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Abstract: The Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER) is a 

framework that supports dynamic human reliability analysis (HRA) via the development of standalone 

software for performing dynamic HRA calculations. In the HRA, human actions in nuclear power plants 

(NPPs) are predicated by plant states, and these human actions in turn influence the plant. In other 

words, plant operations are necessarily recursive, and it becomes challenging to model complex human-

plant interactions. Consequently, we have coupled two software simulations that complement those 

shortcomings. RELAP5-3D, which stems from the Reactor Excursion and Leak Analysis Program 

(RELAP) [1], is the foundational thermal-hydraulic software for modeling nuclear systems. Using 

RELAP5-3D, we simulated plant operations as they progressed in accordance with procedures 

developed to address emergent situations in NPPs. Plant operations include various actions such as 

operator checks of plant parameters, as well as actions that are continuously performed over time until 

a specific parameter reaches certain criteria. This means that HUNTER and RELAP5-3D exchange 

information with each other and should be carried out simultaneously over time. To simulate plant 

operations, which represent actual operator checks of plant parameters and the corresponding manual 

control actions, changes in plant status are identified via simulation and performed in accordance with 

the criteria and order of the procedure. Thus, the goal in coupling HUNTER with RELAP5-3D is to 

facilitate synchronous coupling, where human and plant models provide iterative feedback loops that 

drive the course of actions. The advantage of coupling these simulation frameworks so that RELAP5-

3D can serve as the external environment module in HUNTER is that it allows for plant models to be 

customized and streamlined for specific applications. In this paper, we address the key features of the 

coupling, along with the coupling structure built to perform the feedback loops. 

 

 

1. INTRODUCTION 
 

The U.S. Department of Energy Light Water Reactor Sustainability program’s Risk-Informed Systems 

Analysis pathway sponsors many HRA-related projects that aim to create better tools to support industry 

risk assessment needs. One such project involves the Human Unimodel for Nuclear Technology to 

Enhance Reliability (HUNTER) [1]. HUNTER is a framework that supports dynamic human reliability 

analysis (HRA) via the development of standalone software for performing dynamic HRA calculations. 

In the HRA, human actions in nuclear power plants (NPPs) are predicated by plant states, and these 

human actions in turn influence the plant. In other words, the plant operations are necessarily recursive, 

and it becomes challenging to model complex human-plant interactions. 

 

Consequently, we have coupled two software simulations that complement those shortcomings. The 

Environment module in HUNTER represents the physical environment—in this case, a NPP—with 

which the virtual operator interacts. HUNTER's primary purpose is to simulate and analyze virtual 

operations and then derive HRA results. HUNTER must reflect the plant response to the plant 

operations operator. Plant status and plant operations are deeply interconnected, since procedures can 

change depending on the plant status, and plant parameters may change in accordance with operator 

actions. From a dynamic modeling point of view, coupling with a plant simulator is necessary for 
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capturing human operations that vary depending on plant status or the detailed guidance provided at 

different steps in the procedures. We describe the coupling of HUNTER with a separate software code 

capable of plant simulation. This coupling reflects operator manipulations throughout the plant 

simulation, and includes the plant status needed for procedure progress. This paper focuses specifically 

on implementing the Environment module by using RELAP5-3D, which originates from the Reactor 

Excursion and Leak Analysis Program (RELAP). 

 

2. DEMONSTRATION OF COUPLING BETWEEN HUNTER AND THE PLANT 

SIMULATOR 
 

To reflect the interplay between plant state and operator response, HUNTER’s virtual operator is linked 

to an external plant model. In HUNTER, operator manipulations are applied to the plant simulator or 

thermal-hydraulic code. It is necessary to perform actions (i.e., tasks) that directly affect plant 

operations, such as closing valves or operating pumps. In turn, the operator monitors the plant 

parameters. Some parameters are monitored regularly to determine routine or abnormal plant evolutions. 

The HUNTER virtual operator, guided by both continuous and one-off tasks specified in the procedures, 

checks for parameter changes or compares the plant parameters against the specific values given in the 

procedures. Additionally, when operators affect changes in the plant, they must confirm those changes 

are exactly what was desired. 

