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Abstract: Uncertainty gives rise to the risk. For nuclear power plants, probabilistic risk assessment 
(PRA) systematically concludes what people know to estimate the uncertainty in the form of, for 
example,  risk triplet. Capable of developing a definite risk profile for decision-making under 
uncertainty, dynamic PRA widely applies explicit modeling techniques such as simulation to scenario 
generation as well as the estimation of likelihood/probability and consequences. When quantifying risk, 
however, epistemic uncertainties exist in both PRA and dynamic PRA, as a result of the lack of 
knowledge and model simplification. The paper aims to propose a practical approach for the treatment 
of uncertainty associated with dynamic PRA. The main idea is to perform the uncertainty analysis by 
using a two-stage nested Monte Carlo method, and to alleviate the computational burden of the nested 
Monte Carlo simulation, multi-fidelity models are introduced to the dynamic PRA. Multi-fidelity 
models include a mechanistic severe accident code MELCOR2.2 and machine learning models. A 
simplified station blackout (SBO) scenario was chosen as an example to show practicability of the 
proposed approach. As a result, while successfully quantifying risk triples, the analysis is also capable 
to provide uncertainty information in the form of probability distributions of risk metrics such as large 
early release frequency (LERF). In conclusion, the dynamic PRA approach can potentially provide 
more precise risk information by considering timing issues, and the uncertainty analysis can provide a 
complete probability density function for better decision making. 
 
Keywords: Dynamic probabilistic risk assessment (PRA), Aleatory and epistemic uncertainties, Nested 
Monte Carlo, MELCOR2.2/RAPID, Multi-fidelity models, Machine learning, Large early release 
frequency (LERF) 
 
 
 
1.  INTRODUCTION 
 
The safe operation of a nuclear power plant (NPP) is accomplished by implementing concepts such as 
defense-in-depth (DiD) and safety margin. Complementing the deterministic assessment of DiD, 
probabilistic risk assessment (PRA) is a comprehensive method being used to support both licensee and 
regulatory decision-makings under uncertainties. Characterizing aleatory uncertainties associated with 
the random nature of basic events such as initiating event and component failures, PRA is a probabilistic 
model that quantifies risks of NPPs [1][2]. However, PRA results inevitably contain epistemic 
uncertainties, which relate to the lack of knowledge and arise when making statistical inference from 
data. Uncertainty analysis measures the “goodness” of PRA results. Three types of epistemic 
uncertainties are parameter, model and completeness uncertainties. The completeness uncertainty 
relates to incomplete state of knowledge about potential failure mechanisms, and they are addressed by 
concepts such defense-in-depth and safety margin. For the other two types, the ASME/ANS standards 
on PRA require that both parametric and model uncertainties be addressed [3][4]. Better understanding 
the implications of PRA uncertainties ensures the confidence of decision-making under uncertainties. 
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As one of risk assessment approaches, dynamic PRA explicitly models system dynamics by employing 
system simulations. System dynamics and stochastic behaviors are taken into account to explore 
dependencies among failure events, such as the mutual influences between system dynamics and 
component failure probabilities [5]. Dynamic PRA can use simulations to alleviate part of epistemic 
uncertainties in PRA, however, the overall epistemic uncertainty is not possible to be eliminated 
completely. It is necessary to establish approaches for the quantification of epistemic uncertainties in 
dynamic PRA. 
 
This paper aims to propose a practical approach for the uncertainty analysis associated with dynamic 
PRA. It is organized as follows. Section 2 reviews previous uncertainty analysis methods of PRA. 
Section 3 proposes an uncertainty analysis method for dynamic PRA, which consists of a nested Monte 
Carlo simulation using multi-fidelity models. Section 4 demonstrates the applicability of the method to 
estimate the probability-of-frequencies of large early release frequency (LERF) under the condition of 
station blackout (SBO) of a boiling water reactor (BWR) NPP.  
 
 
2.  UNCERTAINTY ANALYSIS IN PRA 
 
Aleatory uncertainty is the uncertainty that deals with the inherent variability in the physical world. 
Aleatory uncertainty can arise because of natural, unpredictable variation in the performance of the 
plant dynamics.  The characterization of aleatory uncertainty might change given additional information, 
for example, a larger database can provide better estimation of the standard deviation of a physical 
quantity. In principle, however, aleatory uncertainty is irreducible [6]. 
 
