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Abstract: The trend of digitization in various industrial systems has exposed them to an increasing 

number of cyberattacks. Therefore, it is of vital importance to reduce the cybersecurity risk of industrial 

systems through cost-effective decisions on cybersecurity investment. In making such decisions, the 

defender is usually faced with challenges that arise from incomplete information about the attacker. In 

this paper, we propose a Bayesian game approach to model the optimal cybersecurity investment 

strategy under such situations. In this approach, the defender categorizes the attacker into a finite 

number of types, e.g., various levels of capability, and assigns a probability distribution over the 

different types of attackers. Then, the defender optimizes his/her cybersecurity investment based on risk 

assessment considering the possible attack efforts of these various types of attackers, with the objective 

of minimizing the expected cyberattack loss and the cybersecurity investment cost. The proposed 

method is demonstrated using a numerical example. We perform a sensitivity analysis for model 

parameters that can be difficult to obtain in practical applications, e.g., the defender's loss caused by a 

successful attack. Key observations of the example include the threshold principle (i.e., the defender 

should not make any investment if the loss of a successful attack is below a certain threshold) and the 

conservation of loss (i.e., losses for one type of attacker may correspond to gains for another type of 

attacker). The proposed method can be used to support cybersecurity investment decisions by industrial 

system owners. 

 

 

1.  INTRODUCTION 
 

Digital technologies are in pervasive use today in various industrial systems, for example, electric power 

systems and nuclear power plants. Although the increased digitization will yield many benefits in terms 

of the safety and efficiency of the industrial systems, it may also create new vulnerabilities that must be 

mitigated [1]. Past events caused by cyberattacks and leading to material consequences include the one 

against Iranian nuclear facilities in 2010 [2] and the one against Ukrainian electric power systems in 

2015 [3]. 

 

To improve cybersecurity, stakeholders of industrial systems can invest in security hardening 

mechanisms to manage cyber risk. These include measures to reduce vulnerabilities, boost the 

capability of intrusion detection [4], and enhance the capability of incident response [5]. Although 

general guidelines for improving cybersecurity are available [6], optimal cybersecurity investment 

remains a challenging problem, and is identified as one of the gaps in cybersecurity capabilities [7]. 

Cybersecurity investment belongs to the broader area of economics of information security [8]. 

 

The challenge in cybersecurity investment is due to the need of the decision-maker to consider the trade-

off between the investment itself (i.e., cost) and its impact on cyber risk (i.e., benefit). The existence of 

the malicious attacker in cybersecurity investment problems further implies that cyber risk is not only 

influenced by the decision-maker’s (i.e., defender’s) own investment, but also by the attacker’s effort. 

This contrasts with investment problems that are only concerned about natural failures in industrial 
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systems. In most cases, the defender has incomplete information about the attacker. For example, the 

defender may not be sure of the capability of the attacker, or the motivation of the attacker. This 

incomplete information further complicates cybersecurity investment. 

 

In this research, we study how to optimally make investment decisions to improve the cybersecurity of 

industrial systems. The primary contribution of this research is the Bayesian game-theoretic approach 

to address the challenge of cybersecurity investment under incomplete information about the attacker. 

The results from this research can be used to support industrial system owners in making cybersecurity 

investment decisions. 

 

2.  RELATED WORK 
 

One of the foundational works on cybersecurity investment is the Gordon-Loeb model developed by 

Gordon and Loeb [9]. The Gordon-Loeb model uses a security breach probability function to link 

investment in security and the probability that a threat once realized (i.e., an attack) would be successful. 

It identifies the optimality condition under which the expected net benefit of information security is 

maximized. Various extensions of this model have been studied in later research [10-12]. For example, 

Hausken [10, 11] investigated different forms of the security breach probability function and studied 

their effect on the optimality condition. Krutilla et al. [12] extended the original Gordon-Loeb model, 

which is for one-period decision-making, to a dynamic model. In the dynamic model, cybersecurity 

investment is formulated as an infinite-horizon decision-making problem, and the depreciation of 

cybersecurity investment is considered explicitly. Uncertainties usually exist in the loss caused by a 

successful cyberattack and the availability of cybersecurity controls. Chronopoulos et al. [13] proposed 

a real options framework to consider such uncertainties and their effect on cybersecurity investment. 

Real options analysis was also applied in [14] to study whether cybersecurity expenditures should be 

invested now or deferred and in [15] to study how information sharing, which can reduce the uncertainty 

surrounding cost savings from security investment, influences the investment decision. Simon and 

Omar [16] considered the interdependence between protected nodes in cybersecurity investment in a 

supply chain, i.e., the attack on one node may cause damage to another node. They investigated 

conditions where the defense may be coordinated or uncoordinated and the attacker may be strategic or 

non-strategic. It is worth noting that the studies introduced above all formulate cybersecurity investment 

as a single-agent decision-making problem. 

 

Since in cybersecurity investment problems, there exist both the defender, who aims to protect the 

systems he/she owns or operates, and the attacker, who aims to cause damage to the systems owned or 

operated by the defender, it is more natural and sensible to consider such problems as games [17-19]. 

This suggests the use of game theory to address cybersecurity, and more generally security, investment 

problems. 

 

For cybersecurity investment problems, Fielder et al. [20] applied game theory to optimal 

implementation of discrete cybersecurity controls for several data assets against commodity attacks 

under a limited cybersecurity budget. Gao and Zhong [21] studied the decisions on cybersecurity 

investment, among others, of two competing firms, both faced with cyberattacks, using differential 

games. The effects of cooperation and non-cooperation between the two firms on the firms’ 

cybersecurity investments and benefits were investigated. In addition to the theoretical analysis 

introduced above, Frey et al. [22] designed a tabletop game to study the cybersecurity decision of three 

different stakeholders, i.e., security experts, computer scientists, and managers, within an organization. 

The game can be used as a sandbox in which different stakeholders can experiment with security 

decisions and learn about their decisions. Maccarone and Cole [23] studied nuclear power plant 

defender defense strategies using Bayesian games to address the incomplete information on the attacker, 

but the study was focused on discrete defender actions. In this research, we focus on continuous 

defender investment in improving cybersecurity. Zhao et al. [24] recently created a multi-stage game 

framework to develop the security investment strategies to combat ransomware. An optimal security 

investment can significantly reduce the likelihood of ransomware infection and ransom payment. 
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Research focused on the evaluation of cybersecurity investment impact has also been performed in the 

literature. For example, Armenia et al. [25] developed a system dynamics methodology for cyber risk 

assessment and investment impact evaluation, with a focus on dynamic organizational environments. 

 

Game theory has also been used to study how to optimally allocate limited resources among several 

potential physical targets to enhance their security. Powell [26] studied the optimal allocation of 

resources against terrorist attacks in four settings using game theory. These include the basic setting 

where the resource allocated to one target has no effect on any other site, to more complex settings, 

where certain resources allocated can protect all sites, both strategic and non-strategic threats exist, and 

the defender is unsure of the terrorist's valuation of the targets. Zhuang and Bier [27] researched how 

to optimally balance resource allocation for terrorism and natural disasters. Both the simultaneous game 

and the sequential game were analyzed. The analysis suggested that the defender should in general use 

a sequential game (for example, by advertising the defensive investments instead of keeping them 

secret) because it provides the defender the first-mover advantage. This is consistent with the 

observation in [28]. Instead of only considering two states, i.e., failed or operating, Hausken and Levitin 

[29] modeled systems as multi-state, and combined game theory and genetic algorithm to determine the 

optimal defense strategy, to minimize the expected loss from an attack. Zhang et al. [30] studied the 

effect of player risk attitudes on the decisions on resource allocation in a defender-attacker game. The 

observation from this study is that misconception of the attacker’s risk attitude can significantly increase 

the expected damage from an attack. Secrecy has also been an important topic in defensive resource 

allocation. Using signaling games, Powell [31] studied defensive resource allocation when the defender 

has private information about the target vulnerability. The analysis shows how the resource allocation 

strategy is affected by the vulnerability characteristics of the targets, i.e., the required marginal effort 

to protect the more vulnerable targets. Zhuang and Bier [32] provided a thorough perspective on how 

defender private information can be used to improve defense effectiveness. They discussed several 

conditions that motivate the secrecy of resource allocation information. 

 

3.  PROBLEM DESCRIPTION 
 

This research focuses on the protection of a piece of cyber equipment from malicious cyberattacks. The 

equipment could be, for example, a workstation or a data historian used in the control system in a 

nuclear power plant. The compromise of the equipment will lead to a loss of 𝐶, which may correspond 

to, for example, the impact of the compromise of the control system on the physical systems. To protect 

the equipment, the defender can make an investment of 𝑎1 ∈ [0, +∞)  in the form of firewalls, 

cybersecurity personnel, etc. The investment is the defender’s action, and the set [0, +∞)  is the 

defender’s action space. This investment reduces the vulnerability of the equipment, or in other words 

the probability that the equipment can be compromised by the attacker. 

 

This vulnerability is also affected by the attacker’s effort, denoted by 𝑎2 ∈ [0, +∞), in compromising 

the equipment. This effort is referred to as the attacker’s action, and the set [0, +∞) is the attacker’s 

action space. In this work, we consider one attacker who can belong to multiple types. We define Θ2 as 

the set of all types, which are determined based on the attacker’s unknown information (e.g., the 

attacker’s capability, tools, and goals). The attacker’s type 𝜃2 ∈ Θ2 remains unknown to the defender. 

For example, we can let Θ2 be a binary set. The first element in Θ2, denoted as 𝜃2
ℎ, represents a more 

capable attacker. The other element, denoted as 𝜃2
𝑙 , represents a less capable one. The defender does 

not know the attacker’s capability. 

 

The attacker determines his/her action based on his/her type, thus we represent the attacker’s action as 

a function of the type of the attacker, i.e., 𝑎2 = 𝜎2(𝜃2), where 𝜎2 is the attacker’s decision-making 

policy. While the attacker takes the same action 𝑎2, the type of the attacker can affect the outcome of 

this action. Following the previous example, given the same amount of effort 𝑎2, the attacker of the 

more capable type 𝜃2
ℎ  will compromise the equipment with a higher probability. Therefore, the 

vulnerability of the equipment is a function of the investment made by the defender 𝑎1, the type of the 

attacker 𝜃2, and the effort made by the attacker 𝑎2 = 𝜎2(𝜃2), i.e., 𝑣(𝑎1, 𝜎2(𝜃2), 𝜃2). 
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Although the defender does not know about the type of the attacker, he/she holds beliefs in the types of 

the attacker, denoted by 𝑝(𝜃2). This portrays the fact that the defender only possesses incomplete 

information about the attacker. 

 

The defender, uncertain about the type of the attacker, aims to find the amount of investment 𝑎1 to 

maximize the utility 𝑢1(𝑎1, 𝜎2) formulated below while considering the effort of an attacker of all types, 

𝑢1(𝑎1, 𝜎2) = ∑ −𝐶 ⋅ 𝑝(𝜃2) ⋅ 𝑣(𝑎1, 𝜎2(𝜃2), 𝜃2)
𝜃2∈Θ2

− 𝑎1, (1) 

In (1), 𝑎1 denotes the defender’s investment; 𝜎2 denotes the attacker’s attack policy; 𝐶 denotes the loss 

to the defender caused by a successful cyberattack; 𝑝(𝜃2) denotes the defender’s belief in the type of 

the attacker of type 𝜃2 ; and 𝑣(𝑎1, 𝜎2(𝜃2), 𝜃2)  denotes the probability that a cyberattack will be 

successful given 𝑎1, 𝜃2, and 𝜎2(𝜃2). In the utility function for the defender in (1), the summation term 

on the right side defines the risk caused by a cyberattack. The utility can be explained as the negative 

of the sum of the expected loss caused by a cyberattack and the defender’s investment. 

 

The attacker of type 𝜃2, knowing his/her type, aims to find the decision policy to maximize his/her 

utility 𝑢2(𝑎1, 𝜎2(𝜃2), 𝜃2) defined below: 

𝑢2(𝑎1, 𝜎2(𝜃2), 𝜃2) = 𝐶 ⋅ 𝑣(𝑎1, 𝜎2(𝜃2), 𝜃2) − 𝜎2(𝜃2). (2) 

 

In defining the utility for an attacker of each type in (2), we assume that the attacker aims to maximize 

the loss to the defender. This assumption can be relaxed easily, and a more general utility function can 

be defined. The utility for the attacker of type 𝜃2 in (2) can be explained as the expected loss to the 

defender minus the attacker’s investment. 

 

The assumption required for solving this problem using game theory is that the action spaces of the 

defender and the attacker, the type set of the attacker, the probability distribution over the type set, and 

the utility functions of the defender and the attacker are all common knowledge. This means that each 

player (i.e., the defender or the attacker) knows the information above; each player knows that the other 

player knows the information; each player knows that the other player knows that he/she knows the 

information, etc. 

