

Markov Modeling of Redundant System on Chip (SoC) Systems

Presenter: Alexandra Loumidis^a

Authors: Alexandra Loumidis^a, Todd Paulos, Ph.D.^b, Andrew Ho^b, and Douglas Sheldon, Ph.D.^b

^aHarvey Mudd College ^bJet Propulsion Laboratory, California Institute of Technology

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Outline

- Project Overview
- Snapdragon Usage at JPL
- Models
 - Overview
 - Model 1
 - Model 2
 - Model 3
 - Model 4
- Results
- Parameter Sensitivity
- Future work

Project Overview

Motivation:

There is... increasing cost + decreasing availability of custom SoC components
So we want to... reduce reliance on RAD750 (radiation hardened)
The problem is... commercially available processors are not originally designed for space environments

Task:

Model redundant System on Chip (SoC) configurations using Markov models for two Qualcomm Snapdragon processors to understand how the reliability of the chips, including common cause failures, can impact mission success probability and risk.

Snapdragon Usage at JPL

Mars Ingenuity Helicopter

Snapdragon 801 based drone flight board used on Ingenuity for Guidance & Navigation

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Snapdragon Usage at JPL

	Linux/Android/QNX BSP, Drivers, Linux Kernel, Android Middleware, Auto Extensions, Early Services					
	Hypervisor					
	Adreno GPU Generation 6 - Adreno 640 1.1 TFLOPS OpenGL ES 3	CPU - ARMv8 8x Kryo, 2MB L3				
	Qualcomm [®] FlexRender [™] Binning Architecture, HW V Context Separation	HTA DCN ML Compute				
	ISP / DSP / HVX HVX Vector & Scalar proce 3x DSP (Audio, Vision, Se	LPDDR4X 4x16 bit interface				
	Display Processing 4-6x Displays, > 24MP pro	Security TrustZone, DRM, Deep learning based				
	GNSS Integrated Gen9 VT BB	IO USB2 USB3.1 PCIA ETH	Multimedia Processing High Perf. Audio DSP Audio Codecs			
	Audio 5xTDM + 3x HS I2S	Video Codecs HEVC/H.265 4K Encode and Decode				

HPE Spaceborne Computer-2 servers on board ISS Qualcomm 855 eval board interfaced together Commercial edge based Artificial Intelligence platforms

Qualcomm SA8155 System on a Chip

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Model Overview

Notation	
Failure rate	λ
Failure rate w/ common cause factor	λ_{cc}
Recovery rate	μ

Model #	Recoverable System?	Additional Assumptions
1	Yes	Rate of recovering both processors = rate of recovering one processor
2	Yes	Processors recover independently at two separate recovery rates
3	Yes	Boot-up time of second processor > recovery time for a single processor
4	No	Same additional assumptions as Model 1

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Model 1: Simplified

Three-State Markov Model

	Model #	Recoverable System?	Additional Assumptions			
	1	Yes	Rate of recovering both processors = rate of recovering one processor			
6/27/2022 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.						

Model 1: Simplified

	Model #	Recoverable System?	Additional Assumptions			
	1	Yes	Rate of recovering both processors = rate of recovering one processor			
6/2	27/2022	Reference herein to any sp otherwise, does not constitute	becific commercial product, process, or service by trade name, trademark, manufacturer, or e or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, 8	jpl.na		

California Institute of Technology

sa.gov JI

Model 1

31 States

1 with 0 items lost (center, yellow) 5 with 1 item lost (inner ring, blue) 25 with 2 items lost (outer ring, green) Failure rates (λ)

> 10/day for memory failures 1/day for other failures

Recovery rate (µ)

120s of recovery per 1hr – 0.033 Common Cause Factor (cc)

10%

5 Upset Types

Memory DDR [D], Memory LFS [U] Memory FRAM [F], PMIC [P], SOC [S]

	# of states available	first upset type	second upset type
200	2	0	0
1DO	1	D	0
0DU	0	D	U

6/27/2022

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

9 jpl.nasa.gov

Model 1: Results

6/27/2022

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

10 jpl.nasa.gov

Model 2: Simplified

Model 1: Assumes we can recover two items at a time, at rate μ

otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Model 2: Assumes we can recover one item

Model 2: Simplified

Model 3: Simplified

Six-State Markov Model

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

6/27/2022

otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

California Institute of Technology.