PRA models explicitly address aleatory uncertainty. In PRA, the aleatory uncertainty is represented by 
the randomness associated with the events in the model logic structures. The aleatory uncertainty is 
generally characterized in the form of frequencies such as core damage frequency (CDF) or LERF. 
However, the quantification of aleatory uncertainty inevitably contains epistemic uncertainties.  
 
Arising from incomplete theory or incomplete understanding of a system or phenomena, epistemic 
uncertainty is the uncertainty attributed to a lack of knowledge. It is reducible, in principle, although it 
might be difficult or expensive to do. Epistemic uncertainties arise when making statistical inferences 
from data and from incomplete knowledge about how to represent plant behavior in the PRA model. 
For example, simplification of complex component failure mechanism to a random probabilistic 
distribution will introduce epistemic uncertainty to PRA results. This paper focuses on the 
quantification of epistemic uncertainty in dynamic PRA. 
 
In all facets of PRA (e.g. frequencies of initiating events, probability of failure of components, human 
error probabilities, etc.), the sources of uncertainties need to be addressed. Categorizing into three types 
of parameter, model and completeness uncertainties, epistemic uncertainties in PRA and dynamic PRA 
arise for different reasons [1][7].  
 

a. The choice of logic structure and the mathematical form of failure models. 
 In PRA, for example, uncertainty exists as to how to construct event tree and fault model 

according to specified scope and level-of-detail. Uncertainty also exits as to how to model 
failures of hardware, software and human actions, as a result of reasons that it is unclear if 
the simplified probabilistic model can replace the latent physics-of-failure model. 

 In dynamic PRA, for example, different choices of probability distributions for the 
occurrence timing of events may result in uncertainties, and plant modeling using system 
codes may result in uncertainties in the accident consequence estimation. 

 
b. The estimation of PRA model parameters. 
 In PRA models, uncertainty exists in the estimation of frequencies of initiating events, 

branching probabilities in event trees and failure probabilities of components. As a specific 
example, uncertainty exists in the parameter setting of Poisson model which assumes that 
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failures of components in a standby state occur at a constant rate. Failure data are required 
to assess the constant rate, so the uncertainty may be caused by the fact that initiating events 
and basic events are relatively rare. The method of failure data collection also introduces 
uncertainties because failure data from maintenance records do not ensure that the failure 
would have prevented the component from performing the desired function.  

 In dynamic PRA, for example, the subjective setting of parameters for probability 
distributions may result in uncertainties. 

 
c. Uncertainty in characterizing the success criteria. 
 In PRA, changing environmental conditions result in uncertainty in the functionality of 

systems, for example, the functionality of systems in a room where a loss-of-cooling occurs. 
 In dynamic PRA, overlooking potential correlation in the sampling of parameters may result 

in uncertainties. 
 
A typical approach of uncertainty analysis for PRA is shown in Fig.1, uncertainties of PRA parameters 
can be treated in the form of probability distributions. After when sources of uncertainties are identified 
and defined using probability distributions, uncertainty propagation can be performed by using methods 
such as Monte Carlo simulations. Because PRA models quantify risk metrics such as CDFs and LERFs, 
the epistemic uncertainty in PRA can be visualized as probability distributions of the frequencies. 
Therefore, the main steps can be summarized as follows. 
 

a. Uncertainty source identification 
b. Probability distribution modeling 
c. Uncertainty propagation 
d. Results visualization 

  
 

 
Fig. 1 Treatment of uncertainties in PRA [8] 

 
 
3.  THE PROPOSED APPROACH FOR UNCERTAINTY ANALYSIS OF DYNAMIC 
PRA 
 
3.1.  Review of Related Methods 
 
This section provides a review on previous studies on which the present paper is based. 
 
The MCDET method for dynamic PRA is a combination of Monte Carlo (MC) simulation and the 
discrete dynamic event tree (DDET) approach. It is capable of treating both aleatory and epistemic 
uncertainties, by using a two-stage nested Monte Carlo method [9][10]. The inner Monte Carlo loop 
treats aleatory uncertainty, and it corresponds to the dashed rectangle in Fig.1, by which the risk metrics 
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are assessed. The outer Monte Carlo loop corresponds to the overall procedure of epistemic uncertainty 
analysis in Fig.1, so it provides the probability distribution of frequencies. 
 
The QMU method of quantification of margins and uncertainties (QMU) provides a systematic process 
for the treatment of aleatory and epistemic uncertainties in risk assessment and safety analysis [11][12]. 
The method is also referred to as the “probability-of-frequency approach” [13]. From the categorization 
of aleatory and epistemic uncertainties to the approach of quantification, consistency can be found 
among the QMU method, the PRA uncertainty analysis procedure of Fig.1 and the MCDET method. 
The nested Monte Carlo method well fits the separated treatment of aleatory and epistemic uncertainties 
for dynamic PRA. 
 
