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Abstract: Cyber-attacks on digital industrial control systems are becoming increasingly frequent. 

Given the rise of digitalization in nuclear power plants and the potentially hazardous consequences of 

a successful cyber-attack on nuclear power plants and similar safety-critical systems, it is imperative 

that research should be focused on industrial control system cyber-attack detection and mitigation. In 

this paper we explore the use of reinforcement learning to develop an autonomous cyber-attack response 

system for nuclear power plants, specifically the digital feedwater control system of a pressurized water 

reactor. The cyber-attacks are modeled as Stackelberg games between the defender i.e., the plant 

operator and the attacker. The system state transition probabilities are defined using probabilistic risk 

assessment. The optimal defender strategy is computed using multi-agent Q-learning, where the 

Stackelberg equilibrium over the current Q-values is used at every update. The advent of digital twins 

for nuclear power plants enables us to simulate a wide variety of cyber-attacks for as many instances as 

needed to fully train the reinforcement learning agents. 

 

1.  INTRODUCTION 
 

The process of digitalization of industrial control systems (ICSs) has enabled automation, and improved 

control, monitoring and diagnostics. However, digitalization has also opened such systems to a new 

type of threat, the cyber-attacks. In contrast to the traditional information technology (IT) systems, 

where a cyber-attack primarily affects confidentiality, privacy and availability of systems with 

implications largely in the digital realm, a cyber-attack on an industrial control system that interacts 

with the physical world can have ramifications in the physical realm and in worst case scenarios can 

even endanger human life along with causing economic losses due to equipment damage. Well known 

examples of cyber-attacks on industrial control systems include the Stuxnet incident in 2010 that 

crippled Iran’s Natanz nuclear fuel enrichment facility [1], and the Colonial pipeline ransomware 

incident in 2021 [2] that caused fuel shortages in the United States. Additionally, the Triton malware 

identified in the Triconex PLCs in Saudi Arabia’s petrochemical plants in 2017 was nicknamed as the 

“most murderous malware” [3]. Varuttamaseni et al. [4] presented a list of cyber events, both intentional 

attacks and unintentional events in nuclear facilities from various countries. The consequences of cyber-

attacks can be severe in the context of nuclear systems or nuclear reactors, where a potential incident 

can release radioactive material into the environment, rendering the surroundings inhospitable for 

several decades or even centuries. Hence it is important to detect cyber-attacks. However, it is also 

important to assume that cyber-attacks are inevitable and to be appropriately prepared to mitigate such 

attacks.  

It is implicit that the response of a NPP under a cyber-attack is dependent on the actions of both the 

defender i.e., the plant operator working to protect the plant from any damage and the attacker i.e., the 

malicious actor trying to inflict damage on the plant. Taking this into consideration Zhao et al. [5], [6] 

and Maccarone and Cole [7] presented two player non-cooperative general sum stochastic games based 

frameworks with the defender and the attacker as the players, in which the defender’s response strategy 

is formulated taking the possible future attacker actions and the corresponding long term consequences 

into consideration along with the current state. Zhao et al. [5], [6] assume that both players act 

simultaneously and have complete information, and use the concept of Nash equilibrium to compute 

optimal strategies in infinite horizon as well as finite horizon cases, while Maccarone and Cole [7] 

applied the Bayesian games framework to the case in which each player has incomplete information 

about the other, and considered simultaneous games as well and hierarchical games. In contrast to 

simultaneous games, a hierarchical game also known as a Stackelberg game involves one of the players 
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known as the leader, enforcing their strategy on the other player known as the follower [8]. Planning 

based methods were used to solve the games and compute the optimal response strategies.  

Cyber-attacks on nuclear facilities are generally implemented by enemy states with unlimited resources. 

Hence the formulation of an optimal response strategy for a wide variety of scenarios is of vital 

importance. Deploying planning based methods which involve construction of the game models, i.e., 

identifying the system states and state transitions, and searching for optimal response strategies for a 

large number of such complex cases is cumbersome and may not be feasible. The reinforcement 

learning framework, in which an agent learns and evolves by interacting with the environment, and 

algorithms such as Q-learning which are model-free in nature provide a valid framework to ‘learn’ the 

optimal cyber-attack response strategies for a large number of possible cyber-attacks. While learning in 

real time during a cyber-attack is dangerous, the use of digital twins for nuclear power plants that 

enables the simulation of a wide variety of cyber-attacks for as many instances as needed to train the 

RL agent makes the pursuit of such an idea completely realistic.  

In this paper, we explore the use of reinforcement learning (RL), specifically the multi-agent Q-learning 

algorithm to compute the optimal cyber-attack response strategy. The interaction between the attacker 

and the defender is modelled as a Markov game solved using the concept of Stackelberg equilibrium. 

We implement a case study using the digital feedwater control system (DFWCS) of a PWR.  