 

Thus, the interface between the virtual operator in HUNTER and the virtual plant is a two-way feedback 

loop, as depicted in Figure 1. The operator must be able to receive parameters from the plant model, 

and must be able to manipulate or control aspects of the plant. To accomplish this interaction, we 

implemented a two-way synchronous coupling between HUNTER and a plant simulator:  

• Monitor (Plant → Operator): HUNTER reads the parameter or component information reflected in 

the plant simulation.  

• Control (Operator → Plant): In turn, HUNTER can alter the state of the plant simulation through 

virtual operator actions.  

 

These two functions operate dynamically and in parallel. The plant model progresses with or without 

virtual operator input. The plant parameters are available to the virtual operator throughout this 

progression. When the operator intercedes (e.g., by closing a valve), this is reflected in the plant model 

as a change. The iterative feedback loop between the HUNTER virtual operator and the plant model 

progresses up to a particular stopping point for each given scenario. The human and plant models are 

synchronized through information exchange (i.e., parameter monitoring and operator actions) via the 

coupling mechanism. Hold points may be employed to allow time for particular information exchanges. 

For example, the operator model may be in wait-and-monitor mode awaiting a particular parameter 

level from the plant model. Similarly, the plant model may simulate plant functions for a particular 

interval up to a synchronization point and pause for potential input (e.g., operator actions) from 

HUNTER. Coupling may occur at regular intervals or may be irregular, depending on the type of plant 

activity being monitored or controlled. 
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Figure 1. Coupling scheme 

 
 

An irregular-interval coupling is depicted in Figure 2. The HUNTER virtual operator performs plant 

operations as specified in the procedure, with each procedure step taking different times according to 

the GOMS (goals, operators, methods, and selection rules) -HRA primitives. The plant also changes 

over time, with or without actions from the operator, reflecting the natural progression of plant 

conditions. Of course, plants are designed to require operator control actions, and the desired evolution 

of the plant is determined by human actions. For this reason, operator actions should be reflected in the 

simulator or thermal-hydraulic code, and the plant status or response transmitted to HUNTER. A typical 

course of action is: 

• A procedure step directs the operator to take an action (e.g., closing a valve). 

• HUNTER transmits the valve’s changed state to the thermal-hydraulic code. 

• The thermal-hydraulic code changes the plant state or model to reflect the closed valve. 

• The operator is directed to confirm that the valve is closed. 

• HUNTER retrieves the valve status from the thermal-hydraulic code. 

• HUNTER performs the logic check on the valve status and proceeds to the next step (if the valve 

is closed) or to alternate RNO (response not obtained) steps (to deal with the stuck-open valve). 

 

HUNTER and the thermal-hydraulic or plant simulator should exchange information in a manner 

similar to how the operator checks plant parameters and makes decisions. Both the operator and the 

plant function independently but synch up at various points. HUNTER uses task-level primitives in 

GOMS to estimate how long each procedure step takes to perform. The thermal-hydraulic code will 

pause at this point for synchronization, either a checking of the plant state or a manual action performed 

by the virtual operator in the plant model.  

 

Figure 2. Conceptualization of the coupling between HUNTER and the plant simulator 
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3. COUPLING WITH RELAP5-3D 
 

The coupling task described in this paper was performed using a computer simulation software 

dedicated to NPP operational thermal-hydraulics analysis. RELAP5-3D was developed at Idaho 

National Laboratory (INL) for analyzing transients and accidents in water–cooled NPPs and other 

related systems, as well as for analyzing advanced reactor designs [2]. RELAP5-3D was selected so we 

could analyze various types of plants (assuming the existence of corresponding plant models), whether 

developed relatively recently (e.g., small modular reactors) or based on established plant designs. 

Recent developments in RELAP5-3D include implementation in INL’s supercomputer cluster, the 

High-Performance Computing (HPC) environment. The massively parallel HPC enables thermal-

hydraulic code calculations to be conducted much faster than when using other plant simulators. We 

also developed codes dealing with RELAP5-3D by using the INL-developed Risk Analysis and Virtual 

Control Environment (RAVEN) [3]. RAVEN was coupled with RELAP5-3D so that thermal hydraulics 

could be used to streamline the risk analysis. The RAVEN interface simplifies the updating of RELAP5-

3D input data and enables multiple simulations to be run in parallel. RAVEN receives data and 

regenerates input decks for RELAP5-3D. Once the regenerated simulation is complete, RELAP5-3D 

provides data back to RAVEN for post-processing [1][3][4][5]. Post-processing links the thermal-

hydraulic output with time, saving the results in a CSV format for ready use by data analysis software. 

