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Abstract: Failures of multiple redundant trains of the electrical power supply systems at nuclear power 

plants (NPPs) have recently gained increasing attention by the nuclear community. This was triggered 

by events at different NPPs where single component failures affected multiple redundant trains, e.g., at 

the Byron and Forsmark NPPs. In both events, the electrical consumers remained connected to the fault 

and were exposed to an asymmetric voltage supply, leading to the unavailability and the destruction of 

safety related electrical equipment. To consider such events in probabilistic safety analyses (PSAs), the 

failures of electrical components due to an asymmetry in the electrical power supply system have to be 

adequately modelled and quantified. A comprehensive analysis of national and international operating 

experience has shown that component failures resulting from an asymmetry cannot be modelled as 

independent events but are strongly correlated. Identical components with comparable loads tend to fail 

simultaneously. This is highly important to safety since redundant components are likely to be affected 

by such correlated failures. To grasp this effect, different modelling approaches have been devised. 

Estimation algorithms for the respective model parameters have been developed and applied utilizing 

the available international operating experience. 

 

 

1.  INTRODUCTION 
 

Faults simultaneously impairing multiple trains of the electrical power supply systems at nuclear power 

plants (NPPs) have recently gained increasing attention by the nuclear community [1]. This was 

triggered by events occurred at different NPPs that involved so-called asymmetrical faults. An 

asymmetrical fault results from the degradation (e.g. an interruption) of one or two of the three phases 

in a three-phase alternating current system. For example, at the Byron NPP in the U.S., an asymmetry 

in the power supply system resulted from a single failure of an insulator in the switchyard of the plant. 

The asymmetry failed to cause the reactor protection system (RPS) to initiate the isolation of the 

emergency bus bars and the operation of the emergency diesel generators. As another example, at the 

Forsmark NPP in Sweden, the failure of one pole of a breaker to open led to an open phase condition 

that was also not detected by the RPS. In both cases, the electrical consumers remained connected with 

the fault and were exposed to an asymmetric electric energy supply, leading to the unavailability and 

even the destruction of electrical equipment. The electrical power supply system is particularly 

susceptible to faults affecting multiple trains since there is no separation between the redundant trains 

during (normal) power operation. 

 

Such events have generally not been included in PSAs of NPPs yet, which may be attributed to the 

apparent past general underappreciation of the possible importance of such phenomena. Therefore, GRS 

has initiated research projects aiming at a comprehensive in-depth analysis of events characterized by 

fault states of multiple trains of the electrical power supply system, including, but not limited to, open 

phase conditions, and at the development of modeling and quantification methods to include them in 

PSAs [1].  

 

Initially, the failure of components due to an asymmetric electrical energy supply was modelled by an 

asymmetry-dependent failure probability, i.e., it was assumed that components fail independent from 
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each other with a probability that is dependent on the asymmetry of the energy supply for the specific 

component. The relation between asymmetry and failure probability was derived from theoretical 

considerations in connection with selected operating experience. The asymmetries for the different 

components were calculated using a detailed model of the energy supply system at ra modern 

pressurized water reactor reference plant [2]. Generally, the asymmetry at different bus bars is different 

due to the effects of transformers and loads. Redundant bus bars usually have similar asymmetry values 

since they have similar loads and similar connections to other parts of the electrical energy supply 

system. This causes a correlation of failures of components on redundant bus bars, which generally 

includes the groups of identical and redundant components. The analysis of the international operating 

experience, however, showed that the observed correlation of failures of identical components with 

similar loads is much stronger than predicted by this model [1], i.e., in many cases, identical components 

with similar loads fail while other components at the same bus bars are unaffected. This is of high 

importance to PSA results since redundant components are likely to be affected by such correlated 

failures. Therefore, approaches to improve the modelling by more adequately including the correlations 

of failures of identical components with similar loads have been devised. Algorithms to estimate the 

model parameters and their uncertainties have been developed and applied utilizing international 

operating experience.  

 

In the following, different modelling approaches are presented. The model parameters are estimated 

based on an analysis of national and international operating experience. Finally, the results are presented 

and discussed and an outlook on the planned further activities is given. 

