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Abstract: The Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER) software 
is a procedurally driven nuclear operator simulation developed to support dynamic human reliability 
analysis (HRA) research. The approach aims to reduce the complexity of dynamic HRA by leveraging 
existing plant procedures to aid analysts in developing simple proceduralized tasks to define the virtual 
operator. The simulation was developed to run in tandem with a plant model to enable dynamic 
performance context evaluations using GOMS-HRA primitives to define time distributions and base 
human error probabilities for individual procedure steps. The simulation supports HEP quantification 
with a dynamic approach intended for integration with dynamic probabilistic risk analysis. This paper 
describes the initial version of the software implementation and details the various modules used to 
perform the simulation. 
 
 
1.  INTRODUCTION 
 
Nuclear power plants (NPP) are safety critical systems characterized by low probability, but significant 
and potentially catastrophic failure consequences. This low failure probability is a direct result of the 
substantial and rigorous nuclear, systems, and human factors engineering performed to ensure safe 
operation. Indeed, the nuclear industry has an impeccable safety track record evidenced by the existence 
of a mere handful of failure events. Without empirical evidence, which fortunately is scant, probabilistic 
risk analysis (PRA) methods are used to evaluate the design for potential failures before they occur. 
Until recently, the nuclear industry primarily used static risk analysis methods comprised of plant 
functionality models comprised of component and system logic with an assigned failure probability. 
Manufacturers of the equipment and control systems do have empirical failure data on individual 
elements, and therefore the models can integrate component and subsystem probabilities to evaluate 
larger critical system function failures to determine system risk. There have been recent advances in 
dynamic probabilistic risk analysis to perform Monte Carlo based simulations of these risk models in 
tandem with a plant model representing the critical processes. Through this approach, emergent failures 
are revealed, and a richer evaluation of system risk is achieved.  
 
One crucial aspect that is currently quite limited in these dynamic PRA approaches, at least within the 
U.S., is integration with realistic human reliability analysis (HRA) estimates. Human activities are often 
represented generically by one of two human error probability (HEP) values, 0.01 or 0.001 for diagnosis 
or action activity types respectively, taken from SPAR-H [1]. Operator actions are much more varied 
and can have drastic consequences—both positive and negative on system performance. As such, 
dynamic HRA modeling techniques are needed to provide a more realistic HEP value based on the plant 
state and operational context suitable for integration with dynamic PRA. This paper is one of a series 
of related papers documenting the research and development performed to translate the Human 
Unimodel for Nuclear Technology To Enhance Reliability (HUNTER) framework to a dynamic human 
reliability software tool [2]. Specifically, this paper presents the software architecture developed to 
perform the simulation. The software modules and their functionality are described within the context 
of analysts workflow, which includes model construction and model execution. 
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2.  HUNTER ARCHITECTURE 
 
The HUNTER framework was translated into a simulation application written in the Python 
programming language. The simulation code supports the ability to execute analyst defined scenarios 
organized as tasks comprised of procedures or procedure sections. The procedures within the tasks are 
predefined as inputs to the application and contain all the necessary data elements to execute 
proceduralized tasks based on the simulated nuclear plant state. The state is used to evaluate the logic 
within each procedure step, and the virtual operator completion of each step is evaluated with a dynamic 
HRA module that uses the simulation context to calculate completion durations, HEPs, and success or 
failure.  
 
A central aspect of this dynamic HRA software implementation is the proceduralization of activities to 
drive the virtual operator within the simulation. This model forms the roadmap that the scheduler 
references as it progresses through the simulation. When performing a task, operators execute a series 
of procedures or sections of procedures to arrive at the intended goal, i.e., plant state. Given its central 
importance to the simulation, the structure of procedures forms the basis for the overall software 
architecture and the modules were built to accommodate this structure. NPP operators use several 
different types of procedures, but from an HRA perspective, the most pertinent procedures are 
emergency operating procedures (EOPs) and abnormal operating procedures (AOPs).  
 