 

2.  REINFORCEMENT LEARNING BASED APPROACH 

 
2.1.  Reinforcement Learning 

In reinforcement learning, an agent interacts with or acts upon an environment or the system, 

sequentially at every time step, and uses the resultant feedback to update its course of action in order to 

achieve a long-term goal [9]. The feedback (not to be confused with the feedback in the context of 

control systems) received after each action is called the reward and the long-term goal is to maximize 

the cumulative reward [9]. For the scope of this paper, we assume that the agent can observe the system 

completely and the agent follows stationary behavior. Formally a reinforcement learning problem can 

be defined by the tuple (𝑆, 𝐴, 𝜋 , 𝑃, 𝑅, 𝜸) as follows [9]: 

• At time step 𝑡, the environment is in a state 𝑠𝑡 ∈ 𝑆, where 𝑆 represents the set of all possible 

states of the environment. The terms environment and system will be used interchangeably. 

• 𝐴 is the action space of the agent and the set possible actions may depend on the current system 

state. 

• At each state 𝑠, the probabilities of taking different actions i.e., the manner in which an agent 

behaves is defined by the policy 𝜋, which is a mapping from 𝑆 to the probabilities of taking 

different actions. The probability that the agent takes an action 𝑎𝑡 at state 𝑠𝑡 under policy 𝜋 is 

denoted by 𝜋(𝑎𝑡|𝑠𝑡). For stationary behavior, 𝜋(𝑎𝑡|𝑠𝑡) =  𝜋(𝑎|𝑠) ∀ 𝑡.    

• 𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1] is the state transition probability mapping.  

• 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ is the reward function. At any timestep 𝑡, if the environment is in state 𝑠𝑡, 

the agent takes action 𝑎𝑡 and the environment transitions to state 𝑠𝑡+1, the agent receives an 

immediate reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). The reward 𝑟𝑡 is a real number. 

• At each time step 𝑡, the agent observes the state of the environment 𝑠𝑡, implements the action 

𝑎𝑡 ∈ 𝐴 on the environment, receives the immediate reward 𝑟𝑡 and the environment transitions 

to a new state 𝑠𝑡+1 , with a probability of transition 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)  under a Markovian 

assumption.  

• The discounted cumulative reward obtained by the agent over the course of time is 𝐺𝑡 =
 ∑ 𝛾𝑗𝑟𝑡+𝑗

∞
𝑗=0 , where 𝑟𝑡+𝑗  is the reward received 𝑗  time steps after 𝑡 , and 𝛾 ∈ [0,1]  is the 

discount factor that represents the weight assigned to future rewards. The agent’s objective is 

to maximize the expected cumulative reward 𝔼𝜋[∑ 𝛾𝑗𝑟𝑡+𝑗
∞
𝑗=0 ].  

• A value function 𝑣𝜋(𝑠) =  𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]  is defined for every state 𝑠 , that represents the 

expected cumulative reward obtained starting from state 𝑠 if the policy 𝜋 is followed and 𝑡 is 

any time step. 

• Additionally, an action-value function, also known as Q-value, 𝑞𝜋(𝑠, 𝑎) =  𝔼𝜋[𝐺𝑡|𝑆𝑡 =
𝑠, 𝐴𝑡 = 𝑎] is defined for every state-action pair (𝑠, 𝑎) representing the expected cumulative 
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reward if action 𝑎 is taken at state 𝑠, and then the policy 𝜋 is followed subsequently from any 

time step 𝑡. Equation (1) presents the Bellman equation for the Q-value function [9]. 

𝑄(𝑠𝑡 , 𝑎𝑡)  

=  ∑ (𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)

𝑠𝑡+1∈𝑆

× [𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)  +  𝛾 × ∑ (𝜋(𝑎𝑡+1|𝑠𝑡+1) × 𝑄(𝑠𝑡+1, 𝑎𝑡+1))

𝑎𝑡+1∈𝐴

]) 

(1) 

 

One of the most popular algorithms used to solve a reinforcement learning problem is the Q-learning 

algorithm. Q-learning is a Monte Carlo based method used in combination with a dynamic 

programming based update for learning from experience [9]. It is implicit that in an optimal policy, at 

every state the agent takes an action that maximizes the Q-value. In Q-learning, these Q-values are 

“learned” by the agent through interacting with the environment over many episodes. Q-values are 

initialized randomly at the beginning of the learning process. Each episode consists of the agent starting 

out from an initial state, taking actions, transitioning into subsequent states until a terminal state is 

reached. The Q-values are updated at each state encountered in every episode. Figure 1 represents an 

episode in Q-learning.  

 

Figure 1. An episode in Q-learning. 

 
During the learning process, at each state of every episode the agent’s action is selected using a policy 

based on the Q-values learned from previous episodes. In a greedy policy, the action that maximizes 

the Q-value is selected. For example, in an episode 𝑖, the agent’s action 𝑎𝑡 at system state 𝑠𝑡 is chosen 

according to equation (2), where 𝑄𝑖−1 represents the Q-values learned by the agent upto the episode 

𝑖 − 1.  

𝑎𝑡  =  arg max
𝑎

 𝑄𝑖−1(𝑠𝑡, 𝑎)    (2) 

Alternatively, 𝜀-greedy policy, in which a random action is chosen with a probability  𝜀 to allow for 

exploration can be used to choose the agent’s action. This allows the agent to explore actions that are 

different from those dictated by previous experience. The subsequent state 𝑠𝑡+1 in episode 𝑖 given the 

current state 𝑠𝑡 and action 𝑎𝑡 is sampled using the state transition probabilities. If 𝑎𝑡+1 is the action 

taken by the agent in the state 𝑠𝑡+1, the Q-value update Bellman equation presented in equation (1) then 

transforms into equation (3), for the sample (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1) in episode 𝑖.  
𝑄𝑖(𝑠𝑡 , 𝑎𝑡)  =  𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)  +  𝛾 × 𝑄𝑖−1(𝑠𝑡+1, 𝑎𝑡+1) (3) 

If the agent is behaving in an optimal manner, the action 𝑎𝑡+1  at state 𝑠𝑡+1  is chosen such that, 

𝑄𝑖−1(𝑠𝑡+1, 𝑎𝑡+1) is maximum i.e., the agent chooses the optimal action based on the Q-values learned 

until episode 𝑖 − 1. Using this reasoning, the Q-value of the state-action pair (𝑠𝑡 , 𝑎𝑡) is updated using 

equation (4), a dynamic programming based equation. 

𝑄𝑖(𝑠𝑡 , 𝑎𝑡)   ←  𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)  +  𝛾 max
𝑎

𝑄𝑖−1(𝑠𝑡+1, 𝑎)   (4) 

It can be observed that in equation (4), the Q-value of the state action pair (𝑠𝑡 , 𝑎𝑡) in episode 𝑖 is updated 

completely based on the current sample (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1), and 𝑄𝑖−1(𝑠𝑡, 𝑎𝑡) learned from the previous 

experience is completely discarded. Equation (5) presents the Q-value update equation, which combines 

the Q-values learned previously, with the current updates using a learning parameter 𝛼 ∈ (0,1] [9]. It 

can be noticed that, when convergence to optimal policy is achieved, equations (4) and (5) will become 

identical. 

𝑄𝑖(𝑠𝑡 , 𝑎𝑡)    ← (1 − 𝛼) ×  𝑄𝑖−1(𝑠𝑡, 𝑎𝑡)  +  𝛼 × [𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)  +  𝛾 max
𝑎

𝑄𝑖−1(𝑠𝑡+1, 𝑎) ]   (5) 
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It is implicit that in practical implementation only one Q-matrix is used and updated iteratively in every 

episode for efficient computation. As in the case of cyber-attacks, many realistic scenarios involve 

multiple agents acting on the environment simultaneously and trying to maximize their individual 

rewards. Since the environment is affected by the actions of all the agents, the corresponding reward 

received by every individual agent is dependent on actions of all other agents. Hence it is implicit that 

it is not ideal if each agent unilaterally tries to optimize its own reward as a function of its individual 

actions. Littman [10] introduced Markov games as a reinforcement learning framework in the context 

of multiple agents working either co-operatively or competitively. We model the interaction between 

the attacker and the defender as a Markov game with infinite time horizon and use multi-agent 

reinforcement learning to compute an optimal response strategy.  

 

2.2.  Multi-Agent Framework using Markov Games 

A player in the context of game theory is equivalent to an agent in reinforcement learning. The terms 

agent and player will be used interchangeably. In the context of this paper, only two players, the 

defender and the attacker are considered. As presented by Littman [10] and Zhao et al.[5], a Markov 

game of two players (defender and attacker) is defined by the tuple 

(𝑺, {𝐴, 𝐷}, {𝜋𝒂, 𝜋𝒅 } , 𝑃, {𝑅𝒂, 𝑅𝒅 }, 𝜸), where: 

• 𝑆 = {𝑠1, 𝑠2, 𝑠3 … } is the set of all possible states of the system. 

• 𝐷 = {𝑑1, 𝑑2, 𝑑3 … }  is the defender’s action space and 𝐴 = {𝑎1, 𝑎2, 𝑎3 … }  is the attacker’s 

action space. It is implicit that the set of feasible defender and attacker actions depends on the 

system state.  

• 𝜋𝒅 and 𝜋𝒂 are the action policies of the defender and the attacker respectively. The quantity 

𝜋𝒅(𝑑𝑖|𝑠𝑗) is the probability that the defender takes action 𝑖 at system state 𝑠𝑗. 

• 𝑃: 𝑆 × 𝐷 × 𝐴 × 𝑆 → [0, 1] is the state transition probability mapping, where 𝑝(𝑠𝑗|𝑠𝑖, 𝑑𝑘 , 𝑎𝑙) is 

the probability that the system transitions to state 𝑠𝑗 when the defender takes action 𝑑𝑘 and the 

attacker takes action 𝑎𝑙 when the system state is 𝑠𝑖. 

• 𝑅𝒅: 𝑆 × 𝐷 × 𝐴 × 𝑆 → ℝ is the reward function of the defender and 𝑅𝒂: 𝑆 × 𝐷 × 𝐴 × 𝑆 → ℝ is 

the attacker’s reward function. The quantities 𝑟𝒅 =  𝑅𝒅(𝑠𝑖, 𝑑𝑘 , 𝑎𝑙 , 𝑠𝑗)  and 𝑟𝒂 =

 𝑅𝒂(𝑠𝑖, 𝑑𝑘 , 𝑎𝑙 , 𝑠𝑗)  are the immediate rewards received by the defender and the attacker 

respectively, when the system is state 𝑠𝑖, the defender takes action 𝑑𝑘, the attacker takes action 

𝑎𝑙 and the system transitions to state 𝑠𝑗. Similarly,  

• 𝜸 is the discount factor. 

• Each player tries to optimize his or her expected cumulative rewards 𝔼[∑ 𝛾𝑗𝑟𝑡+𝑗
𝑑∞

𝑗=0 ]  and 

𝔼[∑ 𝛾𝑗𝑟𝑡+𝑗
𝑎∞

𝑗=0 ].  

In addition, the action-value functions of the defender 𝑄𝒅 and the attacker 𝑄𝒂 are defined as well. It is 

implicit that for every state 𝑠, the state transitions and the corresponding rewards are dependent on both 

attacker and defender actions. Hence, 𝑄𝒅  and 𝑄𝒂  should be defined as functions of defender and 

attacker action pairs. Table 1 presents example Q-values for an arbitrary state in a two-player game. As 

shown, there are three possible defender actions and attacker actions, and the Q-values are defined for 

the defender as well as the attacker for a total of nine action pairs. In the normal-form representation of 

a two player Markov game [8], 𝑄𝒅 and 𝑄𝒂 are matrices for every state 𝑠. In the convention used in this 

paper, (𝑖, 𝑗) element of the Q-value matrices for both the defender and attacker, denotes the Q-value for 

defender action 𝑖 and attacker action 𝑗 at a particular state 𝑠.  

Table 1. Example Q-values in one state in multi-agent setting. 

 𝑄𝒅 – defender Q-values  𝑄𝑎 – Attacker Q-values 

Attacker Actions 1 2 3 1 2 3 

Defender 

Actions 

1 3.72 -4.27 3.5 -5.75 -4.8 -3.67 

2 -7.5 -2.25 -2.75 4.52 -3.61 -2.50 

3 -2.94 -7.6 1.67 -3 -2.54 4.57 
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The Q-learning algorithm presented in section 2.1 for a single agent can be expanded to the multi-agent 

case. Equations (6) and (7) present the Q-value update equations for the defender and the attacker 

respectively in episode 𝑖  in a multi-agent reinforcement learning setting as presented by Hu and 

Wellman [11] and Kononen [12]. 

𝑄𝑖
𝑑(𝑠𝑡 , 𝑑𝑡 , 𝑎𝑡  )  

= (1 − 𝛼) ×  𝑄𝑖−1
𝑑 (𝑠𝑡, 𝑑𝑡 , 𝑎𝑡  )  +  𝛼 × [𝑟𝑡

𝑑  +  𝛾 × 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 (𝑄𝑖−1
𝑑 (𝑠𝑡+1, 𝑑𝑡+1, 𝑎𝑡+1 )) ] 

(6) 

  

𝑄𝑖
𝑎(𝑠𝑡, 𝑑𝑡 , 𝑎𝑡  )  

=  (1 − 𝛼) ×  𝑄𝑖−1
𝑎 (𝑠𝑡, 𝑑𝑡 , 𝑎𝑡  )  +  𝛼 × [𝑟𝑡

𝑎  +  𝛾 × 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 (𝑄𝑖−1
𝑎 (𝑠𝑡+1, 𝑑𝑡+1, 𝑎𝑡+1 )) ] 

(7) 

 

It is clear that defender and the attacker are learning simultaneously. While Hu and Wellman [11] used 

Nash equilibrium to compute the optimal Q-values, Kononen [12] presented the asymmetric learning 

case with Stackelberg equilibrium. It is implicit that, action selection during the episodes is performed 

using the optimal Q values. In this paper we use the Stackelberg equilibrium for multi-agent Q-learning.  

 

2.3. Stackelberg Equilibrium 

In the Stackelberg equilibrium concept for two player games i.e., in a two player Stackelberg game  one 

of the players acts as the leader and the other is a follower [8], [12]. In contrast to Nash equilibrium, 

where the two players have symmetric roles, a Stackelberg equilibrium is asymmetric and hierarchical 

in nature, where the leader can enforce their strategy (action) while the follower responds to it in a 

rational manner, i.e., in a manner that optimizes their reward. The leader-follower approach of the 

Stackelberg equilibrium concept is appropriate in the context of cyber security, where the defender as 

the leader enforces a security strategy, in response to which an attacker as the follower observes the 

implemented strategy and launches an offensive action that optimizes their reward [7], [13], [14]. The 

Stackelberg equilibrium solution for the two-player game with the defender as the leader, and given 𝑄𝑑 

and 𝑄𝑎 matrices at a state 𝑠 can be computed as follows as presented by Kononen [12]. The procedure 

involves a two-step backward calculation. In the first step the follower’s optimal response to every one 

of leader’s actions is identified. In the second step the leader’s action that generates the optimal reward 

given that the follower responds with the actions identified in the first step is obtained.    

• Identify the attacker action that generates the maximum reward (in this case Q-value) for every 

possible defender action, as shown in equation (8).   

𝑎𝒮(𝑑𝑖)  =  arg max
𝑎,𝑑𝑖∈𝐷  

 𝑄𝑎(𝑠, 𝑑𝑖 , 𝑎) 

where 𝐷 is the defender’s (leader’s) action space, 

 𝑑𝑖 ∈ 𝐷 is the defender’s (leader’s) action, and 

𝑎𝒮(𝑑𝑖) is the optimal response by the attacker (follower) for defender’s (leader’s) 

action 𝑑𝑖. 

(8) 

For the example presented in Table 1, it can be observed that 𝑎𝒮(𝑑 =  1)  =  3, 𝑎𝒮(𝑑 =  2)  =  1 

and 𝑎𝒮(𝑑 =  3)  =  3 i.e., when the defender’s action is 1, the optimal attacker action is 3, when 

the defender’s action is 2, the optimal attacker action is 1, and when the defender’s action is 3, the 

optimal attacker action is 3.    

• Identify the defender action that generates the maximum defender reward, for the attacker actions 

calculated above, as shown in equation (9). 

𝑑𝒮  =  arg max
𝑑∈𝐷  

 𝑄𝑑(𝑠, 𝑑, 𝑎𝒮(𝑑)) 

where 𝐷 is the defender’s (leader’s) action space, 

𝑎𝒮(𝑑) is the optimal response by the attacker (follower) for defender action 𝑑, and 

𝑑𝒮 is the optimal defender action. 

(9) 

The pair (𝑑𝒮 , 𝑎𝒮(𝑑𝒮)) is the pure strategy Stackelberg equilibrium solution, where each player has 

one definite action/strategy to implement. Alternatively, a mixed strategy equilibrium solution 

provides a probability distribution on the players’ action spaces and will be studied in further 

research. For the example presented in Table 1, when the defender-attacker action pair is (1,3), the 

defender reward is 3.5, when the defender-attacker action pair is (2,1), the defender reward is -7.5 

and when the defender-attacker action pair is (3,3), the defender reward is 1.67. It can be observed 

that out of these values, the maximum reward is 3.5. Therefore, the Stackelberg equilibrium strategy 
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in this example with the defender as the leader is 𝑑 =  1 and 𝑎 =  3. So, according to the computed 

pure strategy Stackelberg equilibrium solution, the defender (leader) enforces action -1 out of 

actions 1, 2 and 3 initially, to which the attacker (follower) responds with action – 3. 

It can be observed from the above example that, for the defender (leader) to compute and enforce their 

strategy, they should have knowledge of the attacker’s (follower’s) Q-values to estimate the attacker’s 

optimal response for every one of their actions. This is the result of the assumption that the defender 

(leader) is aware of the attacker’s (follower’s) rewards. We also assume that the attacker (follower) can 

always observe the strategy enforced by the defender (leader). It is realistic to expect that the defender 

is unaware of the attacker’s rewards and attacker (follower) cannot completely observe the defender’s 

strategy. Such cases will be studied in future research.  

In the case study presented in this paper we use Stackelberg equilibrium with the defender as the leader 

in the multi-agent Q-learning and compare the results with the case where the attacker is the leader i.e., 

the case where the attacker implements their offensive action, and the defender responds with an optimal 

action. It is our opinion that the case in which the attacker acts as the leader i.e., the case where the 

attacker (leader) is aware of the defender’s (follower’s) rewards, the attacker (leader) can enforce a 

strategy to which the defender responds optimally, and the defender (follower) can completely observe 

the attacker’s (leader’s) actions is realistic. For example, it can be the case of an insider attack, in which 

a disgruntled or a radicalized employee can lay traps beforehand and lead the game.  

 

3.  CASE STUDY 
 

In this case study we implement the multi-agent Q-learning discussed above to compute the optimal 

cyber-attack defense strategy for the digital feedwater control system (DFWCS) of a pressurized water 

reactor (PWR). The system states, the possible attacker and defender actions as presented by Zhao et 

al. [5], [6] are discussed below. 

 

3.1.  The System and System States 

Figure 2 depicts a schematic of the digital feedwater control system of a pressurized water reactor as 

presented in the NUREG CR-6942 [15]. The components main computer (MC) and backup computer 

(BC) act as controllers, whereas the components feedwater pump, main feedwater valve and bypass 

feedwater valve are mechanical components and act as actuators that receive control signals from the 

MC and BC. Additionally, there are three sensors, the feedwater flow sensor, the steam generator level 

sensor and a temperature sensor that are part of the feedback loop of the control system and send signals 

to the MC and BC. The steam generator acts as a tank.  It is important to observe here that the pump, 

the valves and the steam generator are mechanical components and cannot be subjected to cyber-attacks, 

whereas the computers and the sensors are digital components and can be compromised. So, as 

presented by Zhao et al. [5], [6], in this analysis only the digital components are considered, and the 

sensors are grouped together as one set of digital components for simplification. 

 

The main computer is the primary controller of the system and is in use under normal operating 

conditions. As the name suggests the backup computer is backup to the main computer and is in standby 

when the main computer is in use. The backup computer is used only when the main computer is out of 

operation either due to a failure or a cyber-attack. In this analysis, component failures are not explicitly 

considered. The system is controlled manually by the PWR operator when the backup computer is out 

of operation as well, either due to a failure or a cyber-attack. So, a control mode variable with two states 

automatic or manual is considered to represent the mode of control. The control mode is automatic 

when either the MC or the BC is used, and manual when the operator directly controls the system.  Once 

the control is switched from MC to BC, it cannot be reverted, and similarly, once the control is switched 

from BC to manual mode, it cannot be reverted within the session or episode. It is assumed that the 

control can be transferred only from the MC to the BC, and then from the BC to manual control in that 

order, and any other transfers such as from the BC to the MC or from the MC to manual control are not 

possible. Additionally, an approximate model, that can be used as a substitute for the sensors as a 

countermeasure against cyber-attacks is considered [5], [6]. The approximate model can predict the 

system physical variables such as flowrate, temperature and level to a certain degree of accuracy. We 

assume that the approximate model cannot be compromised. The operator can decide to use the 
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approximate model instead of sensors in both automatic and manual control modes, and this switch 

cannot be reverted as well. 

Figure 2. Schematic of a PWR DFWCS 

 
 

It is assumed that, even though the system can be controlled using either the approximate model or 

manual control or both, it is not as safe as using sensors and computers. In addition to digital 

components, the reactor core with two states either normal or damaged is considered as well. The 

episode in Q-learning ends once the reactor core is damaged or when we reach a state when the system 

cannot be compromised anymore. Table 2 lists the components and modes along with their 

corresponding states as presented in [5], [6]. 

 

Table 2. List of components/modes and their states. 

Component States 

1. Sensors 

2. Main Computer 

3. Backup computer 

 

1. Normal and in use. (1) 

2. Normal and not in use. (2, NU) 

3. Compromised and in use. (3) 

4. Compromised and not in use. (4, NU) 

4. Control Mode 1. Automatic (1) 

2. Manual (2) 

5. Sensing Mode 1. Sensors are used. (1) 

2. Approximate model is used. (2) 

6. Reactor core 1. Normal (1) 

2. Damaged. (2) 

 

As seen from the Table 2 a total of 43 × 2 × 2 × 2 = 512 states are possible. However, it is implicit 

that once the reactor core is damaged, the states of the remaining components are of no consequence.  

Similarly, the states in which both MC and BC are normal and in use or the state in which both the 

sensors and approximate model are used, are physically impossible. Zhao et al [5], [6] reduced the total 

number of possible system states to just 16, as presented in the Table 3. The physical system state is 

represented through a vector with 6 components, [State of sensors, MC state, BC state, Control mode, 

Sensing Mode, Reactor core state]. 

Table 3. System States. 

 Vector Description SAFE or UNSAFE 

1 [1 1 2 1 1 1] Automatic mode with normal MC and 

normal sensors 

SAFE 

2 [3 1 2 1 1 1] Automatic mode with normal MC, 

compromised sensors 

UNSAFE 

3 [1 3 2 1 1 1] Automatic mode with compromised MC, 

normal sensors  

UNSAFE 
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4 [1 NU 1 1 1 1] Automatic mode with normal BC, and 

normal sensors 

SAFE 

5 [3 3 2 1 1 1] Automatic mode with compromised MC 

and sensors 

UNSAFE 

6 [3 NU 1 1 1 1] Automatic mode with normal BC and 

compromised sensors 

UNSAFE 

7 [NU 1 2 1 2 1] Automatic mode with normal MC and 

approximate model 

SAFE 

8 [1 NU 3 1 1 1] Automatic mode with compromised BC 

and normal sensors  

UNSAFE 

9 [NU 3 2 1 2 1] Automatic mode with compromised MC 

and approximate model 

UNSAFE 

10 [3 NU 3 1 1 1] Automatic mode with compromised BC 

and sensors 

UNSAFE 

11 [1 NU NU 2 1 1] Manual with normal sensors  SAFE 

12 [NU NU 1 1 2 1] Automatic mode with normal BC and 

approximate model 

SAFE 

13 [3 NU NU 2 1 1] Manual with compromised sensors UNSAFE 

14 [NU NU 3 1 2 1] Automatic mode with compromised BC 

and approximate model 

UNSAFE 

15 [NU NU NU 2 2 1] Manual with approximate model. SAFE (terminal state) 

16 [X X X X X 2] Core damaged - END UNSAFE (terminal 

state) 

NU – Not in use. X – the component state is of no consequence. 

 

3.2.  Attacker and Defender Actions 

Table 4 presents the list of all possible attacker and defender actions as presented by Zhao et al. [5], 

[6]. The attacker can either compromise the sensors, or the MC or the BC, whereas the defender can 

switch from sensors to approximate model, or switch control from MC to BC or from BC to manual 

mode. Additionally, we consider the case in which the attacker and the defender do nothing i.e., take 

no action. It is assumed that the defender and the attacker can take only one action at a time. For 

example, the attacker cannot compromise both the MC and the sensors in one action. Additionally, 

certain actions are impossible in some system states. Consider the system state 1, i.e., the system is in 

automatic control mode with normal MC and sensors. As discussed in section 3.1, the defender cannot 

switch directly to manual control. So, defender action 3 is invalid. Similarly, it is assumed that a 

component not in use cannot be compromised and hence attacker action 3 is invalid as well. Table 5 

lists the state dependent attacker and defender action spaces as presented by Zhao et al. [5], [6]. It is 

assumed that both the operator and the defender are always successful in implementing their actions. 

 

Table 4. List of possible attacker and defender actions. 

Attacker Actions Defender Actions 

1 – Compromise the sensors 1 – Switch from sensors to approximate model. 

2 – Compromise the main computer 2 – Switch control from MC to BC. 

3 – Compromise the backup computer 3 – Switch control from BC to manual mode. 

4 – Do Nothing. 4 – Do nothing.  

 

Table 5. State dependent attacker and defender action spaces. 

Physical 

system state 

Attacker action 

space 

Defender action 

space 

Physical 

system state 

Attacker action 

space 

Defender 

action space 

1 1, 2, 4 1, 2, 4 9 4 2, 4 

2 2, 4 1, 2, 4 10 4 1, 3, 4 

3 1, 4 1, 2, 4 11 1, 4 1, 4 

4 1, 3, 4 1, 3, 4 12 3, 4 3, 4 

5 4 1, 2, 4 13 4 1, 4 
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6 3, 4 1, 3, 4 14 4 3, 4 

7 2, 4 2, 4 15 4 4 

8 1, 4 1, 3, 4 16 4 4 

 

3.3.  State Transitions and Reward Functions 

As presented by Zhao et al. [6], we consider that when the system is in an unsafe state i.e., when at least 

one component is compromised, we assume that the feedwater control system has failed and as result 

there is a probability of 10−3 that the system transitions into the core damaged state (state 16). This is 

equal to the probability that the auxiliary feedwater system fails given the feedwater system has already 

failed. The distinction between the states where the attacker has compromised the sensors or the 

controller or both will be studied in further research.  

 

Similarly, when the system is in its design state i.e., in state 1 with the main computer and sensors in 

normal state and in use, with the backup computer on standby and the system in automatic control mode 

using sensors, we assume that the probability of transition to core damage is 10−5. This is equal to the 

probability of DFWCS failure and auxiliary system failure. It is implicit that use of approximate models 

instead of sensors, and use of manual control instead of the computers, is prone to errors. As a result, 

we assume that the transition probability to core damage increases to 10−4  in state 15 and use 

interpolation to quantify the transition probabilities for the states in between, as listed in Table 6. For 

example, in state 4, backup computer is used for control along with normal sensors, and the main 

computer is out of operation. As a result, we assume that the probability of transition to terminal state 

is 3.34 × 10−5, which is higher compared to the one in state 1.  

 

Table 6. Transition probabilities to terminal state 

States Probability of transition to core damage state. 

16 – terminal. (Already in core damage state) 

5, 10 – Both controller and sensors are 

compromised and in use.  

2, 3, 6, 8, 9, 13, 14 – one component is 

compromised. 

10−3 

 

 

1 – initial state. 10−5 

4 – Automatic mode with normal BC 

and sensors. 

7 – Automatic mode with normal MC 

and approximate model. 

3.34 × 10−5 

11 – Manual control with normal sensors. 

12 – Automatic mode with normal BC and 

approximate model. 

6.67 × 10−5 

15 - Manual mode with approximate model  10−4 

 

The objective of a reinforcement learning problem is to compute the action policies that optimize the 

expected cumulative discounted reward. Hence, the selection of reward functions must be given utmost 

importance. In this analysis we divide the reward function into two components, as presented in 

equation (10).  

𝑟 =  𝑟𝑎𝑐𝑡𝑖𝑜𝑛  +  𝑟𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (10) 

 

The term 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 represents the cost incurred by the agent i.e., the operator or the attacker for taking an 

action. We assume that the cost of taking any action i.e., any one of actions 1, 2 and 3 in Table 4 is 

equal to $ 10,000 for the attacker and the defender incurs no cost to take any action, as discussed by 

Zhao et al. [6]. 
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Additionally, both agents get an immediate reward 𝑟𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 whenever there is a state transition due 

to their actions. This immediate reward is used as an incentive to encourage the agents’ behavior in the 

correct direction [16]. When there is a transition to the terminal state, the operator receives a negative 

reward that is 10 billion dollars in worth [6] that represents the consequences of core damage, and we 

assume that the attacker receives a positive reward of identical value.  

 

The benchmark system presented in [15] has fault tolerance capabilities. For example, the main 

computer and the backup computer verify and validate the readings from the sensors. Hence it is 

assumed that the states in which two components are compromised (states 5 – sensors and main 

computer are compromised and 10 – sensors and backup computer are compromised) are more 

advantageous to the attacker compared to states in which only one component is compromised. So, it is 

assumed that the attacker receives an immediate positive reward of $10,000 when they compromise a 

single component i.e., when there is a transition to states 2, 3, 6, 8, 9, 13 and 14 due to their actions and 

$20,000 when there is a transition to the states 5 and 10 i.e., states in which two components are 

compromised. The defender receives a negative reward of identical value when these transitions occur 

irrespective of their actions. Similarly, when there is a transition to a safe state i.e., 4, 7, 11 and 12, the 

defender receives a positive reward, and the attacker receives a negative reward of worth $10,000, and 

when there is a transition to state 15, a state in which no component can be compromised, the reward is 

equal to $20,000. The attacker and defender do not receive any immediate reward and do not incur any 

cost of action when they take no action and when there is no state transition. In this case study, the 

immediate rewards for transitions are assumed to be in the same order as the cost incurred by the attacker 

for taking an action. Further research is needed to accurately quantify the rewards to represent more 

realistic situations. 

 

It can be observed that the defender acting proactively and switching to manual control mode and 

approximate model, which cannot be compromised by the attacker is safe in the immediate run in the 

context of cyber security. However, these modes of operation are error prone and unsafe in the long 

run, and the increased probabilities of transition to core damage as presented in Table 6 represents the 

penalties levied on the defender for such actions. 

 

3.4.  Results 

A total of 500000 episodes were used for learning. The attacker and defender actions were selected 

randomly for the first 100000 episodes to allow for exploration and an 𝜀-greedy policy based action 

selection was used for the remaining episodes with 𝜀 =  0.1. The discount factor 𝛾 was set to 0.8, and 

the learning rate 𝛼 was set to 0.4. A sensitivity analysis of these parameters will be performed in future 

research. It is important to remember that Stackelberg games are hierarchical in nature, in which the 

leader takes an action, and the follower responds optimally. Table 7 presents the pure strategy 

Stackelberg equilibrium solutions i.e., the optimal defender and attacker actions at every state for the 

case in which defender leads as well as the case in which the attacker leads.  

 

The computed pure strategies appear to be logical. For example, in state 1 where the system is operating 

in automatic control mode with normal sensors, and normal main computer, as the leader, the defender’s 

optimal strategy is to switch to the approximate model (action - 1). It is assumed that the defender takes 

this action pre-emptively when an intrusion is discovered in the network i.e., when a cyber-attack may 

be imminent, which is the starting point of this research and not randomly, out of extreme caution even 

when there is no indication of cyber-attack. The attacker’s response to this strategy is to compromise 

the main computer. These actions will result in a transition to state 9, where the system is in automatic 

control mode with compromised main computer and approximate model. The defender’s optimal 

strategy in state 9 is to switch the control from main computer to backup computer (action 2 as shown 

in Table 7 for state 9). 

   

Table 7. Stackelberg Equilibrium Solutions for Different States 

 Defender as the Leader Attacker as the leader 

State Defender’s action Attacker’s action Defender’s action Attacker’s action 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

1 1 2 2 2 

2 1 2 2 2 

3 2 1 2 1 

4 3 1 3 3 

5 1 4 2 4 

6 1 4 1 3 

7 4 2 2 4 

8 3 1 1 1 

9 2 4 2 4 

10 3 4 1 4 

11 4 1 4 1 

12 3 4 3 4 

13 1 4 1 4 

14 3 4 3 4 

15 4 4 4 4 

16 4 4 4 4 

 
Similarly, when the attacker is the leader, the optimal action in state 1 is to compromise the main 

computer (action – 2), to which the defender’s response is to use the backup computer (action – 2). 

These actions result in a transition to state 4, i.e., the system is in automatic control mode with normal 

backup computer and normal sensors. In state 4, it can be observed that the attacker’s strategy is 

compromise the backup computer and the defender’s response is to switch to manual control.  

 

It can be observed that as the leader, the defender is initially prioritizing the use of approximate model 

which cannot be subjected to cyber-attacks. It is not possible to compromise both the main computer 

and the backup computer at the same time. So, when the defender is switching to the approximate 

model, it is impossible to reach the states in which two components are compromised at the same time 

i.e., states 5 and 10. As mentioned in section 3.3, transitioning to states 5 and 10 is more advantageous 

to the attacker and will result in a large negative penalty to the defender. Similarly, when the attacker 

is the leader, the priority is on compromising the main computer initially, which will lead the defender 

to switch to backup computer, thereby providing the attacker with additional opportunities to 

compromise multiple components.  

 

4.  CONCLUSIONS 
 

Cyber-attacks on industrial control systems, and the corresponding interactions between the attackers 

and the operators have been modeled using game theory, as competitive Markov Decision Problems 

(MDPs). In this paper, we presented the use of a multi-agent reinforcement learning approach, 

specifically the multi-agent q-learning algorithm with Stackelberg equilibrium to solve those MDPs and 

to compute the defender’s optimal response strategy against cyber-attacks. The results can be used to 

support an operator when the system is facing a cyber-attack. It is worth noting that the reinforcement 

learning approach used in this research belongs to the model-free paradigm. This means that the attacker 

and defender strategies are learned through experience. This is in contrast to model-based approaches 

where the MDP model is first explicitly constructed and the value functions of individual states, and 

the action-value functions, and the resultant attacker and defender strategies are explicitly computed 

using planning based methods. 

As a case study, the method was tested using a simplified version of the DFWCS of a PWR, and the 

pure strategies of the attacker and the defender were computed for two separate cases. In the first case 

the defender is the leader and in the second case, the attacker is the leader. The strategies for the defender 

for these two cases were compared and the obtained pure strategies were found to be logical. In future 

research, the proposed method will be extended to finite-horizon games, mixed Stackelberg strategies 

and the use of a physics based dynamic model of the system.  
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