 

2.  ANALYSIS OF OPERATING EXPERIENCE 
 

As a basis for the modelling and quantification of the correlated failures of components due to an asym-

metric electrical energy supply, in a first step the relevant national and international operating experi-

ence was analyzed. Since the rates of relevant initiating events had been assessed and quantified before 

[1-2] the present analysis focused on the (correlated) component failures. For the following ten events, 

quantitative information on component failures during asymmetries of the electrical energy supply sys-

tem could be determined from sources available to the analysts including licensee event reports (LERs), 

e.g. [3], event reports of the IAEA International Reporting System for Operating Experience (IRS), e.g. 

[4], internal reports, e.g., [5], and documents and reports published by regulators, e.g., [6], or other 

organizations such as the IAEA, e.g. [7]): 

  

• Kalinin, Unit 1, 1994, 

• Balakowo, Units 1 und 3, 1997, 

• South Texas, Unit 2, 2001, 

• Vandellòs, Unit 2, 2006, 

• Dungeness-B, 2007, 

• Bruce A-1, 2012, 

• Byron, Unit 2, 2012, 

• Forsmark, Unit 3, 2013, 

• Dungeness-B-2, 2014, and 

• Biblis, Unit A, 2014. 

 

In total, 63 groups of identical components with similar loads that were exposed to the asymmetry and 

where components failed were identified. For 18 groups, the number of exposed and of failed 

components could be investigated, for three additional groups, incomplete information was found. 

Regarding these three groups, it could be established that multiple components had been exposed to the 

asymmetry and that all components failed while the exact number of exposed components could not be 

determined.  
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Generally, in this analysis only actually exposed components and actual component failures were 

considered. The results of technical analyses of further component failures that would have occurred if 

additional components were operated were not included. 

 

In many cases, the exact number of exposed component groups could not be determined. In these cases, 

a rough estimate was used. An analysis of the operation of a German NPP similar to the reference plant 

showed that the number of groups of identical components with similar loads that would be exposed to 

an asymmetry of the electrical power supply system during normal operation and whose failure would 

likely be reported is approximately 90. This number of exposed component groups was also used for 

other plants if no specific information was available. The real number is expected to deviate 

significantly for different plants and different plant operational states (POS); however, a deviation by a 

factor larger than 3 (corresponding to less than 30 or more than 270 groups) appears to be unlikely. It 

should be noted that this number pertains to groups of identical components with similar loads, not 

individual components. Hence, the degree of redundancy implemented in the plant does not affect this 

number. If in an event two reactor units were affected by an asymmetry, the double number was used. 

In some instances, the exact number could be determined for a specific subset of components (e.g., in 

the Byron, Unit 2, 2012 event, the medium voltage loads). Then, only this subset was used. 

 

3.  MODELLING AND QUANTIFICATION OF CORRELATED FAILURES 
 

Operating experience shows that, when exposed to an asymmetry of the electrical energy supply, 

identical components with similar loads are likely to fail together. Therefore, the model focusses on 

estimating the probability of specific failure combinations of components of such groups. First, the 

groups of identical components with similar loads are identified. In most cases, these are the sets of 

redundant components running at the onset of the asymmetry or started in the course of the event, e.g., 

the auxiliary feedwater pumps, or the diesel building air supply fans. 

 

The general model consists of two stages (see Figure 1). If an asymmetry occurs with a certain 

probability 𝜇A  failures occur in the group (stage I). If failures do occur 𝑘 out of the 𝑒 components 

exposed to the asymmetry fail with probability 𝑤𝑘\𝑒, 𝑘 = 1 … 𝑒 (stage II). For a specific event, 𝜇A and 

𝑤𝑘\𝑒 are assumed to be identical for all component groups. They can, however, be different for different 

events, i.e., different asymmetries, as will be discussed later. According to the model, the probability 

𝑝𝑘\𝑒 that 𝑘 out of the 𝑒 components fail is  𝑞𝑘\𝑒 = 𝜇𝐴 𝑤𝑘\𝑒 while no components in the group fail with 

probability 𝑞0\𝑒 = 1 − 𝜇A.  

 

In the following, for each of the two stages different specific modelling approaches are discussed. 

 

3.1.  Stage I 

 

For stage I, two different approaches have been considered. Approach I.1 is based on the direct analysis 

of the national and international operating experience discussed above. Based on the numbers of groups 

of identical components with similar loads that were exposed to the asymmetry and on the numbers of 

these groups affected by component failures, an uncertainty distribution 𝑝(𝜇A) was estimated. 
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Figure 1: Two Stages of the Model 

 

 
 

 

If 𝑛 groups have been exposed to the asymmetry and in 𝑛A groups failures have been observed the 

statistical uncertainty of 𝜇A may be expressed as Bayesian posterior distribution. If a noninformative 

prior is chosen according to Jeffreys rule [8] as 1/(√𝜇A √1 − 𝜇A) the posterior is a Beta distribution 

with parameters 𝑛A + 1/2 and 𝑛 − 𝑛A + 1/2, i.e.,  𝑝(𝜇A|𝑛𝐴, 𝑛𝑔𝑒𝑠) = 𝑝Beta(𝜇A|𝑛𝐴 + 1/2, 𝑛 − 𝑛𝐴 +

1/2) ∝ 𝜇A
𝑛𝐴−1/2(1 − 𝜇A)𝑛−𝑛𝐴−1/2. This distribution expresses the statistical uncertainty associated 

with the finite number of groups observed in one event. Observations from different events cannot be 

pooled since 𝜇A cannot be assumed to be identical in all events. This is illustrated in Figure 2: The 

different posterior distributions 𝑝(𝜇A|𝑛𝐴, 𝑛𝑔𝑒𝑠) estimated from the ten individual operating experience 

data sets identified do not overlap, i.e., a common value of 𝜇A pertaining to all events can be excluded. 

 

Figure 2: Probability Density Functions of the Posterior Distributions of 𝝁𝑨 for Different 

Events* 

 

 
 

 
* E.g., the orange curve shows the probability density function for the Byron, Unit 2 2012 event. 
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As demonstrated in Figure 2, in most cases the data indicate small values of 𝜇A, but some events also 

show large values 𝜇𝐴 ≲ 1. To model this, a mixture distribution of a uniform distribution on the unit 

interval and a Beta distribution can be used:  

𝑝Model(𝜇𝐴): =
1

3
+

2

3
 𝑝Beta(𝜇𝐴|4.35, 178.67) (1) 

The distribution parameters of 𝑝Model have been chosen such that they have similar characteristics as 

the mixture distribution (see Table 1). The choice of the weight 1/3 resulted from the following 

consideration: The probability function after the initial peak at 𝜇A ≈ 0 is approximately 0.7. Since the 

tail of the Beta function beyond 0.1 may be neglected, this implies that the uniform distribution has a 

weight of approximately 0.3/0.9 = 1/3.  
 

Figure 3 compares the mixture distribution of the posterior distributions of the ten individual events 

with 𝑝Model. 

 

Table 1: Comparison of the Characteristics of the Model Distribution and the Mixture 

Distribution of the Posterior Distributions of the Individual Events 

 Model distribution 𝒑𝐌𝐨𝐝𝐞𝐥 Mixture distribution of the posterior 

distributions of the individual events 

Mean 0.18 0.18 

Standard deviation 0.28 0.28 

Median 0.030 0.032 

5%-quantile 0.28 0.28 

95%-quantile 0.85 0.84 

K95† 28.8 26.5 

 

 

Figure 3: Comparison of 𝒑𝐌𝐨𝐝𝐞𝐥 (Blue) with the Mixture Distribution of the Posterior 

Distributions of 𝝁𝐀 of the Individual Events (Black) 

 

 
 

In the further course of the project, additional approaches such as a two-stage Bayesian model also will 

be considered.  

