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Abstract: The testing of products with the aim of a reliability proof can be realized by reliability 
demonstration tests (RDT). However, the supposedly good plannability as well as the simple 
evaluability based on the binomial distribution is in most cases linked to the assumption of distribution 
parameters of the failure behaviour. These assumptions are subject to uncertainties about the required 
distribution parameters, the effects of which are highly significant. Case studies illustrate the possible 
consequences for the planning of the needed sample size and the influence on the confidence level. 
Potential improvement approaches to achieve the most robust planning and evaluation based on 
reliability demonstration tests are explained in the context of endurance testing without any failures. 
 
 
 
1.  INTRODUCTION 
 
The reliability of a product is a key customer requirement and represents one of the most important 
purchasing criteria [1]. To ensure this important product characteristic, product reliability must be 
brought into focus during product development. 
First, product reliability must be defined for the overall product and, if necessary, broken down to lower 
system levels. A quantitative target definition consists of a minimum product reliability or maximum 
failure probability at a certain point in time [2]. For the proof of product reliability, the confidence level 
has to be defined, too. With these three quantitative parameters, a target definition is complete and 
suitable as a basis for demonstrating product reliability. 
 
In practice, there are often numerous challenges in planning tests to proof product reliability. First of 
all, the type of verification procedure must be defined, which can basically be divided into failure-
oriented or failure-free testing. Further planning parameters are, for example, the number of test items 
and the test duration. Taking into account project boundary conditions and availability of specimen, test 
planning is often an interactive process resulting in different planning scenarios. 
 
In addition to cost and time requirements, some information on the failure behaviour of the test 
specimens is already necessary in the planning phase, which is usually only available imprecisely or 
comes from estimates of similar products [6]. These inaccuracies cause risks in the plannability and 
trustworthiness of the proof of reliability. The consideration of uncertainties is thus of enormous 
importance in the practical reliability work of a product development. 
 
 
2.  THEORY OF RELIABILITY DEMONSTRATION TEST 
 
In the following, a failure-free testing is assumed, whereby the principle consideration of uncertainties 
is transferable to a failure-oriented testing. The basic principle of RDT is based on successful testing 
when all test items survive the test duration without failure. With this procedure, the proof of a defined 
minimum reliability can be provided at a target time. In addition, the trustworthiness is quantified by 
the confidence level [6], [10]. 
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The statistical basis is the binomial distribution, the so-called procedure based on number of failures is 
therefore also named binomial testing [7]. The binomial equation leads to [9]: 
     
 

1 − 𝐶𝐶𝐶𝐶 =  ∑ �𝑛𝑛𝑖𝑖� �1− 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)�
𝑚𝑚
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑚𝑚−𝑚𝑚𝑡𝑡

𝑚𝑚=0    (1) 
 
Where n is the number of test units, r is the number of failures, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum reliability to be 
demonstrated at the service life requirement 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and CL is the given confidence level. An 
assumption of a specific failure time distribution is not required in equation (1). 
 
In practice, RDTs aim at testing without failures (r = 0), which finally leads to the equation of success 
run [9]: 

 
1 − 𝐶𝐶𝐶𝐶 =  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑚𝑚 respectively 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =  (1 − 𝐶𝐶𝐶𝐶)1/𝑚𝑚  (2) 

 
In this case, the highest confidence level is achieved or the smallest number of test items is required. In 
practice, planning for this case is done, often without estimating the probability of occurrence [4], [5] 
for this scenario. 
 
Products with a long service life usually pose a challenge in testing. For example, passenger cars or 
commercial vehicles are expected to have a service life of 10 to 15 years. However, this long service 
life requirement cannot be tested 1:1 within the scope of product development. In addition to the use of 
time-graded load spectra, the test duration in such use cases must be shorter than the service life 
requirement 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . For the numerical analysis of RDTs, a lifetime ratio 𝐶𝐶𝑅𝑅 is now introduced from 
the ratio of the test duration 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  to the required service life 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  [2]: 
 

𝐶𝐶𝑅𝑅 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

       (3) 

 
Taking equation (3) into account in equation (2), the verifiable minimum reliability 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 under the 
assumption of a Weibull-distributed failure characteristic is thus as follows [2]: 
 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =  (1 − 𝐶𝐶𝐶𝐶)
1

𝐿𝐿𝐿𝐿𝛽𝛽𝑛𝑛     (4) 
 
Therefore, as soon as the test duration 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is not equal to the required service life 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and therefore 
a lifetime ratio 𝐶𝐶𝑅𝑅  ≠ 1 is applied, a statement about the failure behaviour is necessary. For the 
assumption of a Weibull distributed failure characteristic the estimation of shape parameter 𝛽𝛽  is 
required, which, however, can only be determined from failure data. 
 
