝑃𝑓 = (# 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑐𝑛𝑎𝑟𝑖𝑜𝑠)/(# 𝑜𝑓 𝑡𝑎𝑡𝑙𝑎 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠)

• If a system failure is a rare event, 

✓ An enormous number of scenarios are required.

▪ e.g., 𝑃𝑓 = 1 × 10−4 → 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 10,000 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

• Each scenarios should be analyzed by complex computer 
codes. → High computational cost

• To tackle this problem, surrogate models are widely used.
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→ 𝑃𝑓 =
(𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠)

(𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠)

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 1

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 2



An Active learning reliability method combining Kriging and MCS (AK-MCS)

• MCS without evaluating the whole scenario population.

• Success/failure of each scenario is predicted by a surrogate model based on a few simulated scenarios.

• Surrogate model : A kriging model (i.e., Gaussian process regression)

• A few simulated scenarios

✓ AK-MCS iteratively samples and simulates the scenarios close to a limit surface.

▪ Surrogate model can locate a limit surface.
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Specialty of AK-MCS

• Predictive uncertainty

✓ Gaussian process regression : prediction + predictive uncertainty

✓ The scenarios sampling efficiency can be improved by prioritizing the scenarios with not only closeness 
to the limit surface but also high predictive uncertainty.

▪ Meticulous searching of limit surface
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AK-MCS for NPPs

• Failure identification of 

✓ Lead Fast reactor

✓ Passive safety system

AK-MCS for dynamic PRA

• It can minimize the number of simulations by locating a decision boundary.

• However, different surrogate model should be employed.

✓ Scenarios of dynamic PRA has their probability ( ↔ Monte Carlo simulation).

✓ Limit surface with more than thousands of adjacent scenarios

▪ Gaussian process has a cubic time complexity 𝑂(𝑛3) where 𝑛 is the size of the training data sets.
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Novel algorithm for dynamic PRA

• Scenarios of dynamic PRA has their probability ( ↔ Monte Carlo simulation). 

• Therefore, limit surface should be meticulously located by adjacent scenarios.

✓ The number of adjacent scenarios can be more than thousands.

• Novel algorithm should be able to address more than thousands scenarios

✓Deep-learning model

• Novel algorithm needs to keep the advantages of AK-MCS (i.e., predictive uncertainty).

✓Monte Carlo dropout (MC dropout) and U-learning function

• Deep-SAILS

✓ Deep-learning based Searching Algorithm of Informative Limit Surface/Scenarios/States
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Informative scenarios

• The scenarios where the consequence is success or failure by a narrow margin.

✓ locating the limit surface/states

✓ Reasonable assumption about success or failure of remaining scenarios
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• Example

✓ LB LOCA

▪ x-axis : ESFAS delayed time

▪ y-axis : SI

▪ 1478K is success criterion. 

✓ The scenarios in the yellow shaded area



Deep-SAILS

• Deep-learning based Searching Algorithm of Informative Limit Surface/Scenarios/States

1. Simulation of informative (i.e., close to the limit surface) scenarios

2. Consequence prediction for remaining scenarios with surrogate model

→ Identification of scenario success/failure with minimized simulations.

• Iterative algorithm

1) Estimates limit surface

✓ Predicts a critical parameter (e.g., PCT) of whole scenarios.

✓Deep-learning model

2) Samples the scenarios close to the limit surface

✓ Consider closeness and prediction uncertainty together

✓Monte Carlo dropout (MC dropout) and U-learning function 

3) Simulates the sampled scenarios, updates the deep-learning model, and locates limit surface
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Detailed Algorithm

1. Initialization

✓ Generation of a population of scenarios

✓ Preferential simulation of extreme scenarios

▪ Extreme scenarios are the scenarios configured by the 
maximum and minimum values of each parameter.

2. Deep-learning model training

3. Scenarios sampling (details in following slides)

4. Stopping condition

✓ The proportion of already simulated scenarios out of the 
sampled one.

5. Simulation of the sampled scenarios

Deep-SAILS
Overall flow diagram

02
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Consequence prediction and predictive uncertainty quantification

• Monte Carlo dropout

✓Multiple inferences with different dropout configuration.

▪ Means and variance can be interpreted as the prediction and uncertainty, respectively.

• Deep-SAILS predicts consequences of each scenario multiple times with a random dropout configuration.