It also opens up the possibility of conducting various analyses in the future by enabling distribution 

samples to be used for uncertainty analysis. 

 

Figure 3: Loop logic for coupling HUNTER and Relap5-3D 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

 
 

In regular RELAP5-3D simulations, the analyst sets every sequential propagation of an initiating event 

prior to running the simulation. We, however, implemented a simulation in this coupling that leaves all 

possibilities open to reflect operator interactions with the plant. In coupling HUNTER with RELAP5-

3D, as briefly described above, the simulation begins with the plant parameters being monitored by the 

virtual operator, who follows procedure and performs plant actions in accordance with the plant 

response. The RELAP5-3D simulation runs for the time duration necessitated by the operator activities 

outlined in the procedures. It then pauses, updates the RELAP5-3D model, restarts, and continues on 

as before. A detailed description of this coupling is given below. 

 

If the target task is an action, it can be terminated immediately by satisfying the procedure's criteria 

after the operator performs the action. If, on the other hand, the operator manipulation involves 

performing an action to a certain point (e.g., opening a valve to a certain level), this necessitates 

iteratively performing the action and then checking the resulting parameter value until the appropriate 

criterion is satisfied. It should not be decided a priori that the operator will always complete the task 

successfully. For example, another task could distract the operator from successfully completing the 

task, or the operator may fail to actuate the valve properly over time. Coupling between HUNTER and 

RELAP5-3D should be performed step by step, rather than assuming the best human outcome. 

 

The coupling between HUNTER and the Environment module is shown as a flow chart in Figure 3. 

First, HUNTER receives information for each procedure step. The procedure specifies three possible 

activities relative to the Environment module: 

• Read a particular parameter from the RELAP5-3D plant model. 

• Change a characteristic (e.g., open a valve) in the RELAP5-3D plant model. 

• Wait a particular interval, during which no interaction occurs between the plant model and 

HUNTER. 

 

HUNTER checks the operator manipulation, as well as which parameter and component are the targets, 

through this file. Next, RAVEN (as controlled by HUNTER) performs a mapping to the RELAP5-3D 

input deck in order to apply target information for the plant simulations. RAVEN connects each 

component and parameter to the card number defined in the RELAP5-3D input deck. Third, RAVEN 

updates the connected RELAP5-3D input deck card and runs the simulation. Lastly, HUNTER 

compares the derived results against the criteria given in the procedure. If the criteria are not met, 
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HUNTER increases the simulation clock and reruns the simulation. This synchronous back and forth is 

called loop logic. 

 

3.1. Code Structure 

 

We developed RAVEN and the RELAP code to accommodate the overall coupling. Scripts were 

developed to conduct the various tasks involved, such as to read the procedure CSV file provided by 

HUNTER, map procedure information and RELAP5-3D, and write and edit the RAVEN input files. 

Moreover, we composed a script to monitor the RELAP5-3D simulation, one to read the simulation 

results, and one that updates the simulation clock to re-run the simulation if the criteria are not met. 

 

Mapping translates the component or plant parameters received from the procedure into RELAP5-3D 

information. This is completed by implementing operator manipulations in the RELAP5-3D model 

through procedure analysis, then linking the scripts with procedure information. Once the target plant 

is determined, analysts can easily add one-by-one mapping through the trip cards and component card 

in the RELAP5-3D input deck. The HUNTER Environment module finds and reads specific procedural 

information by using the parameters defined in the procedure file. When reading RELAP5-3D results, 

it finds and reads the appropriate parameters and times suitable for loop logic, as shown in Figure 3. In 

addition, we developed subroutines that update the XML file to modify and create the RAVEN input 

file. This changes the plant variables by adjusting the RELAP5-3D input deck. There is also a feature 

that accounts for operator time to complete tasks. Comparison of more than two plant parameters is 

accomplished in the library subroutines. Finally, since we cannot predict the required simulation time 

of RELAP5-3D, hold logic is implemented to synchronize HUNTER with RELAP5-3D. When the plant 

simulation result is saved as a CSV file, this file can be found and read. File generation using a server 

is performed in INL’s HPC environment; however, we developed the coupling between both HPC and 

a computer running a local copy of RELAP5-3D. In the script for monitoring a typical desktop computer, 

we used the Watchdog function, a Python API (application programming interface), and a shell utility 

to monitor file system events in order to detect every file and directory generated, modified, or deleted. 