 

 
† K95 is the quotient of the 95% quantile and the median. 
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In the alternative approach I.2, the model for component failures developed in the previous stage of the 

project [1-2] is used. Assuming all components of the group are exposed to a similar asymmetry and 

hence have a similar individual failure probability 𝑓 (which turned out to be the case in all simulations 

carried out so far), a relation between the individual failure probability of a component and the 

probability that at least one failure occurs in a group can be established using the average number of 

failures in a group with 𝑒 exposed components, 𝑒 𝑓 = 𝜇A ∑ 𝑘 𝑤𝑘\𝑒
𝑒
𝑘=1 . The result 

𝜇A =
𝑒 𝑓

∑ 𝑘 𝑤𝑘\𝑒
𝑒
𝑘=1

 (2) 

depends on both 𝑓 and on the results of stage II of the model (i.e., the values of the 𝑤𝑘\𝑒, see Section 

2.2). In well-known PSA codes (e.g., RiskSpectrum and SAPHIRE) this calculation can be done 

implicitly by applying the automated common cause failure (CCF) modelling with the Alpha factor 

model: For each component, a basic event is generated that represents the failures of the individual 

components due to an asymmetry. CCF groups are defined as groups of such basic events pertaining to 

identical components with similar loads.  

 

In this approach, the different possible scenarios leading to an asymmetry are reflected by different 

values for 𝑓 resulting from the simulation of the respective scenario in the model of the electric energy 

supply system. 

 

3.2.  Stage II 

 
For stage II, also two different approaches have been considered. The first approach II.1 consists of 

directly estimating the 𝑤𝑘\𝑒,  𝑘 = 1 … 𝑒 from operating experience similar to the Alpha factor model. 

Here, obviously, only operating experience with a matching number of exposed components 𝑒 may be 

used, unless additional “mapping” algorithms are applied, which are based on assumptions on how 

many failures would have occurred for a different number of exposed components. From the available 

operating experience, events have been observed for group sizes of 2 to 4. The uncertainty of the pa-

rameters can be expressed as Bayesian posterior distributions. If a noninformative prior is chosen ac-

cording to Jeffreys [8] and 𝑛𝑘\𝑒 , events with 𝑘 failures out of the 𝑒 exposed components, 𝑘 = 1 … 𝑒, 

have been observed the resulting distribution is a Dirichlet distribution with parameters 𝑎𝑘\𝑒 = 𝑛𝑘\𝑒 +

1/2, i.e.,  

𝑝(𝑤1\𝑒, 𝑤2\𝑒, … 𝑤𝑒\𝑒) = 𝑝Dirichlet(𝑤1\𝑒 , 𝑤2\𝑒 , … 𝑤𝑒\𝑒|𝑎1\𝑒 , 𝑎2\𝑒 , … 𝑎𝑒\𝑒) 

∝ ∏ (𝑤𝑘\𝑒)
𝑛𝑘\𝑒−1/2

𝑒

𝑘=1
 

(3) 

The parameter estimates resulting from using the operating experience described above are given in 

Table 2. 

 

Table 2: Parameters of the Dirichlet Distributions of 𝒘𝒌\𝒆 

Number 𝒆 of exposed 

components  

𝒂𝟏\𝒆 𝒂𝟐\𝒆 𝒂𝟑\𝒆 𝒂𝟒\𝒆 

2 0.5 9.5 N.A. N.A. 

3 0.5 0.5 5.5 N.A. 

4 1.5 1.5 0.5 2.5 

 
The alternative approach II.2 is based on a hierarchical model. The model topology (cf. Figure 4) is 

based on the following considerations: The loads and the configuration of the protective devices of the 

components of a component group can be such that the failure of the components is certain if the 

asymmetry occurs. Therefore, the graph initially branches into “failure of all components” and “no 

failure of all components”. If a failure of all components is not certain, the probability of failure of the 

components may be so low that it is unlikely that more than one component will fail. Therefore, the 
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graph now branches into failures of only one component and failures of multiple (but not all) 

components. For groups of size 4, this node cannot be uniquely assigned to a failure combination, so 

there is a further branching into the nodes “failure of more than half of the components” and “failure of 

not more than half of the components”. 

