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Abstract: With the objective to reduce greenhouse emissions, efforts have gone to increase the 

integration of alternative fuels such as natural gas in the transportation sector. Using natural gas as 

automobile fuel has several advantages over petrol and diesel: lower costs, better combustion efficiency, 

and the possibility to produce it through a biomass conversion process. Natural gas-based engines have 

become a crucial asset in the South American transportation sector. However, the share of natural-gas 

vehicles in the current vehicle market is still estimated to be below 5%. Therefore, to incentivize 

investments and development in gas engines, it is imperative to ensure their reliability, availability, and 

sustainability; by developing reliability analysis and identifying critical components, probability of 

failure, and better operating conditions. These assessments can later be used to design tailored 

maintenance policies, thus reducing maintenance and operational costs. This paper presents a deep 

learning-based prognostics analysis for gas engines from a fleet of heavy-duty trucks (HDTs) from a 

Colombian company. These HDTs operate under varying demand profiles, including continuous stops 

and runs, long trajectories, steep hills, and frequent load-unload cycles. The dataset presents two 

challenges during the preprocessing stage, namely: the raw dataset does not include any kind of labels, 

and the sensors present an irregular sampling frequency. Thus, the analysis on this paper focuses on 

addressing these preprocessing challenges to later train prognostics models for the remaining useful life 

(RUL) estimation of the gas engine fleet. Results show that by implementing an adequate preprocessing 

methodology, promising results can be obtained for the engine’s RUL. 

1. INTRODUCTION 
 

In last decades, governments have been concerned about establishing regulations that favour the 

reduction of greenhouse gas (GHG) emissions. For instance, the Paris Agreement, ratified by 174 

countries in 2016, aims to substantially reduce global GHG emissions to limit the global temperature 

increase to 2°C above preindustrial levels [1]. One of the alternatives to achieve this environmental 

objective is reducing GHG emissions by 50% by 2050. Nevertheless, this implies a decarbonization 

rate of approximately 5% per year, sustained over 40 years [2].  

 

Particularly, transportation is routinely identified as one of the most difficult sectors to decarbonize, 

while improvements in energy efficiency have been offset by increasing transport volumes and 

distances [3]. In this regard, Chiaramonti & Goumas [4] state that alternative and renewable transport 

fuels, grouping both advanced biofuels and recycled carbon fuels, will be key routes for the 

decarbonization of transports. As an example, the aviation industry has been adopting the Sustainable 

Aviation Fuel (SAF) as an alternative to decarbonization [5], and Since 2008, SAF has powered over 

250,000 flights around the world [6]. Further, the maritime industry directs its efforts to increase the 
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Energy Efficiency Design Index (EEDI) by designing ships using lower-carbon fuels such as biofuels, 

Liquefied Natural Gas (LNG), and hydrogen. On the other hand, the automotive industry has adopted 

similar policies by prompting natural gas as a promising fuel alternative, and even when LNG is 

considered a fossil fuel, different studies have found that diesel engines emitted five times more NOx 

(nitrogen dioxide and nitric oxide) emissions than Natural Gas Vehicles (NGVs) [7], [8].     

 

Considering the need to establish adequate maintenance polices for these engines, there has been an 

interest by the operators, users, and manufacturers of these assets in the execution of prognostics and 

health management (PHM) analysis. PHM seeks to provide accurate information on a system’s state of 

health by means of end-to-end frameworks. Propelled by massive data sets acquired from monitoring 

sensor networks, researchers have lately focused on using data-driven models (DDMs) to analyze 

condition-monitoring data collected from sensor networks. In this regard, several machine learning 

(ML) and deep learning (DL) algorithms have been implemented for diagnostics and prognostics tasks. 

For instance, in diagnostics, convolutional neural networks (CNNs) and their variations have been used 

to locate and estimate the damage in structural systems [9], [10]. On the other hand, prognostics 

frameworks commonly focus on the estimation of the system’s remaining useful life (RUL). Here, 

several ML and DL architectures have been proposed and tested such as long short-term memory 

(LSTM) cells [11], physics-informed neural networks (PINN) [12], however, very few have 

successfully been applied to real life complex systems [13]. Rather, DL-PHM frameworks are usually 

validated on data sets obtained from numerical simulation, or experimental rigs.  Hence, these datasets 

do not contain many of the problems that can be presented in data collected from sensor in real system, 

such as noisy environments, missing data logs, redundant sensors, and external influences. 

 

In this context, this paper presents a DL-based methodology based for fault prognostics for a real 

system. The system consists of a gas engine installed on a Heavy-Duty Truck (HDT) fleet of a 

Colombian company. Particularly, these HDT’s operate under demanding conditions, including 

continuous stops and runs, long trajectories up to the company’s facilities, steep hills, and frequent load-

unload cycles. 

 

The remainder of this paper is structured as follows: Section 2 details the operational and technical 

characteristics of gas engine analyzed during the study. Section 3 presents the methodology proposed 

to predict the failure of a real HDT, describing the main challenges faced when analyzing a real system. 

The obtained results and their discussion are presented in Section 4. Lastly, Section 5 exposes the main 

conclusions and remarks of this study. 
 

2.  GAS ENGINE 
 

In functional terms, a gas engine is a type of internal combustion engine, which is responsible for 

transforming the fuels’ chemical energy into heat, and later into mechanical energy [14]. In this study, 

an in-line gas six-cylinder engine is studied. The engine uses a three-way catalyst which works by 

introducing a catalyst to convert the nitrogen oxides to nitrogen gas and oxygen gas, carbon monoxide 

to carbon oxide, and hydrocarbons to carbon dioxide and water. The engine also has direct injection, 

turbocharged and Stoichiometric cooled Exhaust Gas Recirculation (SEGR). Table 1 presents the main 

technical characteristics of the engine under study. 

 

Table 1: Main technical characteristics of engine gas under study 

Number of cylinders and position 6 cylinders in line 

Maximum power 320 HP 

Maximum torque 1000 LB-FT 

RPM at full power 2200 RPM 

Injection Electronics 

Operating cycles 4 

Fuel type CNG/LNG/RNG 
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Fuel autonomy 240 Km 

Fuel efficiency 1.75 Km/M3 

 

Furthermore, according to the manufacturer, this kind of commercial engine has been used in a variety 

of vehicle applications as school buses, urban transit, vocational and medium-duty trucks, and tractors. 

In particular, the gas engine under study is installed on HDTs, which are used to collect and compact 

solid waste in a Colombian city. 

 

In this regard, operational data is collected between January 2019 to June 2020. Maintenance reports of 

the asset are also provided, which revealed 22 relevant failures on the engine during the same 

operational period. The challenges presented by this data set when using it for prognostics purposes are 

twofold. First, the data set is unlabeled, i.e., for each record, the vehicle’s operational information is 

synthesized in 14 variables (see Table 2), but it is unknown whether this record corresponds to a healthy 

or degraded state of the system. Second, the collected sensor data set presents a non-constant sampling 

time, since each sensor is programmed to collect data at different time intervals. The next section 

exposes the methodology proposed to face these challenges.  

 

Table 2: Operational variables of gas engine under study 

Abbreviation Description Unit 
Operational Parameters 

Minimum Maximum 

Altitude 
The point reached by the vehicle in relation to sea 

level 
meter 1100 1750 

ODOM 
Number of kilometres travelled by the vehicle 

(accumulated) 
km 0 NA 

ECT Temperature reached by the coolant ºC 70 100 

RPM 

Describes the rate at which the rotor is revolving, 

which is the number of times the rotor shaft 

completes a full rotation each minute 

rpm 150 2200 

ETBP Turbo pressure kPa 10 25 

EIMT Air intake temperature ºC 60 120 

TH 
Number of hours operated by the vehicle 

(accumulated) 
horas 0 NA 

WVS Speed reached by the vehicle km/h 70 92.8 

FDS Fan Status states 0 1 

APP Accelerator pedal position % 0 100 

ECL Coolant level % 80 100 

EOP Oil pressure kPa 69 207 

CC2 Cruise mode enabled states 0 1 

CC3 Brake pedal status states 0 1 

 

3.  METHODOLOGY 
 

Several challenges must be faced when applying DL models to PHM for real complex systems [13], 

[15]. As previously commented, in the presented the gas engine case study, two preprocessing 

challenges need to be addressed. This section details the proposed process to analyze the data and 

perform the PHM analysis. Figure 1 shows the proposed methodology.  
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Figure 1: Proposed methodology
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The analysis is divided into three phases. First, the problem is characterized, i.e., all the available 

technical and operational information about the selected asset is gathered. In the case of the solid waste 

management company, the selected HDT corresponds to a vehicle of interest because it is a generic 

vehicle of the fleet and their hazard rate is in the second region of the bathtub curve [16], ensuring that 

the registered failures correspond to random event rather than wear out or infant mortality. Two 

databases are provided for the vehicle under study. A database with vehicle condition monitoring 

records without specifying the vehicle’s operational status (operational, degraded or in failure), and 

second database with detailed information regarding repairs performed on the vehicle.  These databases 

represent the theoretical basis for the second phase of the methodology. 

 

The data preprocessing phase is divided into two stages. The first stage corresponds to the data labeling, 

which is illustrated in the upper central part of Figure 1. Initially, it was identified from the maintenance 

records that 43% of the failures recorded between January 2019 and June 2020 were due to failures in 

the cooling system, particularly in the radiator, and the second critical system was the gas engine, with 

42% of the reported failures.  

 

Nevertheless, a company maintenance policy showed that these failures could have been assigned to 

the wrong system or components, due to the company required the maintenance team to carry out the 

repairs within a maximum time of 3 hours, arguing that this would guarantee high availability of vehicle. 

This maintenance policy had a side effect which was that the mechanics worked on the symptoms of 

the failure and not the causes, so, for example, the maintenance records described recurrent radiator 

failure and a few days later the records presented detailed reports of the cause in the gas engine system.  

 

In view of this scenario, it is of interest to identify the vehicle’s degradation points start and not only 

the failure event. In this regard, each of the reported failures is analyzed regardless of the vehicle system 

previously assigned to the failure. If failure 𝑗 was reported 48 or more hours after the last failure (𝑗 −
1), then from the vehicle’s operating conditions, a temporal plot is drawn with each of the 14 operational 

variables (see Table 2) of the 48 hours prior to the failure, and a team of experts established the time 

instant at which one or more variables presented a different behavior than expected, thus showing the 

beginning of the asset’s degradation. On the other hand, if failure 𝑗 was reported less than 48 hours after 

a repair, then the expert team needed to analyze the vehicle’s operational behavior from 48 hours before 

the previous failure (𝑗 − 1) to failure 𝑗, as it could be a failure record assigned to the wrong system. 
 

For example, Figure 2 shows one of the variables analyzed during the study of one of the engine failures. 

This variable presents an increase in the temperature reached by the coolant a few hours before the 

failure. Considering that the technical specifications establish that the maximum temperature reached 

by the coolant should be 100 ºC, this behavior suggests an abnormality of the engine performance.  

 

 
Figure 2: Example of a variable analyzed during the study of an engine failure 

Thus, for each failure 𝑗 the team of experts discussed from different points of view the relationship 

between the behavior of the variables and the type of failure reported by the maintenance team, to 

identify the abnormal behavior of the data that evidenced the beginning of the degradation of the system. 
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The team of experts was composed by two members of the vehicle’s operational team, two members of 

the maintenance team, an expert in reliability of mechanical systems and two experts in data analytics.  

 

Once the experts identified the time of onset the degradation, the data were labeled as follows:  

 

- Operational state: records reported between the first record after the failure 𝑗 − 1 and the time 

𝑖 at which the vehicle’s degradation starts if failure 𝑗 was reported 48 or more hours after the 

last failure (𝑗 − 1); or records reported between the first record after the failure 𝑗 − 2 and the 

time 𝑖 at which the vehicle’s degradation starts if the failure 𝑗 was reported less than 48 hours 

before the previous failure (𝑗 − 1). 

- Degraded state: records reported between the time 𝑖 at which the vehicle’s degradation starts 

and the reported time of failure 𝑗. 
- Failure state: record at which the failure was reported, for this state there is only one record for 

each failure, given that during sensors are turned off during the system’s repair.   

 

Regarding the second approach (step by step shown in the lower central part of Figure 1), the sensors’ 

sampling time needs to be uniform. Therefore, a percentile analysis is developed to identify the 

minimum interval in which 95% of the data are collected. Among the minimum interval identified for 

each sensor, then the maximum interval is selected as sampling frequency for the data. For each time 

window, records are replaced for the average if the variable is continuous or for the mode if the variable 

was categorical.  

 

Figure 3 presents an example of the proposed process to resolve the irregular sampling time. Note that 

each sensor is monitored in different time deltas, that is, the first sensor shows records for each time 𝑡𝑖, 
but the second sensor shows records every 𝑡𝑖+2, while the third sensor only shows records every 𝑡𝑖+4. 

Thus, it is proposed to identify the minimum interval representing 95% of the data collected by each 

sensor. As an example, let us suppose that the minimum interval for the first sensor is ∆= 𝑖 + 1, ∆=
𝑖 + 2 for the second sensor, and ∆= 𝑖 + 4 for the third sensor. Then, the maximum interval is selected 

between these intervals and time windows are generated according to the previously presented 

recommendations.  

 
Figure 3: Example for percentile analysis of irregular sampling frequency  
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The data preprocessing phase results in a consolidated database with labeled data for two system states 

(operational or degraded), with a uniform sampling frequency every 35 seconds, and an additional 

column with the estimated RUL at each record collected.  

 

Note that at the moment of failure, the RUL is equal to zero and for the data collected in the previous 

times, the RUL starts to increase. Therefore, on historical data the RUL calculation is obtained as the 

difference between the current time and the time of the future failure.  

Finally, the third phase consists of data modeling to predict the RUL of the gas engine. A deep neural 

network (DNN) model is designed and trained, the hyperparameters are tunning until obtain an 

acceptable accurate. The consolidated dataset was divided 85% to train and 15% to test. The 

hyperparameters used for the neural network and its training process are presented on  

Table 3. 

 

Table 3: Neural network hyperparameters 

Training hyperparameters 

Epochs 150 

Learning rate 0.0001 

Loss function Mean squared error 

Optimizer Adam 

Batch size 100 

Architecture hyperparameters 

Hidden layers 6 

Neurons [256, 128, 64, 32, 16, 8] 

Activation function Relu 

 

 

4.  RESULTS AND DISCUSSION 
 

The proposed methodology is applied to analyze a gas engine used by HDT fleet of a solid waste 

management company. As previously commented, the first phase of the methodology concluded in 

three results: 

 

- Selection of a key asset for the company and feasible for the study, 

- Data collection obtained from two databases (maintenance records and operational condition 

records), 

- A functional analysis of kind of engine under study. 

 

Figure 4 shows the functional tree of an internal combustion engine. In general terms the internal 

combustion engine, like gas engine, is composed of six systems: starter, combustion engine unit, 

crankshaft system, control system, lubrication system and cooling system.  

 

The starter is responsible for rotating the engine to initiate the engine’s operation under its own power. 

The combustion engine unit transforms chemical energy into mechanics to generate shaft power. 

Crankshaft system transmits axis rotational power [17]. Control system have two functions, which are 

monitors and controls the operational signals inside the engine. Lubrication system maintains proper 

lubricating conditions of combustion engine unit whereas cooling system maintains at the appropriate 

temperature for the operation of the combustion engine unit [18]. 
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Figure 4: Functional tree of combustion internal engine 

Regarding the second phase of the methodology, the main results is the consolidated database obtained 

from the pre-processing process. Nevertheless, during the data analysis, the impact of maintenance 

polices on the operational performance of assets was highlighted. For instance, Figure 5 presents the 

HDT’s RUL before the expert judgement. Note that in some temporal spaces there are recurrent values 

of RUL less than 50 hours because in these cases the maintenance team was working on the symptom 

and not on the real causes of the HDT failure.  

 

It is worth noting that, once the expert judgement is performed, the consolidated dataset considered 

only gas engine failures, to train the neural network to predict the gas engine’s RUL. 

 

 
Figure 5: HDT's RUL before expert judgement 

The data modeling phase allowed training and testing the neural network to ensure an adequate 

prediction of the RUL of the gas engine. Table 4 presents the average root mean squared error (RMSE) 

obtained with the trained neural network for the consolidated dataset, and the RUL average for each 

dataset. 

 

Table 4: RUL RMSE values vs RUL average for training and testing dataset [hours] 

 Training Test 

RMSE 52.58 55.04 

RUL average 546.91 545.79 
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Figure 6 presents the training and validation cost throughout the training process. Here, it can be 

observed that both curves present an identical behavior, and the lines converges to the same cost value, 

concluding that the trained model have good generalization capabilities.   

 
Figure 6:  Training and validation cost value per number of epochs during the training process  

Finally, Figure 7 compares the predicted RUL values with the actual values for the training and testing 

datasets. In general, the predicted data follow the real behavior, however there are some temporal points 

where the predicted RUL value is lower than the real one. This would generate, in practice, a preparation 

of the maintenance team long before the failure occurs. 

 

 
Figure 7: RUL training and testing data predictions 

5.  CONCLUSIONS 
 

This paper presents a methodology based on deep learning techniques to perform a gas engine health 

assessment, using a real case study. The proposed methodology presents alternatives to overcome 

common challenges in data preprocessing from real engineering systems, such as the analysis from 

unlabeled data and data with irregular sampling frequency. Furthermore, the authors present a 

functional study of internal combustion engine, to provide technical and operational information on this 

type of engines.  

 

This study allows for methodological and practical conclusions. That is, in practical terms, the study 

showed the relevance of data analysis to evaluate the side effects of strategic decisions on the company’s 
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assets, because in the case study, the preliminary data analysis showed that there were some recurrent 

failures due to the maintenance team in some situations it took more than 3 hours to find the root cause 

of the vehicle failure. In addition, the study allows the maintenance team to prepare for HDT’s gas 

engine failures knowing that these types of failures occur every 544.07 hours on average. 

 

In methodological terms, the authors recognize that there are still important challenges that need to be 

faced in the application of DL-PHM models in real life. Therefore, it is recommend involving the 

operational and maintenance team of the system during the initial phases of the study (problem setting 

and data pre-processing), as this practice ensures greater knowledge of the particular conditions of the 

system under study.  

 

In the future, other deep learning techniques could be used to compare the prediction of RUL in gas 

engine.  
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