Model 4: Simplified

Four-State Markov Model

Transition Matrix

Results Summary

Model #	Recoverable System?	Additional Assumptions	Availability of 2OO State after 10 ⁶ seconds	
1	Yes	Rate of recovering both processors = rate of recovering one processor	0.975	
2	Yes	Processors recover independently at two separate recovery rates	0.970	
3	Yes	Boot-up time of second processor > recovery time for a single processor	0.989	
4	No	Same additional assumptions as Model 1	0.344	

6/27/2022

Parameter Sensitivity: Model 1, vary µ

6/27/2022

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

16 jpl.nasa.gov

Parameter Sensitivity: Model 1, vary µ and cc

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

17 jpl.nasa.gov

6/27/2022

Future Work

- 1) Model with larger recovery periods (between 12 and 24 hours)
 - a) Accounts for human intervention if the system goes into safe mode
- 2) Expand on preliminary efforts to count the number of upsets in each model

Extra Slides

What is a Markov Model?

- A <u>stochastic model</u> used to model pseudo-randomly changing systems
- Future states depend only on the current state, not on the events that occurred before it
 - Assumes the <u>Markov property</u>
 - "Memoryless"

$$\Pr(X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \Pr(X_{n+1} = x \mid X_n = x_n)$$

• System is fully observable and autonomous, call it a Markov chain

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Model Comparison

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Model 1 - BlockSim vs. MATLAB

BlockSim

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,

Inner Model Inner Fail Counting Model IP: 0 0.967000 IP: 0 0.967000 IP: 0 0.967000 **IP: 0** 0.033 IP: 0 1.16E-05 0 0.033 1.16E-05 0.033 0.967000 IP: 0 1.16E-05 0.033 0.000116 IP: 0 0.967000 IP: 0 IP: 0 0.967000 IP: 1.000000 0.999630 0.033 IP: 1.000000 0.000116 0.999630 0S 0.033 OF T 0F 10 Red = "temporary" state 0.000116 Zero probability of staying 0.000116 S 0.033 0.033 in temporary state 0.000116 0.033 IP: 0 n 0.967000 IP: 0 OD T 0.967000 IP: 0 0U 0.967000 IP: 0 IP: 0 0.967000 0 IP: 0 0D 0D 0U

Fail Counting with Inner Model

6/27/2022

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Fail Counting with Inner Model

Inner Model

Inner Fail Counting Model

Results After 1000 Steps				Results After 1000 Steps					
State Name	Initial Prob.	Mean Prob.	Point Prob.	Steps Spent in State	State Name	Initial Probability	Mean Probability	Point Probability	Steps Spent in State
10	1	0.989232	0.988905	989.231786	10	1	0.988881	0.988543	988.880742
0D	0	0.003365	0.003467	3.364994	0D	0	0.00336	0.003466	3.360336
0U	0	0.003365	0.003467	3.364994	0U	0	0.00336	0.003466	3.360336
0F	0	0.003365	0.003467	3.364994	0F	0	0.00336	0.003466	3.360336
0S	0	0.000337	0.000347	0.336616	0P	0	0.000336	0.000347	0.33615
0P	0	0.000337	0.000347	0.336616	0S	0	0.000336	0.000347	0.33615
BlockSim results table for inner model and inner fail counting model, same parameters					0D_T	0	0.000114	0.000114	0.114357
				0U_T	0	0.000114	0.000114	0.114357	
				0F_T	0	0.000114	0.000114	0.114357	
				0S_T	0	0.000011	0.000011	0.01144	
				0P_T	0	0.000011	0.000011	0.01144	

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory,