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Abstract: Over the years, the nuclear fleet has relied on labor-intensive, time-consuming preventive 
maintenance programs, driving up operation and maintenance costs to achieve high capacity factors. 
The primary objective of the research presented in this paper is to develop scalable technologies 
deployable across plant assets and the nuclear fleet in order to achieve a risk-informed predictive 
maintenance (PdM) strategy at commercial nuclear power plants (NPPs). We developed a well-
constructed risk-informed PdM approach for an identified plant asset in this research, taking advantage 
of advancements in data analytics, machine learning, artificial intelligence, risk models, and 
visualization. The demonstration and deployment of these technologies would allow commercial NPPs 
to reliably transition from the current labor-intensive preventive maintenance program to a technology-
driven PdM program, eliminating unnecessary operation and maintenance costs. The research and 
development approach presented in the paper is being developed as part of a collaborative research 
effort between Idaho National Laboratory and Public Service Enterprise Group Nuclear LLC. This 
paper presents a scalable risk-informed predictive maintenance framework with a brief discussion on 
scalable predictive modeling approach using the federate-transfer learning approach. The paper 
describes component to plant-level risk modeling based on a three-state Markov chain and its 
integration with circulating water system health information using the proportional hazard modeling 
approach. The state probabilities obtained are used to estimate the profit as part of the economic model. 
The paper also outlines the development of a user-centric visualization application to ensure the right 
information is available to the right person, in the right format, and at the right time. The research 
outcomes presented in this paper lay the foundation and provide a much-needed technical basis to start 
focusing on additional needs, such as the explainability and trustworthiness of machine-learning- and 
artificial-intelligence-based technologies as part of future research. 
 
 
1. INTRODUCTION 
 
Sustaining the value of the United States (U.S.) nuclear power fleet can be achieved through cost-
effective, reliable operation, managing obsolescence, and diversifying revenue. Many of the currently 
operating plants in the U.S. are in their first period of extended operations (i.e., 40-60 years), and several 
of them have already received or have applied for subsequent license renewal (60-80 years). The current 
fleet’s long-term safe and economical operation can be achieved by developing, demonstrating, and 
deploying technologies; ensuring the reliable operation, effective maintenance, and monitoring of vital 
structures, systems, and components; and presenting viable economics in competing energy market. 
 
Most of the operating costs of the current fleet are due to high operation and maintenance (O&M) costs. 
There is an immediate need to reduce the O&M costs associated with the current domestic fleet of 
nuclear power plants (NPPs). Operating in a market selling wholesale electricity for $22/MWh becomes 
unsustainable with current (as of 2019) total average operating costs for the entire fleet at $30.42/MWh 
(Figure 1). Prices for producing energy with nuclear plants have reduced since 2015 (Figure 1) but 
remain high compared to other energy sources. In addition, the global energy market trends are heavily 
driven by the abundant reserves of natural gas and declining costs of renewable energy systems. 
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Figure 1. Total average operating costs ($/MWhr) for different energy sources. 

 
 
Nuclear O&M costs involve manually performed preventive maintenance (PM) activities, such as the 
inspection, calibration, testing, and maintenance of plant assets at periodic frequencies, along with the 
time-based replacement of assets, irrespective of condition. This has resulted in a costly, labor-centric 
business model. Fortunately, technologies exist (advanced sensor, data analytics, and risk assessment 
methodologies) that enable the transition to a technology-centric business model that will significantly 
reduce PM activities. Part of the transition is to a technology-driven predictive maintenance (PdM) 
program (see Figure 2), thus eliminating unnecessary O&M costs. 
 

Figure 2. A risk-informed PdM strategy. 

 
 

The risk-informed PdM strategy (Figure 2) [1] includes advanced data analytics, predictive analytics, 
risk modeling economic modeling, and visualization. The framework to scale the risk-informed PdM 
strategy (Figure 3) [2], presented in this paper was developed and demonstrated on a circulating-water 
system (CWS) at the Public Service Enterprise Group Nuclear LLC (PSEG) owned NPPs. Specifically, 
this paper focuses on methodology and visualization elements of the framework. The CWS, an 
important non-safety-related system, is omnipresent across the fleet of existing light-water reactors 
(LWRs). Traditionally, most PdM approaches in the nuclear industry are developed at the component 
level [3–6]. These approaches [3–6] are not holistic and present challenges when scaled to the system 
or plant level. Furthermore, they prevent NPP sites from reaping the maximum benefits in terms of 
automation, optimization of labor and material resources, cost savings, etc. The research approach 
presented in this paper addresses these limitations. 
 