✓ Acceleration through efficient program and high-performance devices is necessary.

▪ (Case study utilized TensorFlow 2.7 with CUDA, RTX3080 GPU, and I7-10700K processor)  

Deep-SAILS
Scenarios sampling

02
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Multiple inferences 
with different dropout 

configurations



Scenario Sampling with U-learning function

• Deep-SAILS scores each scenario by the U-learning function [1].

✓ This function gives a lower score for the scenarios where the estimated consequence…

▪ are closer to the failure condition (i.e., the numerator) 

▪ have higher uncertainty (i.e., the denominator)

• The suspected scenarios : 𝑈 𝑋 < 𝐷

✓ 𝐷 is the range of suspicion and critical algorithm hyperparameter

• Random sampling among the suspected scenarios

✓ Exploration

Deep-SAILS
Scenarios sampling

02
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TH system

• Zion NPP, WH-4 loop PWR, 1000MWe

• Assuming only SITs, LPSI, HPSI, and the SHRS via ADVs

Case study
TH system model
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Metric

• Classification error rate 

Case study
TH system model
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  Predicted result  Simulation result 

  Success (𝑎 ) Failure (𝑏 )  Success (𝐴) Failure (𝐵) 

True result  Success (𝑎) 𝑎𝑎  𝑎𝑏   𝑎𝐴  

 Failure (𝑏) 𝑏𝑎  𝑏𝑏    𝑏𝐵 

 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑎𝑏 +  𝑏𝑎 

𝑎𝑎 + 𝑎𝑏 + 𝑏𝑎 + 𝑏𝑏 + 𝑎𝐴 + 𝑏𝐵 
× 100 



Case study (1) : SB-LOCA

• 10,143 scenarios

✓HPSI performance : pump performance % = (Conservatively) flow rates % 

Case study
SB LOCA
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Parameter Unit Uncertain domain Discretization 

HPSI actuation time min (0, 60) 

21 

(0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 

54, 57, 60)  

ADV open time min (0, 60) 

21 

(0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 

54, 57, 60)  

HPSI performance % (0, 100) 

23 

(100, 92, 88, 83, 79, 75, 71, 67, 63, 58, 54, 50, 46, 42, 38, 33, 29, 

25, 21, 17, 13, 8, 0) 

 



Case study (1) : SB-LOCA

• 10,143 scenarios

• When D (Range of suspicion) = 2.0

✓ Scenarios : 10,143

✓ Simulation : 1,129

✓ non-CD to non-CD : 3,776

✓ non-CD to CD       : 1

✓ CD to CD : 6,365

✓ CD to non-CD : 1 

✓ Error rate                :   0.02% 

✓ Simulation :   9.36%

Case study
SB LOCA
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Limit surface estimated by
the deep learning model for each iteration

(Assume HPSI performance = 75%)
(14,400 predictions per frame)



Case study (1) : SB-LOCA

• 10,143 scenarios

• When D (Range of suspicion) = 2.0

✓ Scenarios : 10,143

✓ Simulation : 949

✓ non-CD to non-CD : 3,776

✓ non-CD to CD       : 1

✓ CD to CD : 6,365

✓ CD to non-CD : 1 

✓ Accuracy                 : 99.98% 

✓ Simulation :   9.36%

Case study
SB LOCA

03

Limit surface estimated by
the deep learning model for each iteration

(Assume HPSI performance = 25%)
(14,400 predictions per frame)



Case study (2) : LB-LOCA

• 40,250 scenarios

✓ SIT performance : partial opening of cascading two valves.

Case study
LB LOCA
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Parameter Unit Uncertain domain Discretization 

SIT-1 performance % (0, 100) 
5 

(0, 25, 50, 75, 100)  

SIT-2 performances % (0, 100) 
5 

(0, 25, 50, 75, 100)  

SIT-3 performances % (0, 100) 
5 

(0, 25, 50, 75, 100)  

ESFAS delayed time s (0, 400) 
14 

(0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 400)  

LPSI performance % (0, 100) 

23 

(100, 92, 88, 83, 79, 75, 71, 67, 63, 58, 54, 50, 46, 42, 38, 33, 29, 

25, 21, 17, 13, 8, 0) 

 