 

4.  BAYESIAN GAMES AND BAYESIAN NASH EQUILIBRIUM 
 

In the problem described in Section 3, the defender is uncertain about the type of the attacker, so it can 

be formulated as a game of incomplete information or a Bayesian game. In this research, we consider a 

specific form of Bayesian games. In such a Bayesian game, the two players move simultaneously 

without knowing the opponent’s action. 

 

The solution concept for solving such a Bayesian game is the Bayesian Nash equilibrium [33]. A 

strategy profile (𝑎1
∗, 𝜎2

∗) is a Bayesian Nash equilibrium if, for the defender, we have 

𝑎1
∗ ∈ argmax

𝑎1>0
𝑢1(𝑎1, 𝜎2

∗), (3) 

and for the attacker of all types 𝜃2 ∈ Θ2, we have 

𝜎2
∗(𝜃2) ∈ argmax

𝜎2(𝜃2)
𝑢2(𝑎1

∗, 𝜎2(𝜃2), 𝜃2). (4) 

 

To find the equilibrium, we first need to obtain the following first-order conditions: 

𝜕𝑢1(𝑎1, 𝜎2)

𝜕𝑎1
= ∑ −𝐶 ⋅ 𝑝(𝜃2) ⋅

𝜕𝑣(𝑎1, 𝜎2(𝜃2), 𝜃2)

𝜕𝑎1𝜃2∈Θ2

− 1 = 0, (5) 
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𝜕𝑢2(𝑎1, 𝜎2(𝜃2), 𝜃2)

𝜕𝜎2(𝜃2)
= 𝐶 ⋅

𝜕𝑣(𝑎1, 𝜎2(𝜃2), 𝜃2)

𝜕𝜎2(𝜃2)
− 1 = 0, ∀𝜃2 ∈ Θ2. (6) 

 

The Bayesian Nash equilibrium can then be obtained by solving the system of equations for 𝑎1 and 

𝜎2(𝜃2) in (5) and (6). In (5), the defender considers all possible types of attackers, each denoted by 𝜃2, 

as well as their corresponding probabilities, denoted by 𝑝(𝜃2) for type 𝜃2. In (6), the attacker of each 

type 𝜃2 considers how the defender’s investment is affected by all the possible types of attackers. 

 

5.  NUMERICAL EXAMPLE 
 

In this section, an example cybersecurity investment problem is analyzed based on the Bayesian game 

introduced in Section 4. In this example, a loss of 𝐶 is incurred for the defender if a piece of cyber 

equipment is compromised by the attacker. There are two types of attackers, one with high capability 

and the other with low capability. Denote these two types by 𝜃2 = 𝐻 and 𝜃2 = 𝐿, respectively. The 

defender believes that 𝜃2 = 𝐻 with probability 𝑝(𝐻) and 𝜃2 = 𝐿 with probability 𝑝(𝐿) = 1 − 𝑝(𝐻). 

For defender investment 𝑎1 , attacker type 𝜃2 , and attacker effort 𝜎2(𝜃2), the vulnerability of the 

equipment is 

𝑣(𝑎1, 𝜎2(𝐻), 𝐻) =
𝜎2(𝐻)

𝛼𝐻(𝑎1 + 𝜎2(𝐻) + 𝛽)
 (7) 

for type 𝜃2 = 𝐻, where 𝛼𝐻 ≥ 1 and 𝛽 > 0, and 

𝑣(𝑎1, 𝜎2(𝐿), 𝐿) =
𝜎2(𝐿)

𝛼𝐿(𝑎1 + 𝜎2(𝐿) + 𝛽)
 (8) 

for type 𝜃2 = 𝐿, where 𝛼𝐿 > 1 and 𝛼𝐿 > 𝛼𝐻. The form of the vulnerability functions in (9) and (10) 

follows the example considered in [27]. By varying 𝛼𝐻 or 𝛼𝐿, we can increase or decrease the capability 

of an attacker. It is clear that both successful attack probabilities in (7) and (8) increase with increasing 

attacker effort and decrease with increasing defender investment. The probabilities also increase with 

decreasing 𝛼𝐻  and 𝛼𝐿 . The parameter 𝛽 in the denominators reflects the inherent security measures 

already placed in the equipment. 