In this paper, Section 2 presents the framework to scale the risk-informed PdM strategy. Section 3 
briefly describes the CWS and data collected. The scalable predictive model developed using CWS data 
is based on a federated-transfer learning (FTL) approach. Section 4 talks about risk and economic 
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models. Section 5 briefly discusses the user-centric visualization schema for decision-making. Finally, 
conclusions and path forward are presented in Section 6. 
 
2. FRAMEWORK TO SCALE RISK-INFORMED PREDICTIVE MAINTENANCE 
STRATEGY 
 
Optimization and automation of maintenance activities can be accomplished by transitioning to a 
risk-informed PdM strategy [1] and is an essential part of the industry’s strategy for modernizing and 
sustaining the existing fleet of operating LWRs. The implementation of technologies to ensure 
scalability across plant systems and the nuclear fleet is critical to the deployment of a risk-informed 
PdM strategy at commercial NPPs [2]. There are many ways to define and understand scalability but 
for our purposes, scalability is expanding the capabilities of a target entity to meet current and future 
application-specific requirements. Here entity refers to the elements of the suggested framework in 
Figure 3: data generation and governance, methodologies, visualization, infrastructure, and 
organization alignment. The following subsections take a deeper look at these elements (except 
organizational alignment). All framework elements must be reliable, acceptable, maintainable, and 
secure. In addition, each element should be flexible, modular, a certain level of redundant, and simple. 
 

Figure 3. A framework to scale risk-informed PdM strategy. 

 

2.1. Data Generation and Governance 
 
Data is the engine of any PdM program. As mentioned in Reference [6], PSEG’s two plants sites, Salem 
and Hope Creek NPPs collects a wide range of data on the CWS, including data from recently installed 
wireless vibration sensor nodes. In addition to the volume of data, the collection and storage of 
heterogeneous data, each having its own unique data structure, presents a challenge. Therefore, there 
must be a technology in place to collect, process, prepare and structure the massive amounts of data that 
will be stored in the organization’s ecosystem. Once the technology is in place, it is important to develop 
and implement data governance for managing the data through its lifecycle. The data governance must 
incorporate data security, network security policies, access limitations to prevent unauthorized users, 
and ongoing processes to detect vulnerabilities. The technology supporting data generation must follow 
a standard. This is one of the ways to ensure its universal acceptance across plant systems and the 
nuclear fleet. 
 
2.2. Methodologies 
 
Once data is streaming in from plant assets, machine learning (ML) and artificial intelligence (AI) can 
be applied in real time to learn data patterns and develop predictive models. There are many ML and 
AI algorithms, and it is important to select the right algorithms to perform diagnosis (early detection of 
degradation) and prognosis (prediction of the future state of the plant asset based on the diagnosis and 
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operating conditions). ML and AI algorithm selection depends on the application and data types. For 
example, the ML and AI algorithms used to develop predictive analytics for the CWS in PSEG-owned 
plants might not be directly applicable to their service water or feedwater and condensate systems. It is 
important to address this issue to ensure the scalability of developed methodologies. A database of ML 
and AI algorithms will enable plant sites to choose an algorithm based on the application, data type, 
and performance metric of interest (e.g., accuracy, execution time, or ease of implementation). On a 
similar note, the development of risk models (with a focus on either safety or generation) depends on 
the classification of the plant asset (safety versus non-safety), failure mode, and significance of its 
contribution to the top event (as determined from cut sets in a probabilistic risk assessment). To ensure 
correctness, the risk assessment tool must be comprehensive and capable of incorporating dynamic 
information related to the plant asset age and degradation. 
 
2.3. Visualization 
 
The risk-informed PdM outcomes allow plant operators to make effective decisions. Visualization tools 
will enable plant operators and monitoring and diagnostic center experts to make informed decisions 
quickly and efficiently. In the nuclear industry, visualization has historically been restricted to standard 
static conventional methods (e.g., tables, histograms, timelines, Venn diagrams, frequency spectrum, 
power spectral density). There is a growing emphasis on presenting information through interactive 
visualizations in a readily digestible format. There is no existing standard or style guide for the 
visualization of risk-informed predictive analytics in the nuclear industry. Therefore, it is necessary to 
develop interactive visualization techniques and lay the groundwork to standardize information 
visualization techniques to benefit plant operators. The developed interactive visualizations and 
standards must be consistent across different platforms (i.e., monitor displays to handheld displays) to 
ensure a smooth user experience. 
 
2.4. Infrastructure 
 
Given the technologies to collect, process, and store data are in place to support development of 
predictive analytics and visualization, it is important for plant owners to ensure they have a platform in 
place to integrate them. For example, to avoid delays, the outcomes of predictive analytics should be 
integrated with enterprise resource planning to ensure work orders and work packages are issued 
automatically, the needed parts are secured in timely manner, and plant personnel responsible for 
execution of the work package are informed automatically. The chosen platform must be agile and open. 
To ensure this is the case, a detailed requirements document must be developed, including functional 
requirements, external interfaces (people, system hardware, and additional software), nonfunctional 
requirements (speed, availability, security, communication protocol), and use cases for all new user 
interfaces. To ensure the platform works seamlessly across plant systems, a secure and safe 
communication infrastructure must exist. The platform must be dynamically supported and able to 
promptly incorporate software and technological advancements. 
 
2.5. Organization Alignment 
 
The transition from an established PM program to a new risk-informed PdM program triggers culture 
change, one of the most challenging hurdles to overcome. For a smooth transition, organizations must 
communicate early and clearly their intentions throughout the organization for honest feedback. 
 
3. PREDICTIVE MODELING USING FEDERATED-TRANSFER LEARNING 
APPROACH 
 
In this section, we present a brief description of predictive modeling using an FTL approach. For details, 
refer to Reference [7]. The FTL approach allows predictive models to be scalable across plant assets 
and the fleet. The data from the CWS is used to develop the FTL-based predictive models. 
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3.1. Circulating-Water System 
 
To develop initial scalable methods and models, we selected the CWS at two NPPs as the identified 
plant asset. The CWS is an important non-safety-related system. As the heat sink for the main steam 
turbine and associated auxiliaries, the CWSs at PSEG-owned plants maximize steam power cycle 
efficiency [8]. A CWS consists of [8]: 

• Vertical, motor-driven circulating pumps (e.g., “circulators”), each with an associated fixed 
trash rack and traveling screen at the pump intake to filter out debris and marine life 

• Main condenser (tube side only) 
• Condenser waterbox air removal system 
• Circulating-water sampling system 
• Screen wash system 
• Necessary piping, valves, instrumentation, and controls to support system operation. 

 
Data collected from the plant system contain metadata related to plant processes, maintenance logs, 
operator logs, and condenser information. Typical plant process data relevant to the CWS include gross 
load, river inlet and outlet temperatures and motor-related information, such as on-off duration and 
status, motor current, and temperature measurements at the motor stator and bearings. Condenser data 
include condenser backpressure, exhaust temperature, exhaust hood temperature, condensate hotwell 
temperature, and vacuum pump status. Additional data sets include river level, inlet, and outlet, operator 
actions, discharge header pressure, and ambient air temperature. 
 
3.2. Federated-Transfer Learning 
 
This section describes a learning approach to scale ML models developed at a component level to the 
system level, and even to the plant-level, that can be leveraged across the fleet of LWRs. Here we 
discuss two approaches, federated learning (FL) [9] and transfer learning (TL) [10], that focus on: (1) 
developing an individual component-level model using component-specific available data sources, (2) 
consolidating the knowledge gained from individual component models for a given plant asset into a 
master model, (3) using the master model for diagnostic and prognostic estimations of the entire system, 
and (4) applying (i.e., transferring) the master model for diagnostic and prognostic estimations of a 
similar plant system at either the same or different plant site. The FTL approach is schematically shown 
in Figure 4. 

Figure 4. A schematic representation of the FTL approach. 

 
 
FL, a collaborative learning method where many clients (e.g., circulating water pumps [CWPs] as seen 
in Figure 4) collaboratively train a model under the orchestration of a central controller without 
exchanging a user’s original data. FL enables focused data collection and minimization by reducing 
systematic privacy risks and costs resulting from traditional, centralized ML. The FL process is typically 

TRANSFER LEARNINGFEDERATED LEARNING

Central Server
Continuous 
Update of 

Aggregated 
Machine Learning 

Model

Aggregated Machine 
Learning Model

Updated Master Machine 
Learning Model

Plant Site 1 Plant Site 2

Un
it 

1

Un
it 

2

Aggregation of Individual 
Models to Generate a 
Master Model

... ......

...

Machine Learning Model



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

driven by a model engineer developing an AI model for a particular application. A typical FL workflow 
and training process is: 
• Problem identification: The model engineer identifies the problem that can be solved with FL. 
• Asset instrumentation: Clients are instrumented to store their local data for training. 
• Federated model training: Multiple federated tasks are started to train different model variations 

with different hyperparameters. 
• Aggregation: The central controller aggregates model updates from all the clients. 
• Model evaluation and update: After the tasks are sufficiently trained, the models are analyzed 

and good candidates are selected by the central controller or server. Analysis may include metrics 
computed on standard dataset in the central controller. Aggregating can also be done by taking the 
average of hyperparameters. For example, taking the average of bias and weights of multiple neural 
networks at each layer, or combining support vectors (SVs) of multiple support vector machine 
models and redistributing them to each client to retrain their model using SVs. 