Other publications also show the advantages of dynamic PRA in simultaneous consideration of both 
aleatory and epistemic uncertainties. It was found that the shape of cumulative density functions is 
influenced by aleatory uncertainty, and the variations in the magnitudes of cumulative density functions 
are determined by epistemic uncertainty [14]. 
 
3.2.  The Proposed Approach Combining Two-Stage Nested Monte Carlo and Multi-Fidelity 
Models 
 
Fig.2 shows the improved uncertainty analysis approach combining two-stage nested Monte Carlo 
simulation and multi-fidelity models. Epistemic parameters are categorized as epistemic hyper-
parameters such as parameters of probability distributions and other epistemic parameters such as state-
of-knowledge correlation (SKOC) and parameters related to plant dynamics. After when sampling from 
the outer Monte Carlo loop, the inner Monte Carlo loop samples stochastic parameters for frequency 
simulations. To save computational cost, we use both mechanistic system code and statistical surrogate 
model combining with a model selection scheme [15]. When enough simulation data are collected, 
frequency estimation of CDF or LERF can be performed. With varying the epistemic parameters, the 
variation of CDF and LERF can be summarized as a probability distribution, which is also known as 
the probability distribution of frequency. On the other hand, results can also be visualized as risk curves 
characterized by risk triplets of scenarios/sequences, frequencies and consequences. 
 
 

 
Fig. 2 Two-stage nested Monte Carlo simulation for uncertainty quantification using multi-

fidelity models 
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4. TEST APPLICATIONS FOR A BWR SBO SCENARIO 
 
The CDF of BWR SBO scenario with a SRV stuck-open is relatively low, but the steam-driven RCIC 
pumps are not functional from early period of accident, so accident countermeasures such as early 
coolant injection via portable equipment are required. Dynamic PRA can be useful to verify if the time 
margin of emergency injection is adequate for the SBO scenario.  
 
Mechanistic BWR SBO simulation is performed using MELCOR, Version 2.2 [16]. Fig.3 depicts the 
MELCOR nodalization scheme. The input deck has been built based on BWR test case input of Sandia 
National Laboratories (SNL). The plant model includes two main parts of hydrodynamics and core. 
Core channel has been divided in two control volumes of core and bypass. The reactor coolant system 
(RCS) is modeled as a lower plenum, downcomer, upper plenum with reactor pressurized dome (RPV). 
Control volumes are connected with flow paths, which allow mass and energy exchange. Containment 
system consists of wetwell and drywell. Drywell is equipped with a filtered vent to the environment. 
Drywell is accepting mass from lower plenum leak and releasing mass to the environment after when 
the containment fails. 
 

 
Fig. 3 MELCOR modeling of the BWR NPP 

 

 
Fig. 4 SBO event tree [17] and containment event tree [18] of a BWR4 Mark-I NPP  
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Fig.4 depicts simplified SBO event tree and containment event trees for the analysis of large early 
release. Stochastic variables that affect the occurrence of pivotal events in SBO event tree of Fig.4 are 
shown in Table 1. The selection and parameter setting of probability distributions refers to previous 
researches on BWR SBO dynamic PRA [17], and sampled values have been reflected to MELCOR 
inputs via control functions. Listed in Table 2, epistemic parameters include parameters that affect 
probability distributions of stochastic variables and parameters that affect the branching of containment 
event tree in Fig.4.  
The uncertainty analysis process has been implemented by using the dynamic PRA tool, RAPID [19]. 
RAPID is being developed at Japan Atomic Energy Agency (JAEA), and it is programmed using Python. 
It consists of modules such as random sampling, code execution, data processing and surrogate model 
building, etc. Recently, it enhanced by implementing functions such as parallel processing and multi-
fidelity simulations. 
 

Table 1 List of stochastic variables 

 
Table 2 List of epistemic parameters 

 
 
5. RESULTS 
 
After 6723 times of the inner loop multi-fidelity simulation, Fig.5 quantifies aleatory uncertainties in 
the form of probabilities of large early release. To obtain stable uncertainty information, 200 times of 
outer loop simulation are performed, and Fig.6 illustrates the epistemic uncertainties of the conditional 
large early release probability estimation. A portion of simulations is simulated by applying machine 
learning models when results can be predicted according to previous results, and this implementation 
saves computational efforts. 
 