Often, the shape parameter 𝛽𝛽 is estimated from failure data of similar products in operating conditions 
that are as comparable as possible. Another option within a product development project is the 
possibility to derive the shape parameter 𝛽𝛽  from previous test phases of the product development 
project. The possible difference of the test specimens from different sample phases from design changes 
or manufacturing influences must be evaluated with regard to a changed failure characteristic.  
 
The estimation of the shape parameter 𝛽𝛽 for an RDT is therefore always associated with uncertainties, 
the resulting effects are examined below. 
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3.  CONSIDERATION OF UNCERTAINTIES IN RDT 
 
3.1.  Confidence level and sample size 
 
The possible impact of uncertainties in the estimation of a shape parameter 𝛽𝛽 on the confidence level 
and required number of test specimens is to be analyzed already in the planning phase of an RDT. The 
possible consequences are investigated on the basis of case studies and their effects are discussed. For 
the exemplary investigation, a vehicle component is used whose reliability target is defined with a 
B10-value of 100.000 load cycles, whereby comparable requirements also exist in other industrial 
sectors. The planning parameters for an RDT are therefore as follows: 
 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� =  90% @ 𝐶𝐶𝐶𝐶 = 90%, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 100.000𝐶𝐶𝐶𝐶   (5) 
 
The necessary test duration can often not be fully represented within the project schedule in the context 
of vehicle development. The test duration 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is therefore smaller than the required service life 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 
that leads with equation (3) to a lifetime ratio 𝐶𝐶𝑅𝑅 < 1. For this assumed case, the life time ratio 𝐶𝐶𝑅𝑅 has 
to be considered as described in equation (4). 
 
The maximum test duration of scenario I is limited to 75.000 LC, in another scenario II the maximum 
test duration is 50.000 LC. 
 
First, the implications of these two scenarios for planning the necessary sample size of an RDT are 
shown. For this purpose, the required number of test specimens is calculated from equation (6): 
 

𝑛𝑛 =  ln(1−𝐶𝐶𝐶𝐶)
𝐶𝐶𝐿𝐿𝛽𝛽∙ln 𝐿𝐿𝑚𝑚𝑚𝑚𝑛𝑛�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

       (6) 

 
Figure 1 shows the evaluation of the required sample size for scenario I as a function of different shape 
parameters 𝛽𝛽, in order to derive the effects of uncertainties of the shape parameter 𝛽𝛽 on the number of 
test specimens 𝑛𝑛. As already noted, a value for the shape parameter 𝛽𝛽 of the Weibull distribution is 
already necessary in the planning phase, but this can only be determined from failure data. If the 
estimation of the shape parameter is faulty, it follows directly that the number of test items is faulty. If, 
for example, a shape parameter of 2.0 is assumed, but in reality the failure cause is described by a shape 
parameter of 3.5, test planning would provide a sample size of 39 instead of 60 and therefore too few 
test specimens. 21 specimen are missing. 
 

 
Figure 1: Required sample size 𝑛𝑛 for scenario I of a RDT 
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The impact of an insufficient sample size, based on an uncertain or erroneous estimate of the shape 
parameter 𝛽𝛽, on the validity of the RDT and thus on the achieved confidence level is shown in figure 2. 
Here, the achieved confidence level is determined for scenario I, which results from the planning in 
figure 1 with a sample size of 𝑛𝑛 = 39. The possible effects of an assumed shape parameter of 𝛽𝛽 =2.0 on 
the confidence level is thus shown, when in reality the shape parameter is 𝛽𝛽 > 2.0. 
 

 
Figure 2: Achieved confidence level 𝐶𝐶𝐶𝐶 for scenario I of a RDT with uncertain shape parameter 𝛽𝛽 

 
The too low number of test specimens 𝑛𝑛 thus leads to a reduction of the achieved confidence level when 
an uncertain shape parameter 𝛽𝛽 is used. However, since the estimation of the shape parameter of the 
Weibull distribution cannot be checked with an RDT, the reduced confidence level due to an uncertain 
shape parameter 𝛽𝛽 initially remains undetected in practice. 
 
In scenario II, the effects of an uncertain shape parameter 𝛽𝛽 at a lifetime ratio of 𝐶𝐶𝑅𝑅 =0.5 are illustrated. 
The required sample sizes are shown in figure 3. 
 

 
Figure 3: Required sample size 𝑛𝑛 for scenario II of a RDT 
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In scenario II, an uncertain shape parameter 𝛽𝛽 has a stronger impact on the confidence level than in 
scenario I, see figure 4. If the shape parameter is erroneously assessed as 2.0 instead of 4.0, the 
confidence level is halved from the required 90% to an alarming value of 44% 
 

 
Figure 4: Achieved confidence level 𝐶𝐶𝐶𝐶 for scenario II of a RDT with uncertain shape parameter 𝛽𝛽 

 
Scenarios I and II show the consequences of an uncertain or erroneous estimation of the shape 
parameter 𝛽𝛽 of a failure-free test planning. In both scenarios, the shape parameter is assessed to be too 
small. Of course, it is also possible to estimate a shape parameter that is too large. From a statistical 
point of view, there is no increased reliability risk, quite the contrary: the sample size is too large. 
However, this means an economic risk, as unnecessary costs are incurred. The effects of an 
overestimated shape parameter can also be seen in figure 1 and figure 3. If a shape parameter of 4.0 is 
estimated for Scenario II, but in reality the shape parameter is only 2.0, a sample size of 88 would be 
sufficient instead of a sample size of 350. That means that almost four times as many specimens are 
tested than would be necessary. 
 
The scenario study is intended to illustrate that it is of enormous importance to ensure an accurate 
estimate of a shape parameter at the beginning of a failure-free test planning. In addition, this shape 
parameter should be questioned, if possible, by performing failure-oriented test. For example, a RDT 
can be used to release a sample phase of a product development project. After this release, the failure-
free test can be continued until a sufficient number of failures have occurred. This censored sample then 
allows the confirmation of the estimated shape parameter of the test setup for the RDT by a Weibull 
analysis of the censored sample. 
 
3.2.  Probability for a successful life test 
 
In addition to estimating the required sample size and the resulting confidence levels, the probability of 
all test items surviving the required test duration without failure must also be determined. According to 
[4], [5] this probability for a successful life test can be determined as follows: 
 

𝑃𝑃𝑧𝑧𝑧𝑧 = 𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛𝑡𝑡𝑡𝑡  𝑜𝑜𝑧𝑧 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑚𝑚𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 𝑤𝑤𝑚𝑚𝑡𝑡ℎ 𝑧𝑧𝑡𝑡𝑡𝑡𝑜𝑜 𝑧𝑧𝑡𝑡𝑚𝑚𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑠𝑠 𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛𝑡𝑡𝑡𝑡 𝑜𝑜𝑧𝑧 𝑡𝑡𝑡𝑡𝑚𝑚𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡

    (6) 
 
To estimate the probability 𝑃𝑃𝑧𝑧𝑧𝑧 for a successful success run or a failure-free trial of a sample, the failure 
behaviour of the specimen has to be characterized. For the case of a Weibull distributed failure 
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behaviour, in addition to the shape parameter 𝛽𝛽 , the second parameter of a 2-parameter Weibull 
distribution is now also necessary, the scale parameter 𝜂𝜂 . Based on the binomial distribution, the 
probability can now be calculated that, for a defined number of specimens with a known failure 
probability respectively reliability, no specimen will fail until a certain point in time. This probability 
based on the binomial distribution thus corresponds exactly to the sought probability for a successful 
life test in which no failures occur [6]. 
 

𝑃𝑃𝑧𝑧𝑧𝑧 = 𝑅𝑅(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑚𝑚      (7) 
 
The reliability at time 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  of a sample with Weibull distributed failure behaviour can be described 
with: 
 

𝑅𝑅(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  𝑒𝑒−�
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜂𝜂 �

𝛽𝛽

      (8) 
 
The supposedly simple plannability of a reliability demonstration test is thus dependent on the 
estimation or prior knowledge of the failure behavior of the product. The impact of uncertain estimates 
on the probability of success 𝑃𝑃𝑧𝑧𝑧𝑧 of a success run test is analyzed below. 
 
Figure 5 shows the success probabilities for a RDT of scenario I for a planning based on correct 
parameters of the Weibull distribution. 
 
 

 
Figure 5: Planning of an RDT of scenario I on the basis of known, secure planning parameters 

 
However, since Weibull parameters cannot be determined from the results of an RDT, which is 
necessary for the planning and evaluation of a RDT, both planning and evaluation must be performed 
with uncertain Weibull parameters. 
 
In addition to determining the probability of success when the Weibull parameters are known, figure 5 
also allows the probability of success to be estimated when the distribution parameters are imprecise. 
For example, if a shape parameter is estimated as 3.0 and a scale parameter is estimated as 800.000 LC, 
this results in a probability of success of 95.8%. However, if in reality the shape parameter is only 2.5 
and the scale parameter is 400.000 LC, a sample size of 45 specimens (see figure 1) would result in a 
success probability of 50.4%. 
In addition, the influence of the sample size must now be taken into account, which is shown for the 
described example in figure 6. 
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Figure 6: Planning of a RDT on the basis of uncertain planning parameters for scenario I 

 
Planning based on the shape parameter with 𝛽𝛽 = 3.0 would result in a sample size of 𝑛𝑛 = 52. With these 
52 test specimens, the probability of success is now to be checked, whereby the real distribution 
parameters with shape parameter 𝛽𝛽 = 2.5 and scale parameter 𝜂𝜂 = 400.000 LC must also be taken into 
account. The probability of success based on the assumption would be 95.8%, but in reality, a reduced 
probability of success of 45.3% for passing the test would have to be expected. Consequently, a 
supposedly safe success run test would in reality only be successful in every second case, see table 1. 
 

table 1: Exemplary comparison of the effects of uncertain distribution parameters on success 
probability for scenario I 

 
 assumption reality 
shape parameter 𝛽𝛽 3.0 2.5 
scale parameter 𝜂𝜂 800.000 LC 400.000 LC 
sample size 𝑛𝑛 52 52 
probability of success 𝑃𝑃𝑧𝑧𝑧𝑧 95.8% 45.3% 

 
 
The exemplary effects of the uncertain Weibull parameters on the probability of success of a RDT for 
scenario II are shown in figure 7. 
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Figure 6: Planning of a RDT on the basis of uncertain planning parameters for scenario II 

 
 
The deviations between assumption and reality are even more pronounced in scenario II compared to 
scenario I, see table 2. 
 

table 2: Exemplary comparison of the effects of uncertain distribution parameters on success 
probability for scenario II 

 
 assumption reality 
shape parameter 𝛽𝛽 3.0 2.5 
scale parameter 𝜂𝜂 800.000 LC 400.000 LC 
sample size 𝑛𝑛 175 175 
probability of success 𝑃𝑃𝑧𝑧𝑧𝑧 95.8% 38.0% 

 
 
 
3.3.  Approaches for improvement 
 
The supposedly simple plannability of a RDT is directly dependent on the quality of the Weibull 
parameters used, but the assumed distribution parameters can neither be confirmed nor refuted by a 
RDT. From this finding, an improvement approach in the application of a RDT is that it should ideally 
be preceded by a failure-oriented testing. This is particularly recommended if no failure data from 
predecessor products are available or if a significantly changed failure behaviour of the new product is 
to be expected. 
 
Frequently, failure-free testing is planned, carried out and evaluated, for example to release the next 
sample loop as part of a product development process. After the actual end of the RDT, however, it 
should be continued for as long as possible with the goal of continuing to test as many prototypes as 
possible until failure. This failure data can then be used to perform a Weibull analysis and thus 
determine the Weibull parameters for the investigated product design. These distribution parameters 
now allow a critical review of the planning and evaluation activities of the tested sample phase and 
enable a reduction of the uncertainties of the subsequent sample phase. Downstream failure-oriented 
testing should take place no later than the final release for series production of a new product in order 
to be able to confirm the assumptions for the planning and, above all, the validity of the results of the 
product testing and thus minimize a possible field risk. 
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Another way of creating the most robust possible assumptions about failure behaviour and thus a 
planning and evaluation basis with few uncertainties can be to use stochastic fatigue simulations [3]. 
From these analyses, initial product-specific estimates for the distribution parameters can then be 
determined. 
 
 
4.  CONCLUSION 
 
The previous considerations show that for RDTs assumptions about the failure behaviour of the 
specimens are necessary, although failure-free testing is performed. The effects of uncertain Weibull 
parameters are sometimes very clear and must be taken into account; in particular, rough estimates of 
failure behaviour must be viewed critically. As shown in the case studies, an apparently solidly designed 
RDT can be planned with a supposedly high confidence level. However, based on imprecise, assumed 
distribution parameters, the conclusions drawn from the results of the RDT may not be very robust, 
which may lead to a risky product release with risks of field performance of the serial products. This 
risk must be identified and minimized with suitable measures, such as an adjusted sample size. Some 
possible improvement approaches for a planning and evaluation basis for RDTs that is as robust as 
possible always consists of an accurate estimation of the failure behaviour, which, however, originates 
from a failure-oriented product testing. Thus, RDTs should always be applied in the context of upstream 
or downstream failure-oriented product testing. 
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