• Deployment: Once the models are selected, a hybrid model is selected and sent back to the clients 
for the deployment. 

 
Training and building a complete AI model could be cumbersome under circumstances such as limited 
access to data, limited computational capacity, and lack of time to train a sophisticated AI model. Hence, 
to enhance model training and performance, TL is a mechanism where an already trained model solves 
either a classification or regression task in another or related domain, with or without further model 
training. In some cases, the model needs additional training to optimize the hyperparameters, and this 
can be done using a small amount of training data from the task it is transferred to. The main advantages 
of this approach are that the training time is reduced significantly, and the approach requires very little 
or no training data. Transferring a trained model means sharing hyperparameters, such as the bias and 
weights of different layers in neural networks, SVs in support vector machine models. The details on 
the application of the FTL approach to PSEG-owned plants CWS are presented in Reference [7]. 
 
4. RISK AND ECONOMIC MODELING 
 
This section presents details on the risk, proportional hazard, and economic models. The three states of 
the Markov chain risk model are based on scale (i.e., component, state, or plant level). The proportional 
hazard model is used to integrate prognostic model outputs with the Markov chain risk model via the 
state transition rate parameter, 𝜆. The integration informs the estimation of each state probability, which 
then can estimate the profit based on the CWS state of health. 
 
4.1. Component-Level Three-State Markov Model 
 
The component-level three-state Markov chain model of a CWS motor and pump (M&P) set assumes 
that most maintenance performed on the set (or any plant asset) is divided into two categories: corrective 
and preventive. Corrective maintenance (CM), sometimes referred to as repairs, occurs when a 
component randomly fails during operation or standby. In such situations, CM is necessary for returning 
the component to an operational state. On the other hand, PM is normally performed when a component 
is operational but requires some service. Often, PM is performed when the component is online; 
however, PM may require power derating (i.e., the power generation is between zero and the maximum 
value) the unit. In addition, PM is mostly performed at fixed time frequencies (with some variance due 
to operating schedules). A transition diagram of the three-state model is shown in Figure 5. The three-
state model is completely defined by four parameters: 𝜆 represents the failure and degradation rate, 𝜇 
represents the CM rate, 𝜂 represents the PM scheduling rate, and 𝜈 represents the PM rate and its initial 
conditions. 
 
4.2. Plant-Level Three-State Markov Model 
 
Generally, a plant’s CWS has more than one M&P set. If a plant or unit has even a single CWP 
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Figure 5. Transition diagram for the component-level three-state model. 

 
 
unavailable, its power generation is impacted (i.e., derated); if a plant or unit has a certain number of 
CWPs unavailable at a given time, it could lead to a trip (i.e., the power generation falls to zero). This 
generalization of the Markov chain model for the plant and unit level is obtained by considering a three-
state Markov model in which each node represents the state of the whole plant and unit under different 
conditions, as shown in Figure 6. In this model (Figure 6), 𝑆! is the fully operational state in which all 
plant systems are available and running, with no loss of power generation. 𝑆" is the derated state in 
which some loss in power generation occurs due to the unavailability of one or more plant systems 
(including CWS M&P sets). 𝑆" is the trip state in which the plant and unit generation goes to zero. 𝜆" 
is the compound rate of transferring from the operational state to a derated state. 𝜆# is the hourly rate 
of transferring from a derated state to the trip state. Each downtime rate (𝜆"  or 𝜆# ) is compound, 
meaning that it includes a superposition of transition rates from several plant subsystems. 𝜇"  and 𝜇# 
are maintenance rates that reflect how quickly the plant can recover from a derated or tripped state, 
respectively. The maintenance rates 𝜇" and 𝜇#  are identical, can be represented as 𝜇 without any loss 
of information, and do not depend on the plant’s state. Note that, for the model in Figure 6, an additional 
rate covering the direct transition from 𝑆# to 𝑆! is introduced to account for the possibility of different 
maintenance scenarios at different utilities. The parameter 𝑝 is the probability of the utility choosing to 
go online in a derated state as soon as some plant systems become partially available, while 1 − 𝑝 is 
the probability that the utility will wait to go online until the utility is in a fully operational state in 
which all plant systems are available. Both recovery scenarios are possible, and this model provides 
additional scalability to specific utility maintenance practices. While the transition from 𝑆# to 𝑆! delays 
the recovery until fully operational, it provides a safety margin in case a plant system goes down again. 
Due to the additional edge connecting 𝑆# and 𝑆!, this mixed-scenario model is not a birth-death model, 
and no analytical solution is available for steady-state probabilities. 
 
