

University of Stuttgart Institute of Machine Components Reliability Department

Influence of Operating Load Spectra Shapes on Reliability Demonstration Test Planning

30. June 2022 Achim Benz, M. Sc.

Introduction and Motivation

• Approach

Case Study

• Summary and Future Work

2 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

www.flaticon.com

• Introduction and Motivation

• Approach

Case Study

• Summary and Future Work

3 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

www.flaticon.com

Decision triangle for reliability demonstration test strategies:

4 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

 P_{ts} calculation with Monte-Carlo-Simulations

 P_{ts} calculation with Monte-Carlo-Simulations

P_{ts} calculation with Monte-Carlo-Simulations

P_{ts} calculation with Monte-Carlo-Simulations

New Formula for Probability of test success for damage by applying Miners rule:

$$D_{acc,req} = \sum \frac{n_i}{(1-S) \cdot t_{real,i}} = \frac{1}{1-S} \cdot D_{acc,real}$$

$$P_{ts} = \frac{number \ of \left(\left(D_{acc,req} \right) \ge D_{acc,virt} \right)}{D_{acc,req}}$$

S = Safety Margin $D_{acc,real}$ from prior knowledge $D_{acc,virt}$ from simulated reliability test

9 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

P_{ts} for operating load spectra

 P_{ts} for operating load spectra

Influence of operating load spectra shapes?

UNI STUTTGART

Introduction and Motivation

Approach

Case Study

• Summary and Future Work

12 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

www.flaticon.com

Approach

Deriving operating load spectra

• The first betafunction is divided into X+1 equal areas. The X intersection points with the xaxis result in the individual load levels of the load spectrum.

UNI STUTTGAR

Approach

Deriving operating load spectra

 The second beta function is divided into X equal x-axis sections. The X areas give the weighting of the individual load levels of the load spectrum at the damage. Thus, the load level can always be normalized to a damage.

Approach

2

Simulation Steps:

Calculation of $D_{acc,real}$ from prior knowledge. Which is a Woehler curve with Weibull distributed failure times.

Deriving an operating load spectra from two Betafunctions normed to a given Damage value.

Introduction and Motivation

• Approach

Case Study

• Summary and Future Work

16 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

www.flaticon.com

• How does the shape of the operating load spectra affect the P_{ts} ?

• How does the number of operating load levels affect the *P*_{ts} for load spectra?

	Parameter		Value space
Changing parameters	Woehler slope k		3 - 15
	specimen on upper test load level n_H		5 - 50
	specimen on lower test load level n_L		5 - 50
	upper test load level σ_H		0.1 - 1
	lower test load level σ_L		0.1 - 0.9
	Amount of operation load level X		2 - 10
	Beta function parameters	superlow	A = 0.5 B = 3
		low	A = 1.5 B = 4
		medium	A = 1.5 B = 1.5
		norm. dist.	A = 8 B = 8
		high	A = 10 B = 4
		superhigh	A = 20 B = 4
Constant Parameters	Reliability requirement R Confidence level CI Woehler location parameter N_D Safety margin s Damage D		90% 90% 1 0.2

18 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

Results P_{ts} with test levels: $\sigma H=1$; $\sigma L=0.8$

Results P_{ts} with test levels: $\sigma H=0.5$; $\sigma L=0.2$

Influence of number of operating load levels

left: *σH***=1**; *σL***=0**.8;

UNI STUTTGART

^{21 30.06.2022 |} University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

Introduction and Motivation

• Approach

Case Study

Summary and Future Work

22 30.06.2022 | University of Stuttgart | Institute of Machine Components | Reliability Department | Achim Benz M. Sc.

Summary and Future Work

- Summary:
 - The test load levels interact with the operating load spectrum directly through the confidence level of the life model.
 - This shows that the more loads of the operating load spectrum lie within the narrow confidence level between the two test loads, the higher the *Pts*.
- Further work:
 - Performing a larger parameter study and training a NN with the results.
 - Use of more than 2 test load levels might be used to optimize P_{ts} .

University of Stuttgart Institute of Machine Components Reliability Department

Thank you!

"Find us on LinkedIn"

Research Assistant

Achim Benz, M. Sc. Institute of Machine Components University of Stuttgart, Germany

achim.benz@ima.uni-stuttgart.de