The information is therefore exchanged through files such as input decks for RELAP5-3D and CSV 

parameter logs for HUNTER. 

 

4.1. Proof-of-Concept Coupling Demonstration  

4.1.1 Overview 

 

To simulate the two-way coupling between the virtual operator in HUNTER and the plant response in 

RELAP5-3D, we must perform an operator manipulation and then check the plant status. Thus, as with 

the virtual operator, we must know how to imitate actions such as checking plant parameters, confirming 

changes, or waiting for plant parameter changes to reach specific set point. The code can perform plant 

simulation using loop logic to connect HUNTER and RELAP5-3D. To demonstrate this Environment 

module implementation, we present an arbitrary example defined via the following modeling criteria: 

• Include an operator action. 

• Include tasks that control simulations according to plant status, such as virtual operators. 

• Check whether the criteria are met by monitoring two or more parameters simultaneously. 

 

According to the above criteria, the example scenario for this demonstration is defined as follows: 

• Operators shut a main coolant pump in 50 seconds. 

• Operators check the plant parameter changes and confirm their criteria. 

o Criteria for parameter 1 (center core channel temperature): over 629 

o Criteria for parameter 2 (lower plenum mass flow rate): under 818 

 

We assumed that the operator stops the pump, checks the parameter change, checks the specific criteria 

to perform the next procedure task, then moves on to the next task. The RELAP5-3D model used is the 

INL Generic Pressurized Water Reactor, a generic 3-loop Westinghouse pressurized-water reactor 

model. Also, the model simulates SGTR (steam generator tube rupture, tube rupture occurs in 0 
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seconds), but when proceeding with the scenario, arbitrary operator actions independent of the 

procedure or event tree are simulated [6]. 

 

4.1.2 Results of Module Runs 

 

As shown in Figure 4, the information is first read from the procedure when we run the main script 

using Python. This is the step in which procedure information is received from HUNTER. Furthermore, 

the information is mapped directly to the Relap5-3D input deck and can be checked by analysts. 

Moreover, it generates the RAVEN input file by using the mapped information, then runs RAVEN. In 

INL HPC, RAVEN executes Relap5-3D by sending jobs to the server through Q-sub. When Relap5-

3D completes the plant simulation calculation, it generates a CSV file. The input deck also determines 

which variable will be printed. Therefore, analysts must either insert the parameters of interest into the 

RAVEN input file for application to the Relap5-3D input deck, or otherwise pre-calibrate the Relap5-

3D input deck. 

 

Figure 4: Screenshot of running codes (1/4) 

 
 

Figure 5: Screenshot of running codes (2/4) 

 
 

Next, it reads the generated Relap5-3D result file and finds those criteria that are designated as flags in 

the procedure file. Figure 5 shows two target parameters and a time variable being read. As mentioned, 

the frequency of the parameter is printed at 2.5-second intervals, as defined in the Relap5-3D input. 

Next comes the process of checking whether the variable of interest satisfies the criteria. If not, it 
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generates a False result and does not exit the loop. Furthermore, the simulation time must be increased 

to check the parameter change, so the simulation time is automatically updated and the plant simulation 

conducted once again. In addition, as shown in Figure 5, the Relap5-3D file is copied to the working 

directory for repeated calculation in the loop. It deletes the file in the existing folder as well. 

 

Figure 6. Screenshot of running codes (3/4) 

 
 

In this arbitrary example, we increase the simulation time by 10 seconds. Figure 6 shows the new 

simulation time as 150 seconds. Next, we rerun RAVEN in order to run Relap5-3D. Just as though 

restarting from the loop, it modifies the RAVEN input file, simultaneously changes the plant simulation, 

and monitors the completion of the simulation to read the result file. Afterward, the result is compared 

with the criteria once again, and if the target plant parameter in the loop satisfies the criteria, it exits the 

loop, ends the calculation, and saves the result. This process is shown in Figure 7 as well. 