 

Figure 4: Hierarchical Model II.2 

 

 
 

For groups of two exposed components, only the red part of the graph is relevant, for groups of three, 

the red and the green part and for groups of four the whole graph. In Figure 4, the end states for all 

possible failures for group size up to four are shown in the respective nodes. For groups larger than 

four, a specific failure still maps to a unique path in the model, i.e., such events can be used to calculate 

model parameters. To estimate failure probabilities, however, the model must be extended. E.g., to 

cover groups up to the size of six, two subsidiary notes of “failure of not more than half of the 

components” for two and three failures of six exposed components, respectively, are added. Similarly, 

two subsidiary notes of “failure of more than half of the components” are added for four and five 

failures, respectively. If no operating experience is available to quantify the transitions to these states, 

the a priori distribution of the transition probabilities as discussed above describes the uncertainty of 

the transition probabilities.   

 

This model also allows for the utilization of incomplete information: If, e.g., for a group of identical 

components with similar loads it is known that all exposed components failed while the exact number 

of exposed components is unknown this information can still be utilized for the estimation of the model 

parameter  𝜇𝑐𝑓→𝑛𝑎𝑓.  

 

The model has three independent parameters: The conditional probability that not all components failed, 

given that failures occurred in the group 𝜇cf→naf , the conditional probability that more than one 

component failed, given that not all components failed 𝜇naf→mt1f and the conditional probability that 

more than half of the components failed, given that more than one component failed  𝜇mt1f→mthf.  
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It is important that, if any subsidiary nodes can be accessed from a node for a specific group size, all 

subsidiary nodes can in principle be accessed for that group sizes. Otherwise, the transition probabilities 

would have to be calculated group-size-dependent (which neglects the main advantage of the model) or 

a bias in estimations would occur depending on the statistics of observed group sizes. 

 

For the estimation of the model parameters, it is important that any observation corresponds to a unique 

path through the model. This allows to exactly calculate the number of transitions from each node to its 

subsidiary nodes. With this information, the transition probabilities and their uncertainties can be 

calculated. The uncertainties are, again, expressed as Bayesian posterior distributions and a 

noninformative prior according to Jeffreys is chosen. If a node “ℎ” is superior to nodes “𝑙1” and “𝑙2” 

and 𝑛ℎ→𝑙1 transitions from “ℎ” to “𝑙1” and  𝑛ℎ→𝑙2 transitions from “ℎ” to “𝑙2” occurred, the transition 

probability 𝜇ℎ→𝑙1  is distributed according to a Beta distribution with parameters  𝑛ℎ→𝑙1 + 1/2 and 

𝑛ℎ→𝑙2 + 1/2.  Correspondingly 𝜇ℎ→𝑙2 = 1 − 𝜇ℎ→𝑙2 is distributed according to a Beta distribution with 

parameters  𝑛ℎ→𝑙2 + 1/2 and 𝑛ℎ→𝑙1 + 1/2.  
 

If groups of sizes two, three or four have been observed, the numbers of transitions can be calculated 

from the observed failure combinations 𝑛𝑘\𝑒 as 

 

𝑛cf→naf =  𝑛1\2 + 𝑛1\3 + 𝑛1\4 + 𝑛2\3 + 𝑛2\4 + 𝑛3\4, 
𝑛cf→af = 𝑛2\2 + 𝑛3\3 + 𝑛4\4, 
𝑛naf→mt1f = 𝑛2\3 + 𝑛2\4 + 𝑛3\4, 

𝑛naf→1f = 𝑛1\3 + 𝑛1\4, 

𝑛mt1f→mthf = 𝑛3\4,  
𝑛mt1f→nmthf = 𝑛2\4.  

(4) 

As mentioned before, for some events with incomplete information it may be possible to determine part 

of the path. Then, the respective numbers of transitions are added to the numbers in equation 4.  