Case study (2) : LB-LOCA

• 40,250 scenarios

• When D (Range of suspicion) = 2.0

✓ Scenarios : 40,250

✓ Simulation : 6,140

✓ non-CD to non-CD : 17,725

✓ non-CD to CD       : 31

✓ CD to CD : 22,488

✓ CD to non-CD : 6 

✓ Accuracy                 : 99.91% 

✓ Simulation : 15.25%

Case study
LB LOCA

03

Limit surface estimated by
the deep learning model for each iteration

(Assume SIT performances = 50%)
(14,400 predictions per frame)



Case study (2) : LB-LOCA

• 40,250 scenarios

• Trade off relationship between accuracy and simulation according to D (range of suspicion)

Case study
LB LOCA

03



Case study (2) : LB-LOCA

• 40,250 scenarios

• Trade off relationship between accuracy and simulation according to D (range of suspicion)

Case study
LB LOCA

03

D = 0.5 D = 2.0 D = 5.0



Case study (3) : Modified Rastrign function

• 1,771,561 scenarios

• 𝑓 𝑥 = 60 + σ𝑖=1
6 [𝑥𝑖

2 − 10cos(2𝜋𝑥𝑖)]

✓ 𝑥𝑖 ∈ −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5

✓ 6 factors with 11 performances = 1,771,561

• Assume 𝑓 𝑥 > 90 as failure criteria

✓ 158,640 fail scenarios

✓ Failure rate (assume constant sampling distribution) = 0.0899

Case study
Millions of scenarios

03



Case study (3) : Modified Rastrign function

• 1,771,561 scenarios

Case study
Millions of scenarios

03

𝑥3, 𝑥4, 𝑥5, 𝑥6 = 0, 0, 0, 0 𝑥3, 𝑥4, 𝑥5, 𝑥6 = 0, 0, 5, 5 𝑥3, 𝑥4, 𝑥5, 𝑥6 = 5, 5, 5, 5



Case study (3) : Modified Rastrign function

• 1,771,561 scenarios

• When D (Range of suspicion) = 2.0

✓ Scenarios : 1,771,561

✓ Simulation : 60,525

✓ non-CD to non-CD : 1,605,241

✓ non-CD to CD       : 0

✓ CD to CD : 158,640

✓ CD to non-CD : 6 

✓ Accuracy                 : 100.00% 

✓ Simulation :   3.431%

Case study
Millions of scenarios

03

Note : Division by zero problem for U-learning function exists
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Conclusion04



• This research introduced a guided simulation algorithm of a dynamic PRA, named Deep-SAILS.

• To overcome the limitation of previous including AK-MCS, the algorithm employed a deep-learning 
model as a high-fidelity surrogate model. 

• In addition, the algorithm retains the strong point of AK-MCS, that is utilization of uncertainty 
information for a meticulous sampling of scenarios. To this end, the predictive uncertainty is 
quantified by the Monte Carlo Dropout technique.

• This algorithm aims to sample and simulate the scenarios close to the limit surface and train a dep 
learning model that can estimate the consequence of the non-simulated scenarios.

• Consequently, Deep-SAILS can accurately identify the success and failure of the scenarios with the 
minimized number of physical model runs.

• Case study result shows the effectiveness of Deep-SAILS

• Detailed information can be found in following articles:

✓ Junyong Bae et. al., Limit surface/states searching algorithm with a deep neural network and Monte 
Carlo dropout for nuclear power plant safety assessment (2022)

✓ Jong Woo Park et. al., Simulation optimization framework for dynamic probabilistic safety assessment 
(2022)

29

Conclusion
Remark

04



30

Thank you

Any Questions?

SAILS across a sea of 
dynamic scenarios… 



Case study (1) : SB-LOCA

• 10,143 scenarios

• Comparison with other method

✓ Random sampling (Random)

✓ Support vector machine (SVM)

▪ ~ Adaptive sampler of RAVEN

Deep-SAILS
Deep-learning based Searching Algorithm of Informative Limit Surface/Scenarios/States
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Case study (3) : Modified Rastrign function

• 1,771,561 scenarios

✓Number of simulated scenarios for each iteration

✓Normalized failure scenarios (Estimated number / Real number)

Deep-SAILS
Deep-learning based Searching Algorithm of Informative Limit Surface/Scenarios/States
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Note : Division by zero problem for U-learning function exists