4.3. Parameter Estimation 
 
For the plant-level Markov model, this section estimates the parameters 𝜆" , 𝜆# , 𝜇# , and 𝜇" . The 
parameters for the component-level Markov model were estimated using the work order data, along 
with some information from the CWS plant process data (i.e., CWP status and gross load). For details 
on the component-level Markov model parameter estimation, see Reference [6]. In this research, the 
parameters of the plant-level Markov model were estimated solely from the CWS process data. It is 
important to note here that derates and trips of the plant or unit as a result of other plant systems are not 
used in the parameter estimation. However, it is a straightforward extension of the presented parameter 
estimation approach. 
 
The CWP status, the time instances in which a CWP is unavailable, the number of unavailable 
CWPs, and the duration of unavailability are all used for parameter estimation. The number of 
unavailable CWPs is used to estimate the transition rate from the operational state, 𝑆!, to the 
derate state, 𝑆", and and from the derate state, 𝑆", to the trip state, 𝑆#. The duration of unavailability 
is used to estimate maintenance rates and also in the profit calculation. The steps involved in extracting 
transition and maintenance rates for the plant-level Markov model for both the Salem and Hope Creek 
NPPs—using their respective CWS information—are presented as follows: 
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Figure 6. Transition diagram for the component-level three-state model. 

 
 
1. From the CWS plant process data on both the Salem and Hope Creek NPPs, the CWP status and 

gross load data are extracted after filtering out the instances in which the gross load equals zero. A 
gross load of zero indicates that the plant or unit has either tripped or is in an outage. A non-zero 
gross load indicates that either the plant or unit is in a derated or fully operational state. 

2. From the filtered data, the number of CWPs that were down at each time instance is calculated. 

3. For derate cases, the instances when CWPs were unavailable are determined (along with their 
duration) and used to estimate 𝜆" and 𝜇". For each Salem unit, the number of unavailable CWPs 
ranges from one to three, and for the Hope Creek NPP, it ranges from one to two. 

 𝜆" =
$
%
∑ &'()*(&,%-	/'0)112!)

#'*45	&,%	6()	7'(62! 	 (1) 

 

 𝜇" =	
$
%
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4. Also, the trip parameter, 𝜆#, is calculated as: 

 𝜆# =	
$
%
&'()*(&,%-	/'0)112")
#'*45	&,%	6()	7'(6

	 (3) 

In Equations (1–3), 𝑃 is the total number of CWPs in a plant and unit. For each Salem unit, 𝑃 = 6 and 
𝐾" = {1,2,3} for the derated state. For 𝐾# = 4, the Salem unit is in a trip state. For the Hope Creek 
NPP, 𝑃 = 4 and 𝐾" = {1,2} for the derated state. For 𝐾# = 3, the Hope Creek plant is in a trip state. 
 
To estimate μ, we assumed a minimum of a 5% drop in the gross load compared to its maximum value 
when the plant is fully operational. Thus, accounting for both CWS and other system maintenances, 𝜇 
is calculated as follows, using the gross load: 
 

𝜇 = 	"(64*8')(!9:6'--	5'4/9;<%∗?@A(:6'--	5'4/)	)	
#'*45	'BC64*8')45	/(64*8')	'D	B54)*

	  (4) 

 
For the plant-level Markov model, the following system of differential equations are solved with the 
normalization condition, 
 

𝑑𝑝E!
𝑑𝑡

= 𝜆/ ∙ 𝑝E# + (𝜇# ∙ 𝑝) ∙ 𝑝E" − 𝜇" ∙ 𝑝E! − 𝜆# ∙ 𝑝E! 

𝑑𝑝E#
𝑑𝑡

= 𝜇" ∙ 𝑝E! + (𝜇# ∙ (1 − 𝑝)) ∙ 𝑝E" − 𝜆" ∙ 𝑝E# 
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= 𝜆# ∙ 𝑝E! − (𝜇# ∙ 𝑝) ∙ 𝑝E" − (𝜇# ∙ (1 − 𝑝)) ∙ 𝑝E"   (5) 

𝑝E#(𝑡) + 𝑝E!(𝑡) + 𝑝E"(𝑡) = 1 

 The solution of Equation (5) results in steady-state probabilities: 

 𝑝E# =
$

$F%!&!
F%!∙%"&!∙&"

; 𝑝E! =
G!
H!
∙ 	𝑝E#; 𝑝E" =

G!
H!
∙ 𝑝E! (6) 

where 𝑝E#, 𝑝E!, and 𝑝E" are probabilities of the corresponding states, 𝑆!, 𝑆", and 𝑆#, respectively. The 
calculated values of 𝜆" , 𝜆# , and 𝜇 for the Salem and Hope Creek NPPs are shown in Table 1. By 
substituting the values in Table 1 in Equation (6), will provide the steady-state probabilities, also 
presented in Table 1. 