 

 
Figure 1: Example Emergency Response Procedure in the Two-Column Format 

 
These types of procedures follow the two-column format in which the left Instruction column is the 
primary route towards a goal plant state and the right Response Not Obtained (RNO) column is used 
when criteria are not satisfied while completing a step in the left column. To complete a procedure, the 
operator executes each procedure step sequentially until all are completed, or the operator encounters a 
step with criteria that are unsatisfied and alternative activities are a required. Immediately after 
encountering failed criteria, the operator branches into the corresponding RNO column step, denoted 
with the same step number or substep identifier. The RNO step may entail performing other actions or 
require a transition to another step or another procedure entirely. This basic step execution forms the 
basis for the HUTNER software architecture and can be seen in Figure 2. These elements include the 
following basic structures: 
 

• Step—refers to a small set of activities that represent the base organization unit defined within 
the element class in the software.  Procedures are commonly organized in two columns of steps 
as exemplified by those used at Westinghouse pressurized-water reactors. The primary tasking 
steps occur in the left column, denoted as instructions. If the criteria for the instructions are not 
met, then the operator moves to the right RNO column, which offers an alternative set of 
activities that may align with corresponding instruction column’s goal. Not all instruction 
column steps have a corresponding RNO step, depending on the nature of the procedure. By 
design, all procedures attempt to be closed such that any step’s success or failure branches to 
another step within the same procedure or transitions to a different procedure. 

• Substep—refers to the secondary tasking that is performed within a main procedure step. Often 
a procedure step requires multiple substeps by operators to complete the desired tasking. While 

EOP-E-0 REACTOR TRIP OR SAFETY INJECTION

INSTRUCTIONS RESPONSE NOT OBTAINED
Check CNMT Pressure - HAS
REMAINED LESS THAN 10 PSIG

Perform the following:
A) Verify CNMT spray - ACTUATED
b) Stop all RCPs

16. 16.



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

steps are numbered, substeps are usually treated alphabetically—Step 1a, 1b, etc.—meaning 
main Step 1 followed by substeps a and b. 

• Logic—each step or substep contains a statement that instructs the operator to act or determine 
a particular plant state. The logic contains the object which is a component or more specifically 
a parameter of a component and boolean criteria to evaluate the object’s state. The result of the 
logic evaluation dictates whether the step can succeed or fail. 

To support the dynamic human reliability aspects of the simulation, contextual information is integrated 
with the procedure steps. This is done because each step activity is assigned a GOMS-HRA primitive 
to provide a time duration associated with completion of the task and HEP for the task [2][3]. The 
simulation is able to use the plant state to evaluate the context to calculate nominal time durations and 
HEPs. Additional details on the modules evaluating the context and plant state is provided in a 
subsequent section. 

• Primitive—refers to the GOMS-HRA task level primitives ([2]HUTNER REPORT)[4], which 
the HUNTER code uses to determine time durations and nominal HEPs for tasks. More than 
one task level primitive may be associated with a step.  

• PSFs—refers to performance shaping factors that are dynamically or statically calculated 
during the simulation and applied to the primitive. The nominal HEP and time duration sampled 
during the simulation are multiplied by the combined PSFs to adjust the simulated time duration 
and the HEP value at each time point in the simulation.  

• Result—for a given step to be executed successfully, the logic must be upheld and the primitive 
evaluation must be evaluated as within the available time and exceed the success criteria for 
the HEP. 

 

3. SIMULATION MODEL CONTRUCTION 

The simulation requires an analyst to load a simulation model that defines all aspects of the simulation 
including the following: 
 

1. Tasks, procedures, and steps mapped with specific plant parameters 
2. Performance shaping factors with levels mapped to particular steps or definitions of their 

general equations for calculation over the simulation 
3. Meta simulation parameters including number of Monte Carlo runs and result output format of 

the simulation parameters and the task and procedure objects  
 

To construct a model of these elements, an analyst enters these elements into a formatted file following 
a specific structure and coding scheme. The model file format based on comma-separated values (CSV) 
was selected as the primary means for an analyst to construct the model, since it provides a table-based 
format that lends itself to simple manual entry of procedure elements with widely available commercial 
software. This format shares some similarity to input deck files used for other codes such as RELAP5-
3D [5]. In the current application version, the analyst must manually enter each model element; 
however, a module to automatically parse procedure documents and populate the table with procedure 
elements is under active development and will be included in a future release of the software. 
Furthermore, analysts can bypass the CSV manual entry by constructing models in a recently developed 
graphical user interface (GUI) for HUNTER that allows analysts to more easily create and edit the 
model file within the same application that runs the simulation and displays the results. A description 
of this GUI is outside this scope of the basic architecture described here, but additional details can be 
found in an accompanying paper in this same series [6]. 
 
The analyst must also populate details for the human reliability context and the virtual plant context for 
each procedure. Specifically, the analyst can prescriptively drive the procedure path by specifying plant 
parameters needed to support procedure logic at branch points. The code also supports defining multiple 
possible paths toward different outcomes. With the open-ended procedure construction, the analyst must 
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select a supporting simulator and define specific parameters associated with each step that are evaluated 
at run time to determine the success or failure of a given step. Where external simulation codes are not 
available, information may be dummy coded to support HUNTER’s progression through the 
procedures. In both the open-ended and dummy mode of procedure execution, the analyst can also 
define the human reliability parameters for each step to add the HRA layer onto the procedure execution. 
In this simulation mode, the procedure uses the provided context information to calculate an HEP for 
each step, which yields a success or failure outcome and can change the course of the simulated 
procedure path. 
 
Each row of the input deck represents a step level item and must have a step number (see Figure 2). 
This step number is used to group any additional related rows (e.g., all rows tagged as 12 are processed 
by the parser as a collection of sub-elements to be grouped within step 12). As the number of items 
contained within a step is variable, additional rows with the step number tag support the ability to add 
as many elements as needed without complex reformatting of the model CSV file. 
 

 
Figure 2: Region of the HUNTER Input CSV File Demonstrating Additional 

Elements Under the Same Procedure Step 
 
An intermediary process converts the CSV file upon opening and initializing the HUNTER application 
with a parser class into a JavaScript Object Notation (JSON) format that is then directly consumed by 
the scheduler class. Analysts can construct their models in JSON, but the structure of these files is not 
as readily human readable as CSV files. This parser class allows the analyst to work with the more 
easily human read and edited CSV file, while the JSON format is much easier for the application to 
consume. The CSV file can be edited and viewed as a spreadsheet table, meaning it has consistent fields 
mapped across a matrix. In contrast, a JSON file does not populate cells without information, and only 
fields that are actively changed are conveyed in the file. Thus, the structure of a JSON files is much less 
linear in appearance and more less humanly readable. 
 
The parser file relies on dummy coding to process each row, or subsequent rows, as a part of a single 
procedure step. The input file can be divided into the four nesting levels of step, substep, logic, and 
HRA as depicted in Figures 2 - 4, respectively. 
 



Probabilistic Safety Assessment and Management PSAM 16, June 26-July 1, 2022, Honolulu, Hawaii 

 
Figure 3: Procedure Substep Region of the HUNTER Input File 

 

 
Figure 4: Logic Region of the HUNTER Input File Denoting Names of Plant Parameters 

 

Populating any row of these four regions requires adding TRUE to the corresponding parser flag 
columns, which are labeled isRno, isSubStep, isPoint, and isPrimitive, based on their associated element 
type. For example, Figure 2 above shows the left region of the CSV input file for a procedure with the 
leftmost column indexing each step as a numerical number. The next column, isRno, is a parser flag 
column used to denote if the step is a response obtained or an RNO type of step. Step 9 in the figure, 
which is highlighted in orange, demonstrates the dummy coding for a step with a response obtained. 
The second row of Step 9 shows an RNO step. The second nesting region, the substep region shown in 
Figure 3, follows exactly the same organization but for substeps. Step 3 in the figure shows substeps a 
and b appearing as two sequential rows. Similar to adding an RNO element, adding substeps requires 
adding rows and tagging those rows with the step number. It is also possible to combine RNO and 
substeps following this same structure and coding scheme. 
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Figure 5: GOMS-HRA Task-Level Primitives Found in HUNTER Input File 

 
The third and fourth nesting regions, shown in Figures 4 and 5, depict the point and primitive fields, 
respectively. These elements can be nested at the step or substep level. Therefore, any element added 
to this row must ensure that the isPoint and isPrimitive parser flag columns are set in addition to the 
isSubStep column if the point or primitive should be nested within a substep item. 
 
4.  SIMULATION MODEL EXECUTION 

This section describes the modules as they are used to run each of the Monte Carlo simulations. Before 
describing the individual modules, the plant model itself is worth describing. The plant model is not in 
itself a module, but it is a crucial aspect of the overall simulation and enables much of the dynamic 
capabilities provided by HUNTER. A plant model is run in tandem to track the plant state as the virtual 
operator manipulates components based on the procedure as well as the natural progression of the 
simulation without intervention, which is typically initiated with a fault and progresses towards a system 
failure state without operator intervention. Therefore, the virtual operator’s success or failure is largely 
governed by the amount of time remaining to mitigate a given fault based on the amount of time required 
to complete the mitigating activities. The scheduler travels along the procedure path while polling the 
plant state through an API module to determine whether key parameters have exceeded threshold values 
indicating a system failure and the end of that simulation run. In its current version, the API module 
supports communication with RELAP5-3D [5] and Rancor Microworld [7] simulations. 
 
4.1  Scheduler Module 
 
The Scheduler module includes several classes that collectively perform Monte Carlo based simulations 
of the task defined through the CSV input files. The scheduler acts as the executive for what is being 
done by which module and when. Practically, it serves as the placekeeper for the other modules. The 
scheduler stores analyst-defined configurations for the overall simulation in a configuration class that 
is accessible throughout the simulation to serve as a central data repository for the application. The 
Scheduler module has access to all the other modules and contains several subclasses itself, most 
notably the log class that outputs data to CSV log files. 
 
The Log class serves as the historian and performs input/output functions to record each simulation run 
in CSV output files. The log class also contains some debugging capabilities to assist analysts in testing 
the CSV input files and logging errors in procedure path execution, such as an unclosed procedure path 
with no possibility to advance. As the scheduler is executing simulation runs, it is monitoring the runs 
to cease any failed runs and move to the next run attempt. 
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4.2  Task Module 
 
Within each simulation run, the Scheduler calls the Task module to execute the procedure steps. The 
Task module contains the classes that store and manipulate the activity executed during each simulation 
run. The Task module contains the procedures with their steps. The module can execute unlinked 
procedures in sequence, but in practice the task typically begins on a specific procedure at a specific 
step and then the steps themselves contain all the information to guide the simulation since each step 
contains the appropriate transition to other procedures in the task. Specifically, each step contains a 
transition object that contains an identifier for the next step based on the results of its own successful 
or failed execution. These transitions can be: 
 

1. The next instruction column step within the procedure sequence 
2. The adjacent RNO column step or substep, or a step in another procedure 

 
Each step is executed, and the result of the execution contains the appropriate next step item. The steps 
within the procedures of the task are completed until no more instruction steps remain or an end 
simulation flag is encountered. While executing each step, the HRA module calculates the elapsed time 
required to perform and an HEP for each step. 
 
4.3  HRA Module 
 
The Task module relies on the HRA module to evaluate the plant context and performs two key 
functions. First, it calculates an elapsed time for each step or substep activity and increments the 
simulated time for the main simulation and the plant simulation. This is important to progress the plant 
state in step with the time durations required to perform each step activity. Second, the HRA module 
calculates an instantaneous HEP, which is used to alter the course of the procedure path or incur a time 
debt. The HEP aspects of the module are still quite limited, but the simulator can fail a step based on a 
calculated HEP exceeding an analyst defined threshold. Based on the analyst defined configuration, the 
step is repeated, and a time debt is incurred, which over several failed steps can lead key parameters 
within the plant simulation to exceed their thresholds such that the simulation run ends in a system 
failed state. The other approach that is supported currently is to treat the HEP threshold exceedance as 
a procedure logic failure and follow the failed procedure step transition to the next appropriate step. In 
this configuration, the failure leads the virtual operator down the wrong path. The critical element that 
binds the Task and HRA modules together is the Step module, which contains the parameters used by 
the HRA module. 
 
4.4  Step Module 
 
The Step module is responsible for executing each step, which entails evaluating the plant state against 
the logic defined within the step and evaluating the HRA context. The Step module contains a 
step class, which serves as the data structure to store parameter objects defining each step. One 
key parameter object is the logic which contains the plant model component parameter and the logic 
test used to evaluate the state of the component. The step class also contains several HRA parameter 
objects. GOMS-HRA task-level primitives are defined in the primitive subclass parameter object. Each 
step can contain multiple primitives to represent more complicated activities, but in practice there 
should never be more than two based on initial simulator validations. Ideally a single primitive should 
be assigned to each step or substep, but due to the variability within procedure steps, more complicated 
steps that do not contain any substeps may require two primitives to capture the intended tasks. 
Primitives are defined with the GOMS-HRA coding scheme, such as CC to denote the “check in the 
control room” task-level primitive. Each task-level primitive type has a predefined execution time 
distribution and HEP associated with it. The various contexts surrounding the virtual operator are 
defined in the PSF class. Relevant PSFs from SPAR-H can be assigned with default levels 
corresponding to specific multiplier values that are applied on top of the base HEP linked to the GOMS-
HRA primitive. 
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Figure 2 depicts the different data elements and their relationships in terms of how the Step module 
evaluates each procedure step. The evaluation of the step serves both as a datapoint recorded in the log 
of the simulation run and dictates the next procedure step selection for the simulation. Figure 3 below 
depicts how the Step module evaluates each step by using the API module and HRA module to gather 
plant state data to evaluate the step logic and evaluate the HRA context. 
 
 

 
Figure 2: Basic Procedure Step Execution 

 

 
Figure 3: Step Module Execution Example Using the Instruction Step,  

Left Column, from the Sample Procedure in Figure 1 
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Not all of these elements must be defined within each step. In fact, HUNTER can be run without the 
plant model to perform time uncertainty quantification estimates that purely look at the variability in 
the execution of particular tasks. In this manner, the simulation model must define the outcome for each 
step, since there is no way to evaluate the logic in the absence of a plant model running in tandem. The 
intent of this dummy mode is to support examining the human reliability variables along a prescribed 
path to examine known scenarios or validate to an empirically observed scenario. 
 
5.  CONCLUSION 
 
The HUNTER software was developed to bring together the disparate capabilities contained within its 
framework that shares the same name. Modelling simplicity served as the guiding philosophy for its 
development. Indeed, the simple proceduralized representation of a virtual operator aims to achieve this 
simplicity goal and alleviate analysts from constructing complicated models to drive virtual operator 
action. However, after this initial first round of development the need for some cognitive aspects has 
become apparent. The treatment of human error induced failures is quite simplistic in the software’s 
current implementation. When a step fails due to a large calculated HEP, the simulation either repeats 
the step to represent a fairy insignificant human error or the procedure path diverges from the logically 
evaluated state calculated with values from the simulated plant model to represent a more substantial 
human error. When should either of these two failure outcomes be used over the other? The capability 
to perform the two was developed to test each option, but it raised the issue of how to treat human errors 
in general since there are many more failure modes possible and plausible. A cognitive model could 
potentially drive the operator response, but this would quickly complicate the modelling and render the 
simulation too cumbersome for wide use. Instead, a more simplistic approach could entail a coding 
scheme to map human error types to operator responses. For example, an operator might sample the 
wrong value and this value does uphold the logical evaluation. The HEP is no longer used only to 
calculate the outcome of the task, but instead it is used to also determine how the information is used to 
interpret the step logic or perform the control action. Certainly, this approach could provide a richer set 
of outcomes than the binary success or failure that is currently modelled. This is a promising area of 
research that will be pursued in future work. 
 
Despite some of the shortcomings contained within this initial version, the HUTNER software provides 
a simplified means to create and run dynamic HRA models in tandem with a plant model. The overall 
goal of the HUNTER simulation is to enable better quantification of HEPs, such that the simulation can 
run in tandem with a larger dynamic PRA simulation or be used to build more accurate tables of HEP 
estimates that are suitable as inputs for dynamic PRA. The simulation is under active development to 
increase its functionality and achieve a technology maturity sufficient for widespread release in the 
hopes of more accurately capturing the nature of human error in complex nuclear process control. 
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