 

Considering the respective paths through the model, the conditional failure probabilities can easily be 

calculated as  

  

𝑤1\2 = 𝜇cf→naf,  
𝑤2\2 = 1 − 𝜇cf→naf, 
𝑤1\3 = 𝜇cf→naf(1 − 𝜇naf→mt1f), 

𝑤2\3 = 𝜇cf→naf 𝜇naf→mt1f, 

𝑤3\3 = 1 − 𝜇cf→naf,  
𝑤1\4 = 𝜇cf→naf(1 − 𝜇naf→mt1f),  
𝑤2\4 = 𝜇cf→naf 𝜇naf→mt1f(1 − 𝜇mt1f→mthf),  
𝑤3\4 = 𝜇cf→naf 𝜇naf→mt1f 𝜇mt1f→mthf,  
𝑤4\4 = 1 − 𝜇cf→naf. 

(5) 

Due to the relations in equation 5, the 𝑤𝑘\𝑒 are dependent, i.e., their joint distribution does not factorize. 

Their distribution and also the marginal distributions of 𝑤𝑘\𝑒 , 𝑘 = 1 …  𝑒 − 1, 𝑒 > 2  cannot be 

expressed analytically. They are, however, easily assessable by a Monte Carlo simulation, as shown 

below.  

 

Both models have advantages and disadvantages: Model II.1 does not rely on any specific assumptions. 

But for every group size, only operating experience pertaining to groups of that size can be utilized. In 

contrast, model II.2 allows the use of the entire operating experience and the extrapolation to larger 

groups. This is important, since groups of size 6 are present in the PSA model of the reference plant. 

The assumptions underlying the model are plausible but cannot be verified given the limited data 

available. In contrast to model II.1, model II.2 allows for the utilization of incomplete information. 
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3.3.  Combination of the Two Stages 

 

To estimate the probabilities 𝑝𝑘\𝑒 that 𝑘 out of the 𝑒 components fail, the results of both stages have to 

be combined. Since no simple analytic expression for the uncertainty distribution of 𝑞𝑘\𝑒 = 𝜇𝐴 𝑤𝑘\𝑒,   

𝑘 = 1 … 𝑒 is available, a Monte Carlo approach need to be applied.  

 

If the 𝑤𝑘\𝑒 are modelled directly (model II.1), the Monte Carlo algorithm is as follows: 

 

Repeat the following steps 𝑆 times: 

 

1. Draw a sample of values 𝑤1\𝑒 , 𝑤2\𝑒 , … 𝑤𝑒\𝑒 from 𝑝Dirichlet(𝑤1\𝑒 , 𝑤2\𝑒 , … 𝑤𝑒\𝑒|𝑛1\𝑒 + 1/2, 

 𝑛2\𝑒 + 1/2, … 𝑛𝑒\𝑒 + 1/2). 

2. a.    For model I.1: Draw a sample of 𝜇𝐴 from 𝑝Model(𝜇𝐴), see equation 1. 

b.    For model I.2: Calculate 𝜇A according to equation 2. 

3. Calculate values 𝑞𝑘\𝑒 = 𝜇A 𝑤𝑘\𝑒 for 𝑘 = 1 … 𝑒. 

 

If the 𝑤𝑘\𝑒 are modelled indirectly, i.e., are derived from the graph in Figure 4 (model II.2), the Monte 

Carlo algorithm is: 

 

Repeat the following steps 𝑆 times: 

 

1. Draw a sample of 𝜇cf→naf  from  𝑝Delta(𝜇cf→naf|𝑛cf→naf + 1/2, 𝑛cf→acf + 1/2)  with 𝑛cf→acf 

denoting the number of events where all component failed and  𝑛cf→naf the number of events 

where not all component failed. 

2. Draw a sample of   𝜇naf→mt1f from  𝑝Delta(𝜇naf→mt1f|𝑛naf→mt1f + 1/2, 𝑛naf→1cf + 1/2) with 

𝑛naf→mt1f denoting the number of events where more than one (but not all) component  failed 

and 𝑛naf→1cf the number of events where one component failed. 

3. Draw a sample of 𝜇mt1f→mthf  from  𝑝Delta(𝜇mt1f→mthf|𝑛mt1f→mthf + 1/2, 𝑛mt1f→nmthf +
1/2) with 𝑛mt1f→mthf denoting the number of events where more than half of the components 

(but neither all nor one) failed and 𝑛mt1f→nmthf the number of events where not more than half 

of the components (but neither all nor one) failed. 