Table 1. Estimated transition rates and steady-state probabilities for Salem Units 1 and 2 and 
the Hope Creek Plant. 

Parameter 𝜆"  𝜆#  𝜇 𝑝E( 𝑝E! 𝑝E" 
Salem Unit 1 0.002767 7.30E-06 0.0439 0.940737 0.059257 5.27E-06 
Salem Unit 2 0.00149 2.39E-05 0.0355 0.959764 0.040222 1.36E-05 
Hope Creek 0.000283 0.000141 0.0910 0.9969021 0.003095 2.52E-06 

 
4.4. Economic Model 
 
Given the stationary transition rates and probabilities of different states (interpreted as a percentage of 
time spent in a given state), the hourly profit is estimated for different 𝑝 values by using the plant-level 
model (Figure 6) for a 1,200 MWe unit. The hourly profit is calculated via the following formulation: 
 
𝐻𝑜𝑢𝑟𝑙𝑦	𝑃𝑟𝑜𝑓𝑖𝑡 = 𝐻𝑜𝑢𝑟𝑙𝑦	𝑅𝑒𝑣𝑒𝑛𝑢𝑒	𝑎𝑡	𝐹𝑢𝑙𝑙	𝑃𝑜𝑤𝑒𝑟 ∙ 𝑝E# − [(𝐿𝑅 + 𝐹𝑅$ +𝑀𝐶)𝑇$ +
(𝐿𝑅 + 𝐹𝑅I +𝑀𝐶)𝑇I + 𝕀 ∙ (𝐿𝑅 + 𝐹𝑅J +𝑀𝐶)𝑇J] ∙ 𝑝E! − (𝐿𝑅 + 𝐻𝑜𝑢𝑟𝑙𝑦	𝑅𝑒𝑣𝑒𝑛𝑢𝑒	𝑎𝑡	𝐹𝑢𝑙𝑙	𝑃𝑜𝑤𝑒𝑟 +
𝑀𝐶) ∙ 𝑝E"  (15) 

 
where 𝐹𝑅$, 𝐹𝑅I, and 𝐹𝑅J represent the hourly foregone revenue whenever 1–3 CWPs are unavailable, 
respectively. 𝐿𝑅 is the hourly labor rate (industry average value is used), and 𝑀𝐶 is the hourly cost of 
materials (a representative cost value is used). 𝑇$, 𝑇I, and 𝑇J are the proportions of time in which 1–3 
CWPs are unavailable, respectively, out of the total number of run hours at the time of hourly profit 
estimation. The indicator 𝕀 = 0	is for the Hope Creek NPP, and 𝕀 = 1 is for the Salem NPP. The hourly 
profit equation reflects the fact that the derated state is compound with possibly 1–3 CWPs unavailable. 
The 𝑇$, 𝑇I, and 𝑇J values are obtained from operational data for both the Salem and Hope Creek NPPs. 
The results of applying the Markov chain model, along with the corresponding benefits to the Salem 
and Hope Creek NPPs, are shown in Table 2 for different 𝑝 values. The tripped state is also compound; 
however, the loss in the tripped state is assumed identical, as the plant is offline regardless of how many 
CWS M&P sets are down. Additionally, the cost of maintenance in this case is small compared to the 
hourly foregone revenue. 
 
Analysis of Table 2 reveals that the highest hourly profit for all three units is achieved for 𝑝 = 0 (in 
other words, going from the tripped state directly to the fully operational state is the most economical 
strategy). The Hope Creek NPP has the highest hourly profit, due to featuring the lowest transition rate 
to the derated state, 𝜆", and also due to having the highest maintenance rate, 𝜇. For the currently used 
model, we assumed that 𝜇 = 𝜇" = 𝜇# —namely, that the maintenance rates are the same when 
transitioning from tripped or derated states. Also, due to lower downtime rates and higher maintenance 
rates, the Hope Creek NPP has the highest probability of being in a fully operational state for all three 
values of the parameter 𝑝. 
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Table 2. Stable probabilities of different states and hourly profit values for Markov chain 
models of different units for different 𝒑 values. 