 

In this numerical example, the nominal values of the parameters in the middle column in Table 1 are 

considered. The value ranges of the parameters are used to study the effect of the change in each 

parameter on the result. 

 

Table 1: The Nominal Values and the Value Ranges of the Parameters in the Numerical 

Example. 

 

Using the expressions in (7) and (8), the utility functions for the players can be expressed explicitly as 

𝑢1(𝑎1, 𝜎2) = ∑ −𝐶 ⋅ 𝑝(𝜃2) ⋅ 𝑣(𝑎1, 𝜎2(𝜃2), 𝜃2)
𝜃2∈Θ2

− 𝑎1

= −𝐶 ⋅ 𝑝(𝐻) ⋅
𝜎2(𝐻)

𝛼𝐻(𝑎1 + 𝜎2(𝐻) + 𝛽)
− 𝐶 ⋅ 𝑝(𝐿) ⋅

𝜎2(𝐿)

𝛼𝐿(𝑎1 + 𝜎2(𝐿) + 𝛽)
− 𝑎1 

(9) 

for the defender, 

Parameters (unit) Nominal Value Value Range 

𝐶 (in USD) 1000 [0, 2000] 

𝑝(𝐻) (unitless) 0.6 [0, 1] 

𝛼𝐻 (unitless) 5 [1, 10) 

𝛼𝐿 (unitless) 10 (5, 20] 

𝛽 (in USD) 5 [1, 10] 
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𝑢2(𝑎1, 𝜎2(𝐻), 𝐻) = 𝐶 ⋅ 𝑣(𝑎1, 𝜎2(𝐻), 𝐻) − 𝜎2(𝐻) = 𝐶 ⋅
𝜎2(𝐻)

𝛼𝐻(𝑎1 + 𝜎2(𝐻) + 𝛽)
− 𝜎2(𝐻) (10) 

for the attacker of type 𝐻, and 

𝑢2(𝑎1, 𝜎2(𝐿), 𝐿) = 𝐶 ⋅ 𝑣(𝑎1, 𝜎2(𝐿), 𝐿) − 𝜎2(𝐿) = 𝐶 ⋅
𝜎2(𝐿)

𝛼𝐿(𝑎1 + 𝜎2(𝐿) + 𝛽)
− 𝜎2(𝐿) (11) 

for the attacker of type 𝐿. 

 

The Bayesian Nash equilibrium for a static Bayesian game with a particular parameter setting can be 

obtained by solving (3) and (4), or equivalently (5) and (6) for the utility functions in (9), (10), and (11). 

For the particular parameter setting in Table 1 (nominal values) considered in this numerical example, 

the Bayesian Nash equilibrium can be obtained as (𝑎1
∗ = 33.97 𝑈𝑆𝐷, 𝜎2

∗(𝐻) = 49.31 𝑈𝑆𝐷, 𝜎2
∗(𝐿) =

23.46 𝑈𝑆𝐷). At this equilibrium, the utilities for the defender, the attacker of type 𝐻, and the attacker 

of type 𝐿  are 𝑢1(𝑎1
∗ , 𝜎2

∗) = −116.03 𝑈𝑆𝐷 , 𝑢2(𝑎1
∗, 𝜎2

∗(𝐻), 𝐻) = 62.40 𝑈𝑆𝐷 , and 𝑢2(𝑎1
∗, 𝜎2

∗(𝐿), 𝐿) =
14.12 𝑈𝑆𝐷, respectively. 

 

We further investigate the effects of changes in parameter values on the outcome of the game. 

Specifically, for each of the five parameters in Table 1, its value is changed within the range for the 

parameter while the other parameters are maintained at their nominal values. Then, for each parameter 

setting, the Bayesian Nash equilibrium is obtained as well as the utilities for the players. The results are 

presented in Figure 1 to Figure 5. 

 

 
Figure 1. The effect of 𝐶 on the outcome. 

Player actions and utilities at the equilibrium vs. parameter 𝐶 are plotted in Figure 1. From the results, 

we see that for a broad range of 𝐶, both the defender investment and the attacker effort increase almost 

linearly with 𝐶. Correspondingly, the utility for the attacker of either type and the loss for the defender 

increase with 𝐶. From Figure 1, we also see that when 𝐶 is smaller than a certain value (about 120 

USD), the defender does not make any investment. However, even when 𝐶 is smaller than this value, 

the attacker of either type makes an effort in an attack. 