4. Calculate values 𝑤1\𝑒 , 𝑤2\𝑒 , … 𝑤𝑒\𝑒 using equation 5. 

5. a.    For model I.1: Draw a sample of 𝜇𝐴 from 𝑝Model(𝜇𝐴), see equation 1. 

b.    For model I.2: Calculate 𝜇A according to equation 2. 

6. Calculate values 𝑞𝑘\𝑒 = 𝜇A 𝑤𝑘\𝑒 for 𝑘 = 1 … 𝑒. 

 

The set of 𝑆 resulting e-tuples is distributed according to the desired distribution 𝑝(𝑞1\𝑒 , 𝑞2\𝑒 , … 𝑞𝑒\𝑒).  

 

As an alternative, the calculation of 𝑞𝑘\𝑒 can in part be done by PSA programs using the automated 

CCF modelling. Then, for model II.1, step 3, and for model II.2, step 6 is implemented in the PSA 

software. When using model I.2, the failure probability of the individual components 𝑓 required for the 

calculation is already available (see Section 2.1). Then, steps 2.b. and 5.b. are unnecessary. For Model 

I.1, after drawing a sample of  𝜇𝐴 (steps 2.a or 5.a) the failure probability of the individual components 

may be calculated as 𝑓 =
1

𝑒
𝜇A ∑ 𝑘 𝑤𝑘\𝑒

𝑒
𝑘=1  (inversion of equation 2).  

 

A generalization to models with additional nodes is straightforward.  
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4.  RESULTS 
 

In the following, estimates of 𝑞𝑘\𝑒 are shown. Here, regarding stage I only results with an estimation of 

𝜇𝐴 based on the operating experience presented in chapter 1 are considered (model I.1) since in the 

alternative approach I.2 the values of 𝑓 are dependent on the specific scenario and on the specific group 

of exposed components in that scenario, and no statistics of these values is currently available. 

Comparisons of the different approaches for stage I will be carried out when the results of the current 

modelling efforts are integrated into the PSA model of the reference plant. 

 

Table 3 presents the mean values and the standard deviations of the resulting marginal distributions of 

the probability 𝑞𝑘\𝑒 that 𝑘 out of 𝑒 exposed components fail.  

 

Table 3: Comparison of the Mean Values and the Standard Deviations (SD) of the Marginal 

Distributions of the Probability 𝒒𝒌\𝒆 that 𝒌 out of 𝒆 Exposed Components Fail as Estimated 

with Models II.1 and II.2 

Model  𝒒𝟏\𝟐 𝒒𝟐\𝟐 𝒒𝟏\𝟑 𝒒𝟐\𝟑 𝒒𝟑\𝟑 𝒒𝟏\𝟒 𝒒𝟐\𝟒 𝒒𝟑\𝟒 𝒒𝟒\𝟒 

II.1 Mean 9.13 E-03 0.17 1.40 E-02 1.41 E-02 0.15 4.57 E-02 4.57 E-02 1.51 E-02 7.62 E-02 

II.2 Mean 2.90 E-02 0.15 1.82 E-02 1.09 E-02 0.15 1.82 E-02 8.18 E-03 2.73 E-03 1.50 E-01 

 Quot. 3.17 0.88 1.29 0.78 0.99 0.40 0.18 0.18 2.02 

II.1 SD 2.64 E-02 0.27 3.97 E-02 3.97 E-02 0.25 9.04E-02 9.03 E-02 4.24 E-02 1.30 E-01 

II.2 SD 5.22 E-02 0.24 3.51 E-02 2.35 E-02 0.24 3.51 E-02 1.87 E-02 8.77 E-03 2.40 E-01 

 Quot. 1.98 0.89 0.88 0.59 0.98 0.39 0.21 0.21 1.79 

 

The results of the two different approaches are quite similar. The most significant differences concern 

two and three failures, respectively, out of four exposed components. Here, the different bases of the 

estimations become apparent: While for small groups of size two to three, only failures of the whole 

group have been observed, for groups of size four also failures of a subset of components occurred. 