 𝑝 = 0 𝑝 = 0.5 𝑝 = 1 
Salem 
Unit 1 

Salem 
Unit 2 

Hope 
Creek 

Salem 
Unit 1 

Salem 
Unit 2 

Hope 
Creek 

Salem 
Unit 1 

Salem 
Unit 2 

Hope 
Creek 

Profit, 
$/hour 

115,619 128,702 154,231 115,616 128,694 154,230 115,612 128,685 154,228 

 
 
4.5. Proportional Hazard Model 
 
The Markov chain model, however, can be generalized to time-dependent transition rates—for example, 
to account for equipment degradation. Equipment degradation is normally detected via a degradation 
variable (e.g., temperature, vibration, strain, or a combination thereof). Having obtained the degradation 
variable, a time-dependent transition rate, λ(t), can be represented through a proportional hazard model 
[11]: 
 𝜆(𝑡|𝛽) = 𝜆! ∙ 𝑒K(*) (18) 

where 𝜆! is the stationary downtime rate in the absence of any degradation and 𝛽 is the degradation 
variable that reflects the deterioration of a piece of equipment. The approach details are summarized in 
Reference [2]. In this report, the Salem Unit 1 CWP diffuser degradation determined via the vibration 
data is used to demonstrate how degradation information is captured using the proportional hazard 
model. For details on the CWP diffuser degradation and the computation of the degradation variable, 
𝛽, see Reference [8]. The time evolution of the degradation variable for the CWP diffuser is shown in 
Figure 7a. As seen in Figure 7a, after a time stamp of 200 hours, the degradation variable starts to 
increase, reflecting the deteriorating condition of the CWP. For this report, the proportional hazard 
model was only used for parameter 𝜆". The time evolution of state probabilities and hourly profit for 
the proportional hazard model is shown in Figure 7b. As seen in Figure 7b, the probability of being 
fully operational, 𝑝E#, starts to decrease at a time stamp of around 200 hours. At the same time, the 
probabilities of two other states (i.e., the derated state, 𝑃E!, and the tripped state, 𝑃E") starts to increase, 
reflecting the degradation of a CWS M&P set. The bottom panel in Figure 7b shows the changes in 
expected hourly profit for the unit, revealing that, under this degradation scenario, the unit quickly starts 
losing money unless the degradation process is reversed or fixed. It should be emphasized that, while 
an economic analysis of the system performance is beneficial for foreseeing economic losses and gains, 
it can only be meaningfully applied in the case of long-term operations (e.g., the duration of the fuel 
cycle). 
 
5. USER-CENTRIC VISUALIZATION 
 
To develop the scalable visualization strategy, the research focused on developing a dashboard to 
display ML outputs and their surrounding context, with links to databases containing synthesized and 
raw data on the analyzed components and systems. The overall design and evaluation process occurred 
over two main phases. The first phase entailed an operating experience review and user needs 
assessment, both of which were conducted in an interview format. The operating experience review 
captured existing practices and identified issues pertaining to the system and tools used by the analyst 
to diagnose anomalies to give a maintenance recommendation. The user needs assessment focused on 
capturing their ability to detect anomalies and report them to the relevant decision makers with advanced 
analytics. The information garnered from these two activities was critical to achieving the goal of user-
centered scalability [12], as it fostered an understanding of how the participants processed information 
and made decisions. The second phase focused on evaluation of a dashboard human-machine interface 
(HMI) prototype, which displayed data of a single CWP over a specific six-week period. The choice to 
limit the initial prototype to data from a single component over a narrow slice of time was meant to 
ensure that the designed visualization and ML model proof of principle was acceptable for users and 
that any immediate issues could be flagged prior to increasing the scale and scope of the visualization  
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Figure 7. (a) Time dynamics of degradation variable 𝜷 for Salem Unit 1. (b) Markov model 
probabilities of state and profit for the proportional hazard model for Salem Unit 1. 

(a) (b) 

  
 
and ML model. The following research activities were performed to support the visualization strategy 
development: 
1) Operating experience review—Capture the current concept of operations for monitoring and 

maintenance and identify issues regarding historic operations 
2) User needs assessment—Capture user needs for the envisioned risk-informed PdM HMI system. 
3) Prototype HMI development—Implement a prototype HMI (see Figure 8) based on a specific use-

case scenario by integrating plant-provided data with actual risk-informed PdM algorithm analysis 
4) Prototype HMI evaluation—Examine the usability, effectiveness, and scalability of the prototype 

HMI, employing representative users from the collaborating utility to help refine the design. 
 

Figure 8. An HMI prototype. 
 