 

Figure 2 plots player actions and utilities at the equilibrium vs. parameter 𝑝(𝐻), i.e., the defender’s 

belief that the attacker is of type 𝐻. The result shows that, as 𝑝(𝐻) increases, the defender will make 

more investment, but this increase in investment does not help increase the utility for the defender. As 
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𝑝(𝐻) increases, the effort made by the attacker of type 𝐻 will increase, while the effort made by the 

attacker of type 𝐿 will decrease. This means that if the attacker is of type 𝐿, but the defender highly 

believes that the attacker is of type 𝐻 , then the attacker (of type 𝐿) will make less effort in the 

cyberattack. It is a deterrence effect commonly observed in security research. We also observe that the 

utility of the attacker of either type will decrease as 𝑝(𝐻) increases, which in part is due to the increased 

investment of the defender. 

 

 
Figure 2. The effect of 𝑝(𝐻) on the outcome. 

 

 
Figure 3. The effect of 𝛼𝐻 on the outcome. 

Figure 3 plots player actions and utilities at the equilibrium vs. parameter 𝛼𝐻. According to (7), the 

smaller 𝛼𝐻 is, the more capable the attacker of type 𝐻 is. The result shows that when 𝛼𝐻 is small, the 

investment required by the defender is significantly large. Correspondingly, the loss incurred for the 

defender when 𝛼𝐻 is small is large. We can also observe that as 𝛼𝐻 increases, i.e., the capability of the 

attacker of type 𝐻 decreases, the utility of the attacker of type 𝐿 increases slightly, which means that 
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the attacker of type 𝐿 benefits from the increased 𝛼𝐻. This can be explained by the decreased investment 

of the defender. 

 

Figure 4 plots player actions and utilities at the equilibrium vs. parameter 𝛼𝐿. The smaller 𝛼𝐿 is, the 

more capable the attacker of type 𝐿 is. Similar to the observation from Figure 3, as 𝛼𝐿 increases, the 

investment required by the defender decreases, and its utility increases. We can also observe that as 𝛼𝐿 

increases, the utility of the attacker of type 𝐻 increases, which means that the attacker of type 𝐻 benefits 

from the decreased capability of an attacker of type 𝐿. 

 

 
Figure 4. The effect of 𝛼𝐿 on the outcome. 

 

 
Figure 5. The effect of 𝛽 on the outcome. 

Figure 5 plots player actions and utilities at the equilibrium vs. parameter 𝛽. Since 𝛽 can be viewed as 

the existing cybersecurity measures embedded in the equipment, from Figure 5 we see that as 𝛽 

increases the defender’s investment decreases. The effort made by the attacker of either type does not 
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change. This can be explained by the fact that any deficiency in existing cybersecurity measures will 

be compensated by the defender. The utility of the defender increases slightly as 𝛽 increases, since the 

investment itself is smaller. 

 

6.  CONCLUSION AND FUTURE RESEARCH 
 

In view of the rapid digitization in various industrial systems, for example, nuclear power plants, 

making optimal decisions on cybersecurity investment becomes a critical task. In this research, we 

propose a Bayesian game approach to this problem. Compared with the Gordon-Loeb model and other 

methods that solely focus on the defender investment, the proposed method considers the role of the 

attacker and the adaptive nature of the attacker. Compared with existing studies based on game theory, 

we consider the situation where the defender has incomplete information on the attacker. The proposed 

method is demonstrated using a numerical example, with discussions on the results. 

 

It is worth mentioning that cybersecurity investment is a complex problem. Our research is only one of 

the attempts to address it, and more future efforts in this field are warranted. In this research, we only 

consider one single defender and one single attacker, though various types of attackers may exist. In 

future research, for certain problems, it may be necessary to expand the analysis in this paper to multiple 

players. For example, there may be attackers from different groups. The analysis in this research is 

based on given parameters and functions, including the loss due to a successful attack, the vulnerability 

function, and utility functions for the defender and the attacker. In practical applications, these 

parameters and functions are typically unknown and need to be determined. A credible way of 

determining these parameters and functions is worth further research. It is also useful to extend the 

analysis in this research to investment against both strategic threats, i.e., attackers, and non-strategic 

threats, e.g., natural system failures, as was done in [27]. 
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