 

Figure 7. Screenshot of running codes (4/4) 

 
 

Coupling between HUNTER and RELAP5-3D was made successful by using RAVEN as an 

intermediary, as shown in the above figure. The example demonstrates how the virtual operator drives 

the plant via controls and monitoring. This process is simply scaled up when following a larger 

procedure, such as that for the SGTR scenario. 

 

5. CONCLUSION 
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As described in the above proof of concept, we successfully coupled HUNTER with RELAP5-3D. To 

represent the virtual operators, we developed an iterative loop logic for application in the simulations. 

It involves reading procedures, writing Relap5-3D input deck with Raven, running simulations, 

modifying the input, and then re-running the simulations. However, there are two limitations to this 

approach. First, with a RELAP5-3D plant model we can simulate a variety of plants, but a RELAP5-

3D code implementation is needed to represent operator manipulations accordingly. For operator 

manipulations, this requires an additional effort by the analyst to instantiate the initiating event in 

RELAP5-3D. Most RELAP5-3D models are simplified codes that do not represent the full spectrum of 

human actions. Second, for human error probability calculations or performance shaping factor 

determinations in HUNTER, we need an additional code for deriving the necessary plant information 

that exists outside the plant response data. In many cases, a variable such as available time should be 

derived. Available time is a function of how long an action takes relative to the amount of time available 

for performing that action before plant conditions begin to degrade. Available time may change 

according to the plant response after an operator manipulation is performed. Therefore, both simple 

plant simulation and multiple simulations through sampling must be performed simultaneously to 

determine the relevant variables. The duration of operator actions depends on the plant evolution, which 

is in turn a product of the operator actions. To derive available time, additional batch mode coupling 

should be developed for HUNTER, RAVEN, and RELAP5-3D. 

 

One challenge in using RELAP5-3D is the need for synchronous coupling between the virtual operator 

in HUNTER and the thermal hydraulics in RELAP5-3D. This coupling has been demonstrated but 

represents the linking of several different pieces of code to achieve this functionality. For example, 

RELAP5-3D is fundamentally designed to run in batch mode, independent of starting and stopping. 

HUNTER makes use of RAVEN as a mediator, whereby RAVEN creates input decks for RELAP5-3D 

and outputs log files for use by HUNTER. RAVEN handles the starting and stopping, employing reruns 

with new configurations in response to operator manipulations. This is accomplished against the 

backdrop of RELAP5-3D being run by RAVEN in Monte Carlo repetitions according to a predefined 

distribution at the time of initiation. Such functionality is duplicative to the simulation run features built 

into HUNTER. RELAP5-3D exists as variants optimized for real-time dynamics with operator inputs. 

For example, RELAP5-HD from GSE Systems, a simulator vendor, provides real-time interactivity 

with RELAP5-3D [8]. RELAP5-HD provides the backend for synchronizing plant parameters with real 

human operator actions, thus affording a full-scope simulator for training purposes. A wide variety of 

human actions are included as initiating events in the plant models. Additionally, recent simulator 

implementations feature APIs to enable real-time monitoring and control interjection from third-party 

software applications (e.g., human-machine interfaces) or, by extension, software such as HUNTER. 

The fact that such functionality is not native to RELAP5-3D complicates efforts to model realistic 

human-centered scenarios in HUNTER. Future work should seek to introduce such functionality into 

the HUNTER-RELAP5-3D interface, or to couple HUNTER specifically with software simulations 

such as RELAP5-HD. Tools such as RELAP5-HD may be more readily available at utilities where 

HRA is performed, enabling easier adoption of HUNTER in industry. A trade-off in using a customized 

version of RELAP5-3D that is optimized for human integration is that the temporal synchronization 

may preclude faster-than-real-time analysis. Future work will strive to determine the best method for 

coupling HUNTER to the Environment module and provide guidance for real-time vs. faster-than-real-

time applications of dynamic HRA. 
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