Therefore, in model II.2, where all observations enter, the estimates of 𝑞2\4 and 𝑞3\4 are much smaller 

than in model II.1. Conversely, 𝑞4\4  is larger in model II.1. These differences, however, may be 

expected to be of minor importance since they are smaller than the widths of the uncertainty 

distributions (see also Table 4 in the Appendix). This will be further analyzed as soon as the corelated 

failures have been implemented in the PSA model. Then, also systematic comparisons of the approaches 

I.1 and I.2 will be carried out. When performing an uncertainty analysis, it is necessary to use coupled 

random variables, since the different 𝑞𝑘\𝑒 are strongly correlated due to their common factor 𝜇A.  

 

5.  CONCLUSION 
 

Different approaches have been developed which allow to more realistically model the correlated 

failures of components exposed to an asymmetry of the electrical energy supply. The models have been 

quantified based on the analysis of ten relevant events observed from national and international 

operating experience in nuclear power plants using Bayesian statistical methods. 

 

In the further course of the project, models and quantifications presented in this paper will be applied 

to the PSA model of the reference plant to quantitatively assess the importance of events with an 

asymmetry of the electrical power supply system in NPPs. 
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APPENDIX 
 

The following Table 4 provides characteristics of the marginal distributions of the conditional proba-

bilities 𝑞𝑘\𝑒 that 𝑘 out of a group of 𝑒 exposed identical components with similar loads fail when ex-

posed to an asymmetry. Both estimates using model II.1 and II.2 are presented. 

 

Table 4: Characteristics of the Marginal Distributions of the 𝒒𝒌\𝒆 

𝒌\𝒆 Model Mean Standard 

Deviation 

5% 

Quantile 

Median 95% 

Quantile 

K95† 

1\2 II.1 9.13 E-03 2.64E-02 5.30 E-07 4.52 E-04 5.27 E-02 116.7 

1\2 II.2 2.90 E-02 5.22E-02 2.03 E-05 3.32E-03 1.50 E-01 44.1 

2\2 II.1 1.70 E-01 2.70 E-01 1.49 E-04 2.21E-02 8.10 E-01 36.7 

2\2 II.2 1.50 E-01 2.40 E-01 1.31 E-04 1.94 E-02 7.20 E-01 36.8 

1\3 II.1 1.40 E-02 3.97 E-02 8.49 E-07 7.15E-04 8.18 E-02 114.5 

1\3 II.2 1.82 E-02 3.51 E-02 1.09 E-05 1.96 E-03 9.46 E-02 48.4 

2\3 II.1 1.41 E-02 3.97 E-02 8.29 E-07 7.11 E-04 8.25 E-02 116.1 

2\3 II.2 1.09 E-02 2.35 E-02 4.93 E-06 1.04E-03 5.89 E-02 56.5 

3\3 II.1 1.50 E-01 2.50 E-01 1.30 E-04 1.95 E-02 7.30 E-01 37.5 

3\3 II.2 1.50 E-01 2.40 E-01 1.30 E-04 1.95 E-02 7.20 E-01 36.7 

1\4 II.1 4.57 E-02 9.04 E-02 2.39 E-05 4.70 E-03 2.50 E-01 52.6 

1\4 II.2 1.82 E-02 3.51 E-02 1.12 E-05 1.96 E-03 9.45 E-02 48.2 

2\4 II.1 4.57 E-02 9.03 E-02 2.37 E-05 4.69 E-03 0.24802 52.9 

2\4 II.2 8.18 E-03 1.87 E-02 3.16 E-06 7.23 E-04 4.4 8E-02 62.0 

3\4 II.1 1.51 E-02 4.24 E-02 9.15 E-07 7.75 E-04 8.89 E-02 114.7 

3\4 II.2 2.73 E-03 8.77 E-03 1.25 E-07 1.16 E-04 1.51 E-02 130.1 

4\4 II.1 7.62 E-02 1.30 E-01 5.29 E-05 8.8 1E-03 3.90 E-01 44.2 

4\4 II.2 1.50 E-01 2.40 E-01 1.33 E-04 1.95 E-02 7.20 E-01 36.7 

 