Sequences in Fig.5 are constructed and simulated using dynamic Level 2 PRA.  We can see that it 
simulates accident sequences by seamlessly connecting two event trees in Fig.4. Monte Carlo sampling 

 Stochastic variables Distributions Parameters of distribution 
1 EDGs recovery time (h) Lognormal 𝜇𝜇1,𝜎𝜎1 
2 Power grid recovery time (h) 
3 Battery life (h) Triangular 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 
4 Number of cycles before SRV stuck 

open happens 
Geometric Stuck-open probability of 

an individual trial: 𝑝𝑝 
5 RCIC failure time (h) Exponential 𝜆𝜆 
6 HPIC failure time (h) 
7 RCIC extended time (h) Lognormal 𝜇𝜇2,𝜎𝜎2 
8 Alternative water available time (h) Lognormal 𝜇𝜇3,𝜎𝜎3 
9 Manual automatic depressurization 

activation (h) 

 Epistemic parameters Distributions 
1 Parameters of distributions  

shown in Table 1 
𝜇𝜇1,𝜎𝜎1, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑝𝑝, 𝜆𝜆, 𝜇𝜇2,𝜎𝜎2, 
𝜇𝜇3,𝜎𝜎3 

Uniform 

2 Containment bypass time (h) Uniform 
3 Containment early failure pressure (Pa) Lognormal 
4 Criteria for early and large [20] Early: 4 hours after EAL-GE (declaration: 

5 mins after the loss of AC and DC 
powers), 

Large: 3% of initial radionuclide 
inventory including Cs, I and Te) 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

generate stochastic variables and accident sequences for MELCOR simulation. RAPID controls the 
overall process including the final step of probability estimation. Green sequences are newly generated 
sequences after when occurrence timings are more treated in a more detailed manner. Blue sequences 
are merged because time margin of emergency evacuation is too small for sequences with containment 
bypass. Dynamic PRA provides a practical way for treating complicated combinations of events. The 
point estimate of conditional probability of large early release is 1.38E-3.  
 
Fig.6 shows the goodness of the point estimate after when uncertainty analysis is performed. 
Uncertainty distribution quantifies the probability range between 8.62E-4 to 3.62E-3, and it reveals how 
reliable the dynamic PRA results are. As a result, the nested Monte Carlo method shows the 
practicability in quantifying both aleatory and epistemic uncertainties.  
 
To validate the results of risk triplet and uncertainty distribution, traditional PRA must be performed. 
Authors provides a validation analysis from the perspective of CDF by comparing PRA, high-fidelity 
dynamic PRA and multi-fidelity dynamic PRA, and results show agreements [19]. 
 

 
Fig. 5 Point estimates of large early release probabilities of sequences 
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Fig. 6 Probability distribution characterizing uncertainties in conditional LERF estimation 

 
 

6.  CONCLUSIONS 
 
This paper discussed approaches for the uncertainty analysis of dynamic PRA. By using two-stage 
nested Monte Carlo, the simultaneous treatment of aleatory and epistemic uncertainties is practical 
according to the test analysis and previous studies such as the MCDET method. However, the nested 
Monte Carlo method requires a large number of simulations, 𝑁𝑁 × 𝑀𝑀, where 𝑁𝑁 is the minimal number 
of samples (inner loop) for frequency estimation and 𝑀𝑀 is the minimal number of frequency estimates 
(outer loop) for a stable probability distribution. The authors proposed to use low-fidelity machine 
learning models as surrogate for the high-computational system code. It can be expected that the 
surrogate model can accelerate the uncertainty quantification while maintain the preciseness. Table 3 
provides a preliminary comparison of uncertainty analysis between PRA and dynamic PRA. 
 

Table 3 Comparison of uncertainty analysis for PRA and dynamic PRA 
 PRA Dynamic PRA 

Method of frequency estimation 
(Aleatory uncertainty) 

Boolean-Logic-based Simulation-based 

Epistemic 
uncertainty 
types 

Examples of parameter 
uncertainty 

Frequencies of initiating 
events, branching 
probabilities, etc. 

Parameters of probability 
distributions 

Examples of model 
uncertainty 

ET/FT structure, failure 
model of sub-systems, etc. 

Mathematical form of probability 
distributions, reliability modeling, etc. 

Completeness Treated by Defense-in-Depth and maintenance of safety margin 

Method for uncertainty propagation Monte Carlo  Two-stage nested Monte Carlo 

Result visualization Probability distribution of frequencies, risk curves 
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