 
 
6. CONCLUSION AND PATH FORWARD 
 
The scientific framework and research accomplishments summarized in this paper stem at a high-level 
from developing innovative scalable technological solutions that signify advancements in (1) online 
asset monitoring, (2) data analytics, (3) risk assessment methodologies, and (4) user-centered design 
strategies. These advancements are leading the transformation of the nuclear industry to adopt risk-
informed PdM strategies. This adoption would drive automation, efficiency gains, enhanced reliability 
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of plant systems, and substantial cost savings via dramatic reduction or elimination of unnecessary time-
consuming, labor-intensive maintenance activities, helping nuclear power to achieve economic 
competitiveness in the energy market. Transferring the scalable technologies to the nuclear industry 
would allow them to achieve the greatest return on investment based on economies of scale. The 
scalable risk-informed PdM research lays the foundation for future efforts on the explainability and 
trustworthiness of ML and AI-based technologies. These important, challenging aspects need to be 
addressed prior to adoption by the nuclear industry. 
 
Acknowledgements 
 
This research was made possible through funding from the U.S. Department of Energy (DOE)’s Light 
Water Reactor Sustainability program under the contract DE-AC07-05ID14517. We are grateful to 
Alison Hahn of DOE and Bruce P. Hallbert and Craig A. Primer at Idaho National Laboratory (INL) 
for championing this effort.  
 
References 
 
[1] V. Agarwal. 2018. “Risk-Informed Condition-Based Maintenance Strategy: Research and 

Development Plan.” INL/LTD-18-51448, Rev. 0, Idaho National Laboratory. 
[2] V. Agarwal, K. A. Manjunatha, A. V. Gribok, T. Mortenson, H. Bao, R. Reese, T. Ulrich, R. L. 

Boring, and H. Palas. 2021. “Scalable Technologies Achieving Risk-Informed Condition-Based 
Predictive Maintenance Enhancing the Economic Performance of Operating Nuclear Power 
Plants.” INL/EXT-21-64168, Rev. 0, Idaho National Laboratory. 

[3]  T. McJunkin, V. Agarwal, and N. J. Lybeck. 2016. “Online Monitoring of Induction Motors.” 
INL/EXT-15-36681, Rev. 0, Idaho National Laboratory. https://doi.org/10.2172/1239881. 

[4]  V. Agarwal, N. J. Lybeck, and B. T. Pham. 2014. “Diagnostic and Prognostic Models for 
Generator Step-up Transformers.” INL/EXT-14-33124, Rev. 0, Idaho National Laboratory. 
https://doi.org/10.2172/1166054. 

[5]  V. Agarwal, N. J. Lybeck, L. C. Matacia, and B. T. Pham. 2013. “Demonstration of Online 
Monitoring for Generator Step-up Transformers and Emergency Diesel Generators.” Idaho 
National Laboratory, INL/EXT-13-30155, Rev. 0. https:// doi:10.2172/1064058. 

[6] N. Goss, B. Diggans, F. Lukaczyk, P. Lahoda, J. Hanson, V. Agarwal, A. Gribok. V. Yadav, J. 
A. Smith, N. Lybeck, K. Manjunatha, and H. Palas. 2020. “Integrated Risk-Informed Condition 
Based Maintenance Capability and Automated Platform: Technical Report 1.” PKMJ Technical 
Services, PKM-DOC-20-0013. 

[7]  K. A. Manjunatha, V. Agarwal, and H. Palas, “Federated-Transfer Learning for Scalable 
Condition-based Monitoring of Nuclear Power Plant Components.” in 16th Probabilistic Safety 
Assessment and Management (PSAM) Conference, June 26–July 1, Honolulu, Hawaii, USA. 

[8] V. Agarwal, K. A. Manjunatha, J. A. Smith, A. V. Gribok, V. Yadav, H. Palas, M. Yarlett, N. 
Goss, S. Yurkovich, B. Diggans, N. J. Lybeck, M. Pennington, and N. Zwiryk. 2021. “Machine 
Learning and Economic Models to Enable Risk-Informed Condition Based Maintenance of a 
Nuclear Plant Asset.” INL/EXT-21-61984, Rev. 0, Idaho National Laboratory. 
https://www.osti.gov/servlets/purl/1770866. 

[9] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. 2020. “Federated learning: Challenges, methods, 
and future directions.” IEEE Signal Processing Magazine 37(3): 50–60. 
https://doi.org/10.1109/MSP.2020.2975749. 

[10] J. Brownlee. 2019. “Deep Learning for Computer Vision: Image Classification, Object Detection, 
and Face Recognition in Python.” Machine Learning Mastery. 

[11] R. Nelson. 1995. Probability, Stochastic Processes, and Queueing. Theory, Springer-Verlag. 
https://doi.org/10.1007/978-1-4757-2426-4. 

[12] T. Mortenson. 2021. “User-Centered Scalability: Creating Cross-System Visualizations for 
Nuclear Power Applications,” 12th Nuclear Plant Instrumentation, Control and Human-Machine 
Interface Technologies (NPIC&HMIT), Virtual. 

 
 


